Motion

Reading: Robot Vision Chapter 12, Lucas-Kanade

Why estimate motion?

Lots of uses

- □ Track object behavior
- □ Correct for camera jitter (stabilization)
- □ Align images (mosaics)
- □ 3D shape reconstruction
- □ Special effects

Motion Field

Image velocity of a point moving in the scene

Optical Flow

Motion of brightness pattern in the image
Ideally Optical flow = Motion field

Optical Flow ≠ **Motion Field**

Problem Definition: Optical Flow

- How to estimate pixel motion from image H to image I?
 - □ Solve pixel correspondence problem
 - given a pixel in H, look for nearby pixels of the same color in I
 - Key assumptions
 - **color constancy:** a point in H looks the same in I
 - □ For grayscale images, this is **brightness constancy**
 - □ **small motion**: points do not move very far

Optical Flow Constraints

Let's look at these constraints more closely

□ brightness constancy: Q: what's the equation? 0 = I(x + u, y + v) - H(x, y)

□ small motion: (u and v are less than 1 pixel) suppose we take the Taylor series expansion of I: $I(x+u, y+v) = I(x, y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + \text{higher order terms}$ $\approx I(x, y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v$

Optical Flow Equation

$$0 = I(x + u, y + v) - H(x, y)$$
Plugging in the Taylor expansion gives us
$$\approx I(x, y) + I_x u + I_y v - H(x, y) \text{ shorthand: } I_x = \frac{\partial I}{\partial x}$$

$$\approx (I(x, y) - H(x, y)) + I_x u + I_y v$$

$$\approx I_t + I_x u + I_y v$$

$$\approx I_t + \nabla I \cdot [u \ v]$$

In the limit as u and v go to zero, this becomes exact

$$0 = I_t + \nabla I \cdot \left[\frac{\partial x}{\partial t} \ \frac{\partial y}{\partial t}\right]$$

Optical Flow Equation

$$0 = I_t + \nabla I \cdot [u \ v]$$

- Q: how many unknowns and equations per pixel?
- Intuitively, what does this constraint mean?
 - The component of the flow in the gradient direction is determined
 - The component of the flow parallel to an edge is unknown

barberpole illusion

Aperture Problem

Aperture Problem

Estimating Optical Flow

25×2

$0 = I_t(\mathbf{p_i}) + \nabla I(\mathbf{p_i}) \cdot [u \ v]$

- How to get more equations for a pixel?
 - □ Basic idea: impose additional constraints
 - most common is to assume that the flow field is smooth locally
 - one method: pretend the pixel's neighbors have the same (u,v)
 - If we use a 5x5 window, that gives us 25 equations per pixel!

$$\begin{bmatrix} I_x(\mathbf{p_1}) & I_y(\mathbf{p_1}) \\ I_x(\mathbf{p_2}) & I_y(\mathbf{p_2}) \\ \vdots & \vdots \\ I_x(\mathbf{p_{25}}) & I_y(\mathbf{p_{25}}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_t(\mathbf{p_1}) \\ I_t(\mathbf{p_2}) \\ \vdots \\ I_t(\mathbf{p_{25}}) \end{bmatrix}$$

 2×1

 25×1

RGB version

- How to get more equations for a pixel?
 - □ Basic idea: impose additional constraints
 - □ most common is to assume that the flow field is smooth locally $0 = I_t(\mathbf{p_i})[0, 1, 2] + \nabla I(\mathbf{p_i})[0, 1, 2] \cdot [u \ v]$
 - one method: pretend the pixel's neighbors have the same (u,v)
 - If we use a 5x5 window, that gives us 25*3 equations per pixel!

$$\begin{bmatrix} I_x(\mathbf{p}_1)[0] & I_y(\mathbf{p}_1)[0] \\ I_x(\mathbf{p}_1)[1] & I_y(\mathbf{p}_1)[1] \\ I_x(\mathbf{p}_1)[2] & I_y(\mathbf{p}_1)[2] \\ \vdots & \vdots \\ I_x(\mathbf{p}_{25})[0] & I_y(\mathbf{p}_{25})[0] \\ I_x(\mathbf{p}_{25})[1] & I_y(\mathbf{p}_{25})[1] \\ I_x(\mathbf{p}_{25})[2] & I_y(\mathbf{p}_{25})[2] \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_t(\mathbf{p}_1)[0] \\ I_t(\mathbf{p}_1)[2] \\ \vdots \\ I_t(\mathbf{p}_{1})[2] \\ \vdots \\ I_t(\mathbf{p}_{25})[0] \\ I_t(\mathbf{p}_{25})[0] \\ I_t(\mathbf{p}_{25})[1] \\ I_t(\mathbf{p}_{25})[2] \end{bmatrix}$$
$$\begin{bmatrix} A \\ A \\ 75 \times 2 \end{bmatrix} \begin{bmatrix} d \\ 2 \times 1 \end{bmatrix} = -\begin{bmatrix} I_t(\mathbf{p}_1)[0] \\ I_t(\mathbf{p}_{1})[1] \\ I_t(\mathbf{p}_{1})[2] \\ \vdots \\ I_t(\mathbf{p}_{25})[0] \\ I_t(\mathbf{p}_{25})[2] \end{bmatrix}$$

Lucas-Kanade Flow

Prob: we have more equations than unknowns

$$\begin{array}{ccc} A & d = b \\ _{25\times2} & _{2\times1} & _{25\times1} \end{array} \longrightarrow \text{minimize } \|Ad - b\|^2$$

Solution: solve least squares problem

- $\Box \quad \text{minimum least squares solution given by solution (in} \\ d) \text{ of: } (A^T A) \quad d = A^T b \\ \sum_{2 \times 2} \sum_{2 \times 1} \sum_{2 \times 1} \sum_{2 \times 1} \left[\sum_{2 \times 1} I_x I_x \sum_{2 \times 1} I_x I_y \right] \begin{bmatrix} u \\ v \end{bmatrix} = \left[\sum_{2 \times 1} I_x I_t \right] \\ A^T A \qquad A^T b$
- □ The summations are over all pixels in the K x K window
- This technique was first proposed by Lucas & Kanade (1981)

Conditions for Solvability

□ Optimal (u, v) satisfies Lucas-Kanade equation

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$
$$A^T A \qquad \qquad A^T b$$

When is this solvable?

- *A*^{*T*}*A* should be invertible
- $A^{T}A$ should not be too small due to noise - eigenvalues λ_{1} and λ_{2} of $A^{T}A$ should not be too small
- *A^TA* should be well-conditioned
 - λ_1/λ_2 should not be too large (λ_1 = larger eigenvalue)

Eigenvectors of $A^T A$

$$A^{T}A = \begin{bmatrix} \sum I_{x}I_{x} & \sum I_{x}I_{y} \\ \sum I_{x}I_{y} & \sum I_{y}I_{y} \end{bmatrix} = \sum \begin{bmatrix} I_{x} \\ I_{y} \end{bmatrix} [I_{x} I_{y}] = \sum \nabla I(\nabla I)^{T}$$

- Suppose (x,y) is on an edge. What is A^TA ?
 - gradients along edge all point the same direction
 - □ gradients away from edge have small magnitude $\left(\sum \nabla I(\nabla I)^T\right) \approx k \nabla I \nabla I^T$ $\left(\sum \nabla I(\nabla I)^T\right) \nabla I = k \|\nabla I\|^2 \nabla I$
 - $\square \nabla I$ is an eigenvector with eigenvalue $k \|\nabla I\|^2$
 - \Box What's the other eigenvector of $A^T A$?
 - □ let N be perpendicular to ∇I $\left(\sum \nabla I (\nabla I)^T\right) N = 0$

□ N is the second eigenvector with eigenvalue 0

The eigenvectors of *A*^{*T*}*A* relate to edge direction and magnitude

Edge

 $\sum \nabla I(\nabla I)^{T}$ - large gradients, all the same
- large λ_{1} , small λ_{2}

Low Texture Region

 $\sum \nabla I(\nabla I)^{T}$ - gradients have small magnitude
- small λ_{1} , small λ_{2}

High Textured Region

Observation

This is a two image problem BUT

- Can measure sensitivity by just looking at one of the images!
- This tells us which pixels are easy to track, which are hard

□ very useful later on when we do feature tracking...

Read "A Combined Corner and Edge Detector" by C. Harris and M. Stephens (local copy on class page)

Errors in Lucas-Kanade

- What are the potential causes of errors in this procedure?
 - □ Suppose *A*^{*T*}*A* is easily invertible
 - □ Suppose there is not much noise in the image
- When our assumptions are violated
 - □ Brightness constancy is **not** satisfied
 - □ The motion is **not** small
 - □ A point does **not** move like its neighbors
 - □ window size is too large
 - □ what is the ideal window size?

Improving Accuracy

Recall our small motion assumption 0 = I(x + u, y + v) - H(x, y) $\approx I(x, y) + I_x u + I_y v - H(x, y)$

This is not exact

- □ To do better, we need to add higher order terms back in: = $I(x, y) + I_x u + I_y v$ + higher order terms - H(x, y)
- This is a polynomial root finding problem
 - □ Can solve using **Newton's method**
 - □ Also known as **Newton-Raphson** method
 - □ Read first four pages of
 - http://www.library.cornell.edu/nr/bookcpdf/c9-4.pdf
 - □ Approach so far does one iteration of Newton's method

Better results are obtained via more iterations

Iterative Refinement

- Iterative Lucas-Kanade Algorithm
 - 1. Estimate velocity at each pixel by solving Lucas-Kanade equations
 - 2. Warp H towards I using the estimated flow field
 - use image warping techniques
 - 3. Repeat until convergence

Revisiting the Small Motion Assumption

- Is this motion small enough?
 - Probably not—it's much larger than one pixel (2nd order terms dominate)
 - □ How might we solve this problem?

Reduce the Resolution!

Coarse-to-fine Optical Flow Estimation

Coarse-to-fine Optical Flow Estimation

Optical Flow Result

Motion Tracking

- Suppose we have more than two images
 - □ How to track a point through all of the images?
 - In principle, we could estimate motion between each pair of consecutive frames
 - □ Given point in first frame, follow arrows to trace out it's path
 - □ Problem: DRIFT
 - small errors will tend to grow and grow over time—the point will drift way off course
 - Feature Tracking
 - Choose only the points ("features") that are easily tracked
 - □ How to find these features?
 - □ windows where $\sum \nabla I (\nabla I)^T$ as two large eigenvalues
 - □ Called the Harris Corner Detector

Feature Detection

Tracking Features

- Feature tracking
 - Compute optical flow for that feature for each consecutive *H*, *I*
- When will this go wrong?
 - □ Occlusions—feature may disappear
 - □ need mechanism for deleting, adding new features
 - □ Changes in shape, orientation
 - □ allow the feature to deform
 - Changes in color
 - □ Large motions
 - □ will pyramid techniques work for feature tracking?

Handling Large Motions

- L-K requires small motion
 - □ If the motion is much more than a pixel, use discrete **search** instead

- □ Given feature window *W* in *H*, find best matching window in *I*
- $\square \quad \text{Minimize sum squared difference (SSD) of pixels in window} \\ \min_{(u,v)} \left\{ \sum_{(x,y) \in W} |I(x+u,y+v) H(x,y)|^2 \right\}$
- Solve by doing a search over a specified range of (*u*,*v*) values
 this (*u*,*v*) range defines the **search window**

Tracking Over Many Frames

Feature tracking with *m* frames

- 1. Select features in first frame
- 2. Given feature in frame *i*, compute position in *i*+1
- 3. Select more features if needed
- **4**. i = i + 1
- 5. If *i* < *m*, go to step 2

Issues

- Discrete search vs. Lucas Kanade?
 - depends on expected magnitude of motion
 - discrete search is more flexible
- Compare feature in frame *i* to *i*+1 or frame 1 to *i*+1?
 - affects tendency to drift..
- How big should search window be?
 - too small: lost features. Too large: slow

Image Alignment

Goal: estimate single (*u*,*v*) translation for entire image
 Easier subcase: solvable by pyramid-based Lucas-Kanade

Next Week

- Midterm and Voting
 - □ Closed book
 - Pay attention to the key equations and their derivations