
Motion

Reading: Robot Vision Chapter 12, Lucas-Kanade



Why estimate motion?

� Lots of uses

� Track object behavior

� Correct for camera jitter (stabilization)

� Align images (mosaics)

� 3D shape reconstruction

� Special effects



Motion Field
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� Image velocity of a point moving in the scene

Perspective projection:
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Optical Flow

� Motion of brightness pattern in the image

� Ideally Optical flow = Motion field



Optical Flow      Motion Field≠



Problem Definition:  Optical Flow

� How to estimate pixel motion from image H to image I?
� Solve pixel correspondence problem

� given a pixel in H, look for nearby pixels of the same 
color in I

� Key assumptions
� color constancy:  a point in H looks the same in I

� For grayscale images, this is brightness constancy

� small motion:  points do not move very far



Optical Flow Constraints

� Let’s look at these constraints more closely

� brightness constancy:   Q:  what’s the equation?

� small motion:  (u and v are less than 1 pixel)
suppose we take the Taylor series expansion of I:



Optical Flow Equation

Plugging in the Taylor expansion gives us

� In the limit as u and v go to zero, this 
becomes exact



Optical Flow Equation

� Q:  how many unknowns and equations per pixel?

� Intuitively, what does this constraint mean?

� The component of the flow in the gradient direction 
is determined

� The component of the flow parallel to an edge is 
unknown

barberpole illusion



Aperture Problem



Aperture Problem



Estimating Optical Flow

� How to get more equations for a pixel?
� Basic idea:  impose additional constraints

� most common is to assume that the flow field is 
smooth locally

� one method:  pretend the pixel’s neighbors have the 
same (u,v)

� If we use a 5x5 window, that gives us 25 equations per 
pixel!



RGB version

� How to get more equations for a pixel?
� Basic idea:  impose additional constraints

� most common is to assume that the flow field is 
smooth locally

� one method:  pretend the pixel’s neighbors have the 
same (u,v)

� If we use a 5x5 window, that gives us 25*3 equations per 
pixel!



Lucas-Kanade Flow

� Prob:  we have more equations than unknowns

� The summations are over all pixels in the K x K window

� This technique was first proposed by Lucas & Kanade 
(1981)

� Solution:  solve least squares problem
� minimum least squares solution given by solution (in 

d) of:



Conditions for Solvability

� Optimal (u, v) satisfies Lucas-Kanade equation

When is this solvable?
• ATA should be invertible 

• ATA should not be too small due to noise

– eigenvalues      and of ATA should not be too small

• ATA should be well-conditioned

– should not be too large (     = larger eigenvalue)
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Eigenvectors of ATA

� Suppose (x,y) is on an edge.  What is ATA?
� gradients along edge all point the same direction

� gradients away from edge have small magnitude

� is an eigenvector with eigenvalue

� What’s the other eigenvector of ATA?

� let N be perpendicular to 

� N is the second eigenvector with eigenvalue 0

� The eigenvectors of ATA relate to edge direction and magnitude 



Edge

– large gradients, all the same

– large      , small
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Low Texture Region

– gradients have small magnitude

– small      , small
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High Textured Region

– gradients are different, large magnitudes

– large       , large
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Observation

� This is a two image problem BUT
� Can measure sensitivity by just looking at one of the 

images!

� This tells us which pixels are easy to track, which are 
hard

� very useful later on when we do feature tracking...

Read “A Combined Corner and Edge Detector” by C. Harris and M. Stephens 
(local copy on class page)



Errors in Lucas-Kanade

� What are the potential causes of errors in 
this procedure?

� Suppose ATA is easily invertible

� Suppose there is not much noise in the image

� When our assumptions are violated

� Brightness constancy is not satisfied

� The motion is not small

� A point does not move like its neighbors

� window size is too large

� what is the ideal window size?



� Can solve using Newton’s method

� Also known as Newton-Raphson method

� Read first four pages of

� http://www.library.cornell.edu/nr/bookcpdf/c9-4.pdf

� Approach so far does one iteration of Newton’s method

� Better results are obtained via more iterations

Improving Accuracy

Recall our small motion assumption

� This is not exact
� To do better, we need to add higher order terms back 

in:

� This is a polynomial root finding problem



Iterative Refinement

� Iterative Lucas-Kanade Algorithm
1. Estimate velocity at each pixel by solving Lucas-Kanade 

equations

2. Warp H towards I using the estimated flow field

- use image warping techniques

3. Repeat until convergence



Revisiting the Small Motion Assumption

� Is this motion small enough?
� Probably not—it’s much larger than one pixel (2nd order 

terms dominate)
� How might we solve this problem?



Reduce the Resolution!



image Iimage H

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H u=10 pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels

Coarse-to-fine Optical Flow Estimation



image Iimage J

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H

Coarse-to-fine Optical Flow Estimation

run iterative L-K

run iterative L-K

warp & upsample
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Optical Flow Result



Motion Tracking

� Suppose we have more than two images
� How to track a point through all of the images?

� Feature Tracking
� Choose only the points (“features”) that are easily 

tracked

� How to find these features?

� In principle, we could estimate motion between each pair of 
consecutive frames

� Given point in first frame, follow arrows to trace out it’s path

� Problem:  DRIFT
� small errors will tend to grow and grow over time—the point will drift 

way off course

� windows where                          has two large 
eigenvalues

� Called the Harris Corner Detector



Feature Detection



Tracking Features

� Feature tracking
� Compute optical flow for that feature for each 

consecutive H, I

� When will this go wrong?
� Occlusions—feature may disappear

� need mechanism for deleting, adding new features

� Changes in shape, orientation

� allow the feature to deform

� Changes in color

� Large motions

� will pyramid techniques work for feature tracking?



Handling Large Motions

� L-K requires small motion

� If the motion is much more than a pixel, use discrete search 
instead

� Given feature window W in H, find best matching window in I

� Minimize sum squared difference (SSD) of pixels in window

� Solve by doing a search over a specified range of (u,v) values

� this (u,v) range defines the search window



Tracking Over Many Frames

� Feature tracking with m frames
1. Select features in first frame

2. Given feature in frame i, compute position in i+1

3. Select more features if needed

4. i = i + 1

5. If i < m, go to step 2

Issues
• Discrete search vs. Lucas Kanade?

– depends on expected magnitude of motion

– discrete search is more flexible

• Compare feature in frame i to i+1 or frame 1 to i+1?

– affects tendency to drift..

• How big should search window be?

– too small:  lost features.  Too large:  slow



Image Alignment

� Goal:  estimate single (u,v) translation for entire image
� Easier subcase:  solvable by pyramid-based Lucas-Kanade 



Next Week

� Midterm and Voting

� Closed book

� Pay attention to the key equations and their 
derivations




