Motion

Reading: Robot Vision Chapter 12, Lucas-Kanade



Why estimate motion?

B [ots of uses
O Track object behavior
O Correct for camera jitter (stabilization)
O Align images (mosaics)
O 3D shape reconstruction
O Special effects



Motion Field

B Image velocity of a point moving in the scene

dr
V0t Y Scene point velocity: Z’; = dto
Image velocity: V, = i
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erspective projection: —T, =
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Motion field
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Optical Flow

B Motion of brightness pattern in the image
B Jdeally Optical flow = Motion field
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Optical Flow 7= Motion Field

(a) (b)



Problem Definition: Optical Flow

./ Q °

W ®
o—r z (@) .
H(x,y) I(z,y)

B How to estimate pixel motion from image H to image I?
O Solve pixel correspondence problem

O given a pixel in H, look for nearby pixels of the same
color in I

B Key assumptions
O color constancy: a point in H looks the same in I
O For grayscale images, this is brightness constancy
O small motion: points do not move very far



Optical Flow Constraints

(2, 9)
\Sllsplacement = (u,v)

@]
(z +u,y + v)

H(z,y) I(z,y)
B Let'slook at these constraints more closely

OO0 brightness constancy: Q: what's the equation?
O=I(x+u,y+v)— H(z,y)

0 small motion: (u and v are less than 1 pixel)

suppose we take the Taylor series expansion of I:

I(x+u,y+v) = I(x, y)—l— ’U—I—hlgher order terms
~ I(z,y) + 92 —I—



Optical Flow Equation

0=1I(x+u,y+v)—- H(z,y)
Plugging in the Taylor expansion gives us

~ I(x,y) + Iou + Iyv — H(z,y) shorthand: I, = %
~ (I(z,y) — H(z,y)) + Lru + Iyv

~ It + Ixu + Iyv

~I; +VI-[u v]

B In the limit as u and v go to zero, this
becomes exact

0= 1+ V1% 9




Optical Flow Equation
O=1;+ VI-|u v]

B Q: how many unknowns and equations per pixel?

B Intuitively, what does this constraint mean?

0 The component of the flow in the gradient direction
is determined

00 The component of the flow parallel to an edge is
unknown

barberpole illusion



Aperture Problem




Aperture Problem




Estimating Optical Flow

0 = Ii(p;) + VI(p;) - [u 7]

B How to get more equations for a pixel?
00 Basicidea: impose additional constraints

O most common is to assume that the flow field is
smooth locally

O one method: pretend the pixel's neighbors have the
same (u,v)
B If we use a 5x5 window, that gives us 25 equations per
pixel!

I:(p1) Iy(pP1) Ii(p1) |
Iz(p2)  Iy(pP2) [ u ] — | L(p2)
I I:c(I.)25) fy(I-)25) _ I It(li;25) _

A d b

25x2 2x1 25x1



RGB version

How to get more equations for a pixel?

[0 Basicidea: impose additional constraints
0 most common is to assume that the flow field is

smooth locally 0 = I;(p;)[0, 1,2] + VI(p;)[0,1,2] - [u v]
O one method: pretend the pixel's neighbors have the

same (u,Vv)

B If we use a 5x5 window, that gives us 25*3 equations per

- 1:(p1)[0] |

pixel!

| I:(p1)[0]  Iy(p1)[O]
I:(p1)[1]  1y(p1)[1]
Ia:(P.l)[Q] f:y(P.1)[2]

I.(p25)[0] Iy(p25)[O]
I:(p25)[1] Iy(p2s5)[1]

I1(p1)[1]
It(P.l)[Q]

I,(p25)[0]
Ii(p25)[1]

| Iz(p25)[2] Iy(p2s)[2]
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Lucas-Kanade Flow

B Prob: we have more equations than unknowns

A d=b _——, minimize ||Ad — b|?
25x2 2x1 25x1

B Solution: solve least squares problem
00 minimum least squares solution given by solution (in

dyof: (AT A) d= Alp

2X2 2x1 2x1

Shely S Lly || uw] | S Lk
S Iely STy || v | ™ S Iy,
AT A Alp

O The summations are over all pixels in the K x K window

O This technique was first proposed by Lucas & Kanade
(1981)



Conditions for Solvability

O Optimal (u, v) satisfies Lucas-Kanade equation

Nl SELIy|[u]_ [ XL
S Ly SLiy || v |~ | Sl

AT A Alp

When is this solvable?

e ATA should be invertible
e ATA should not be too small due to noise

— eigenvalues 4, and 4, of ATA should not be too small
e ATA should be well-conditioned

— A, /4, should not be too large ( A, = larger eigenvalue)



Eigenvectors of ATA

2o dady 3 Ixly
S LI, S I,
B Suppose (x,y) is on an edge. What is ATA?
0 gradients along edge all point the same direction
O gradients away from edge have small magnitude
(S vi(vD?) mkvIvI®
(S vI(vDT) VI = k||VI|PVI

ATa= =3 [ I ] [ 1] = Y vI(V)T
Yy

[0 VI is an eigenvector with eigenvalue k||VI 12
O What's the other eigenvector of ATA?
O let N be perpendicular to V/
(> vi(vDT)N =0
O N is the second eigenvector with eigenvalue 0
B The eigenvectors of ATA relate to edge direction and magnitude



S vi(vn?!

— large gradients, all the same

~large A, , small A,



Low Texture Region

— gradients have small magnitude
—small A, , small 4,



High Textured Region

< o ~ ~ o @ o N

S vi(vn?!
— gradients are different, large magnitudes” -~ -
~large A, ,large A,




Observation

B Thisis a two image problem BUT

00 Can measure sensitivity by just looking at one of the
images!

O This tells us which pixels are easy to track, which are
hard

O very useful later on when we do feature tracking...

Read “A Combined Corner and Edge Detector” by C. Harris and M. Stephens
(local copy on class page)



Errors in Lucas-Kanade

B What are the potential causes of errors in
this procedure?

O Suppose A'A is easily invertible

O Suppose there is not much noise in the image

B When our assumptions are violated
O Brightness constancy is not satisfied
O The motion is not small

O A point does not move like its neighbors
0 window size is too large
0 what is the ideal window size?



Improving Accuracy

Recall our small motion assumption
O=I(x+u,y+v)— H(z,y)
~I(z,y) + Izu+ Iyv — H(x,y)

B This is not exact
O To do better, we need to add higher order terms back
n: = I(x, y) + lxu + va -+ higher order terms — H(x, y)
B This is a polynomial root finding problem

O Can solve using Newton’s method
O Also known as Newton-Raphson method

O Read first four pages of
B http://www.library.cornell.edu/nr/bookcpdf/c9-4.pdf

O Approach so far does one iteration of Newton's method
O Better results are obtained via more iterations




Iterative Refinement

B Jterative Lucas-Kanade Algorithm

1. Estimate velocity at each pixel by solving Lucas-Kanade
equations

2. Warp H towards I using the estimated flow field
- use image warping techniques
3. Repeat until convergence



Revisiting the Small Motion Assumption

= __

O Probably not—it's much larger than one pixel (2"¢ order
terms dominate)

O How might we solve this problem?



Reduce the Resolution!




Coarse-to-fine Optical Flow Estimation

u=1.25 pixels

u=2.5 pixels

u=>5 pixels

Gaussian pyramid of image H Gaussian pyramid of image I



Coarse-to-fine Optical Flow Estimation

E — Tun iterative L-K -

warp & upsample

/ / — run iterative L-K +—

image H

Gaussian pyramid of image H Gaussian pyramid of image I



Optical Flow Result
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Motion Tracking

B Suppose we have more than two images

O How to track a point through all of the images?

O In principle, we could estimate motion between each pair of
consecutive frames

O Given point in first frame, follow arrows to trace out it's path
O Problem: DRIFT

B small errors will tend to grow and grow over time—the point will drift
way off course

B Feature Tracking

O Choose only the points (“features”) that are easily
tracked
0 How to find these features?

O windows where Y VI(VI)!astwo large
eigenvalues

O Called the Harris Corner Detector



Feature Detection
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Tracking Features

B Feature tracking
O Compute optical flow for that feature for each
consecutive H, I
B When will this go wrong?
O Occlusions—feature may disappear
O need mechanism for deleting, adding new features
O Changes in shape, orientation
O allow the feature to deform

O

Changes in color

O

Large motions

O will pyramid techniques work for feature tracking?



Handling Large Motions

B [-Krequires small motion

O

O

If the motion is much more than a pixel, use discrete search
instead

] | .
H(z,y) I(z,y)

Given feature window W in H, find best matching window in I

Minimize sum squared difference (SSD) of pixels in window
4 )

ming .y, H(@+uy+v)— Hz,y)l?
| (z,y)EW

“~”

/

Solve by doing a search over a specified range of (u,v) values
O this (4,0) range defines the search window



Tracking Over Many Frames

B Feature tracking with m frames

LN

5,
Issues

Select features in first frame

Given feature in frame i, compute position in i+1
Select more features if needed

1=1+1

If i <m, go to step 2

Discrete search vs. Lucas Kanade?

— depends on expected magnitude of motion

— discrete search is more flexible

Compare feature in frame i to i+1 or frame 1 to i+1?
— affects tendency to drift..

How big should search window be?

— too small: lost features. Too large: slow



Image Alignment

Goal: estimate single (u,v) translation for entire image
O Easier subcase: solvable by pyramid-based Lucas-Kanade



Next Week

B Midterm and Voting
O Closed book

O Pay attention to the key equations and their
derivations





