
Motion

Reading: Robot Vision Chapter 12, Lucas-Kanade

Why estimate motion?

� Lots of uses

� Track object behavior

� Correct for camera jitter (stabilization)

� Align images (mosaics)

� 3D shape reconstruction

� Special effects

Motion Field

Z

X

Y

or

ir

'f

� Image velocity of a point moving in the scene

Perspective projection:
Zr

r
r

⋅
=

o

o
i

f '

1

() ()
()

()
()22

''
Zr

Zvr

Zr

rZvvZrr
v

⋅

××
=

⋅

⋅−⋅
==

o

oo

o

ooooi
i ff

dt

d

Motion field

toδv

tiδv
Scene point velocity:

Image velocity:

dt

d o
o

r
v =

dt

d i
i

r
v =

Optical Flow

� Motion of brightness pattern in the image

� Ideally Optical flow = Motion field

Optical Flow Motion Field≠

Problem Definition: Optical Flow

� How to estimate pixel motion from image H to image I?
� Solve pixel correspondence problem

� given a pixel in H, look for nearby pixels of the same
color in I

� Key assumptions
� color constancy: a point in H looks the same in I

� For grayscale images, this is brightness constancy

� small motion: points do not move very far

Optical Flow Constraints

� Let’s look at these constraints more closely

� brightness constancy: Q: what’s the equation?

� small motion: (u and v are less than 1 pixel)
suppose we take the Taylor series expansion of I:

Optical Flow Equation

Plugging in the Taylor expansion gives us

� In the limit as u and v go to zero, this
becomes exact

Optical Flow Equation

� Q: how many unknowns and equations per pixel?

� Intuitively, what does this constraint mean?

� The component of the flow in the gradient direction
is determined

� The component of the flow parallel to an edge is
unknown

barberpole illusion

Aperture Problem

Aperture Problem

Estimating Optical Flow

� How to get more equations for a pixel?
� Basic idea: impose additional constraints

� most common is to assume that the flow field is
smooth locally

� one method: pretend the pixel’s neighbors have the
same (u,v)

� If we use a 5x5 window, that gives us 25 equations per
pixel!

RGB version

� How to get more equations for a pixel?
� Basic idea: impose additional constraints

� most common is to assume that the flow field is
smooth locally

� one method: pretend the pixel’s neighbors have the
same (u,v)

� If we use a 5x5 window, that gives us 25*3 equations per
pixel!

Lucas-Kanade Flow

� Prob: we have more equations than unknowns

� The summations are over all pixels in the K x K window

� This technique was first proposed by Lucas & Kanade
(1981)

� Solution: solve least squares problem
� minimum least squares solution given by solution (in

d) of:

Conditions for Solvability

� Optimal (u, v) satisfies Lucas-Kanade equation

When is this solvable?
• ATA should be invertible

• ATA should not be too small due to noise

– eigenvalues and of ATA should not be too small

• ATA should be well-conditioned

– should not be too large (= larger eigenvalue)

1
λ

2
λ

21
λλ

1
λ

Eigenvectors of ATA

� Suppose (x,y) is on an edge. What is ATA?
� gradients along edge all point the same direction

� gradients away from edge have small magnitude

� is an eigenvector with eigenvalue

� What’s the other eigenvector of ATA?

� let N be perpendicular to

� N is the second eigenvector with eigenvalue 0

� The eigenvectors of ATA relate to edge direction and magnitude

Edge

– large gradients, all the same

– large , small
1

λ
2

λ

Low Texture Region

– gradients have small magnitude

– small , small
1

λ
2

λ

High Textured Region

– gradients are different, large magnitudes

– large , large
1

λ
2

λ

Observation

� This is a two image problem BUT
� Can measure sensitivity by just looking at one of the

images!

� This tells us which pixels are easy to track, which are
hard

� very useful later on when we do feature tracking...

Read “A Combined Corner and Edge Detector” by C. Harris and M. Stephens
(local copy on class page)

Errors in Lucas-Kanade

� What are the potential causes of errors in
this procedure?

� Suppose ATA is easily invertible

� Suppose there is not much noise in the image

� When our assumptions are violated

� Brightness constancy is not satisfied

� The motion is not small

� A point does not move like its neighbors

� window size is too large

� what is the ideal window size?

� Can solve using Newton’s method

� Also known as Newton-Raphson method

� Read first four pages of

� http://www.library.cornell.edu/nr/bookcpdf/c9-4.pdf

� Approach so far does one iteration of Newton’s method

� Better results are obtained via more iterations

Improving Accuracy

Recall our small motion assumption

� This is not exact
� To do better, we need to add higher order terms back

in:

� This is a polynomial root finding problem

Iterative Refinement

� Iterative Lucas-Kanade Algorithm
1. Estimate velocity at each pixel by solving Lucas-Kanade

equations

2. Warp H towards I using the estimated flow field

- use image warping techniques

3. Repeat until convergence

Revisiting the Small Motion Assumption

� Is this motion small enough?
� Probably not—it’s much larger than one pixel (2nd order

terms dominate)
� How might we solve this problem?

Reduce the Resolution!

image Iimage H

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H u=10 pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels

Coarse-to-fine Optical Flow Estimation

image Iimage J

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H

Coarse-to-fine Optical Flow Estimation

run iterative L-K

run iterative L-K

warp & upsample

.

.

.

Optical Flow Result

Motion Tracking

� Suppose we have more than two images
� How to track a point through all of the images?

� Feature Tracking
� Choose only the points (“features”) that are easily

tracked

� How to find these features?

� In principle, we could estimate motion between each pair of
consecutive frames

� Given point in first frame, follow arrows to trace out it’s path

� Problem: DRIFT
� small errors will tend to grow and grow over time—the point will drift

way off course

� windows where has two large
eigenvalues

� Called the Harris Corner Detector

Feature Detection

Tracking Features

� Feature tracking
� Compute optical flow for that feature for each

consecutive H, I

� When will this go wrong?
� Occlusions—feature may disappear

� need mechanism for deleting, adding new features

� Changes in shape, orientation

� allow the feature to deform

� Changes in color

� Large motions

� will pyramid techniques work for feature tracking?

Handling Large Motions

� L-K requires small motion

� If the motion is much more than a pixel, use discrete search
instead

� Given feature window W in H, find best matching window in I

� Minimize sum squared difference (SSD) of pixels in window

� Solve by doing a search over a specified range of (u,v) values

� this (u,v) range defines the search window

Tracking Over Many Frames

� Feature tracking with m frames
1. Select features in first frame

2. Given feature in frame i, compute position in i+1

3. Select more features if needed

4. i = i + 1

5. If i < m, go to step 2

Issues
• Discrete search vs. Lucas Kanade?

– depends on expected magnitude of motion

– discrete search is more flexible

• Compare feature in frame i to i+1 or frame 1 to i+1?

– affects tendency to drift..

• How big should search window be?

– too small: lost features. Too large: slow

Image Alignment

� Goal: estimate single (u,v) translation for entire image
� Easier subcase: solvable by pyramid-based Lucas-Kanade

Next Week

� Midterm and Voting

� Closed book

� Pay attention to the key equations and their
derivations

