
Computer Graphics

Ray tracing

Ming-Te Chi

Department of Computer Science,

National Chengchi University

Global Illumination

• Ray tracing

– Ray / Intersections

– shading

– Implementation

• Ray tracing in complex scene

• Distributed Ray Tracing

• Rendering equation

2

RAY TRACING

Slide Courtesy of Roger Crawfis, Ohio State

Projection

• Project object into the image plane

Two approaches to rendering

Object order

for each object {
for each pixel {

If (object affect pixel) {

Do something

}

}

}

Image order

for each pixel {
for each object {

If (object affect pixel) {

Do something

}

}

}

6

Ray Tracing

• Follow rays of light from a point source

• Can account for reflection and transmission

7

Computation

• Should be able to handle all physical
interactions

• Ray tracing paradigm is not computational

• Most rays do not affect what we see

• Scattering produces many (infinite) additional
rays

• Alternative: ray casting

8

Ray Casting

• Only rays that reach the eye matter

• Reverse direction and cast rays

• Need at least one ray per pixel

9

Ray Casting a Sphere

• Ray is parametric

• Sphere is quadric

• Resulting equation is a scalar quadratic
equation which gives entry and exit points of
ray (or no solution if ray misses)

INTERSECTIONS

11

Computing Intersections

• Implicit Objects

– Quadrics

• Planes

• Polyhedra

• Parametric Surfaces

12

Implicit Surfaces

Ray from p0 in direction d

p(t) = p0 +t d

General implicit surface

f(p) = 0

Solve scalar equation

f(p(t)) = 0

General case requires numerical methods

Sphere

15

Planes

p • n + c = 0

p(t) = p0 +t d

t = -(p0 • n + c)/ d • n

Triangle

a

b

c

17

Quadrics

General quadric can be written as

pTAp + bTp +c = 0

Substitute equation of ray

p(t) = p0 +t d

to get quadratic equation

Ellipsoid

Elliptic paraboloid

Hyperbolic paraboloid

…..

http://en.wikipedia.org/wiki/Ellipsoid
http://en.wikipedia.org/wiki/Paraboloid
http://en.wikipedia.org/wiki/Paraboloid

18

Ray Casting Quadrics

• Ray casting has become the standard way to
visualize quadrics which are implicit surfaces
in CSG systems

• Constructive Solid Geometry

– Primitives are solids

– Build objects with set operations

– Union, intersection, set difference

Constructive solid geometry (CSG)

union intersection difference

20

Polyhedra

• Generally we want to intersect with closed
objects such as polygons and polyhedra rather
than planes

• Hence we have to worry about inside/outside
testing

• For convex objects such as polyhedra there
are some fast tests

21

Ray Tracing Polyhedra

• If ray enters an object, it must enter a front facing
polygon and leave a back facing polygon

• Polyhedron is formed by intersection of planes

• Ray enters at furthest intersection with front facing
planes

• Ray leaves at closest intersection with back facing
planes

• If entry is further away than exit, ray must miss the
polyhedron

22

Ray Tracing a Polygon

23

Ray Tracing a Polygon

24

Ray Tracing Polyhedra

COMPLEX SCENE

26

Shadow Rays

• Even if a point is visible, it will not be lit unless
we can see a light source from that point

• Cast shadow or feeler rays

Shadow Rays

28

Reflection

• Must follow shadow rays off reflecting or
transmitting surfaces

• Process is recursive

Computing a Reflected Ray

N
SS

ƟƟ

Rin Rout

Scene with no reflection rays

Scene with one layer of reflection Scene with two layer of reflection

31

Transmission

Transformed ray

N

d

r t

θ
θ

33

Ray Trees

A Ray Tracing demonstration program

http://www.siggraph.org/education/materials/HyperGraph/raytrace/rt_java/raytrace.html

35

Diffuse Surfaces

• Theoretically the scattering at each point of
intersection generates an infinite number of
new rays that should be traced

• In practice, we only trace the transmitted and
reflected rays, but use the Phong model to
compute shade at point of intersection

• Radiosity works best for perfectly diffuse
(Lambertian) surfaces

36

Building a Ray Tracer

• Best expressed recursively

• Can remove recursion later

• Image based approach
– For each ray …….

• Find intersection with closest surface
– Need whole object database available

– Complexity of calculation limits object types

• Compute lighting at surface

• Trace reflected and transmitted rays

37

When to stop

• Some light will be absorbed at each
intersection

– Track amount left

• Ignore rays that go off to infinity

– Put large sphere around problem

• Count steps

38

Recursive Ray Tracer(1/3)

color c = trace(point p, vector d, int

step)

{

color local, reflected, transmitted;

point q;

normal n;

if(step > max)

return(background_color);

d
p

39

Recursive Ray Tracer (2/3)

q = intersect(p, d, status);

if(status==light_source)

return(light_source_color);

if(status==no_intersection)

return(background_color);

n = normal(q);

r = reflect(q, n);

t = transmit(q,n);

d
p

q

N

r

t

40

Recursive Ray Tracer (3/3)

local = phong(q, n, r);

reflected = trace(q, r, step+1);

transmitted = trace(q,t, step+1);

return(local + reflected +

transmitted);

}

d
p

q

N

r

t

Reflection and refraction

Fresnel Reflectance

• Fresnel equation describe the behaviour
of light when moving between media of
differing refractive indices.

dielectric

glasses

conductive materials

aluminum

• Schlick's approximation

the specular reflection coefficient R
𝑅 𝜃 = 𝑅0 + (1 − 𝑅0)(1 − 𝑐𝑜𝑠𝜃)5

𝑅0 = (
𝑛1−𝑛2

𝑛1+𝑛2
)2

DISTRIBUTED RAY TRACING

Robert L. Cook, Thomas Porter, Loren Carpenter

1984

Shadows

• Ray tracing casts shadow feelers to a point light
source.

• Many light sources are illuminated over a finite area.

• The shadows between these are substantially
different.

• Area light sources cast soft shadows
– Penumbra

– Umbra

Soft Shadows

Slide Courtesy of Roger Crawfis, Ohio State

Soft Shadows

Umbra

Penumbra

Slide Courtesy of Roger Crawfis, Ohio State

Camera Models

• Up to now, we have used a pinhole camera
model.

• These has everything in focus throughout the
scene.

• The eye and most cameras have a larger lens
or aperature.

thin lens formula

•
1

𝑆1
+

1

𝑆2
=

1

𝑓

Circle of confusion

• F: Focal length; n: aperture number

• 𝑉𝑃 =
𝐹𝑃

𝑃−𝐹
, for P>F, 𝑉𝐷 =

𝐹𝐷

𝐷−𝐹
, for D>F

• 𝐶 = 𝑉𝐷 − 𝑉𝑃
𝐹

𝑛𝑉𝐷

Depth-of-Field

Motion Blur

Slide Courtesy of Roger Crawfis, Ohio State

Supersampling

1 sample per pixel 256 sample per pixel16 sample per pixel

Slide Courtesy of Roger Crawfis, Ohio State

More On Ray-Tracing

• Already discussed recursive ray-tracing!

• Improvements to ray-tracing!

– Area sampling variations to address aliasing

• Distributed ray-tracing!

Area Subdivision (Warnock)
(mixed object/image space)

Clipping used to subdivide polygons that are across regions

56

Softwares

• POV-ray (http://www.povray.org/)
– A free rendering tool (not a modeling tool)

• Uses a text based scene description language (SDL)

• Blender (http://www.blender3d.org)
– Modeling, Animation, rendering tool

• Especially useful in 3D game creation

http://www.povray.org/
http://www.blender3d.org/

RENDERING EQUATION

58

Rendering Equation (Kajiya 1986)

• Consider a point on a surface

N

Iout(Φout)
Iin(Φin)

59

Rendering Equation

• Outgoing light is from two sources

– Emission

– Reflection of incoming light

• Must integrate over all incoming light

– Integrate over hemisphere

• Must account for foreshortening of incoming
light

60

Rendering Equation

Iout(Φout) = E(Φout) + ∫ 2πRbd(Φout, Φin)Iin(Φin) cos θ dω

bidirectional reflection coefficient

angle between Normal and Φinemission

Note that angle is really two angles in 3D and wavelength is fixed

BRDF database

• http://www.merl.com/brdf/

63

Rendering Equation

• Rendering equation is an energy balance
– Energy in = energy out

• Integrate over hemisphere

• Fredholm integral equation
– Cannot be solved analytically in general

• Various approximations of Rbd give standard rendering
models

• Should also add an occlusion term in front of right side
to account for other objects blocking light from
reaching surface

64

Another version

Consider light at a point p arriving from p’

i(p, p’) = υ(p, p’)(ε(p,p’)+ ∫ ρ(p, p’, p’’)i(p’, p’’)dp’’)

occlusion = 0

or

attenuation =1/d2

emission from p’ to p

light reflected at p’ from all

points p’’ towards p

