### Performance Evaluation over GPRS Networks

政治大學資訊科學研究所

指導教授:連耀南

學生:陳明志、陳建同、李宗勳

Saturday, April 12, 2003

#### Outline

- Introduction
- Overview of GPRS Technology
- Brief about VoIP
- Description of Experiments
- Result of Experiments
- Discussion and Conclusion

#### Introduction

- Mobile network
  - GSM → GPRS(2.5G) → UMTS(3G)
- GPRS A half point toward 3G
- Carry real-time applications in packet-switching network?
  - Delay, Packet loss, Jitter
- Real-time applications : VoIP, VoD, etc.
- The performance of real-time application over GPRS network.

#### **All-IP Network**

- Network Convergence
  - Circuit-Switching: Real-time application phone calls.
  - Packet-Switching : Data Network
  - All-IP Network.
- Benefits
  - Reduce complexity of networks
  - Lower management cost

#### Outline

- Introduction
- Overview of GPRS Technology
- Brief about VoIP
- Description of Experiments
- Result of Experiments
- Discussion and Conclusion

#### **GPRS** Features

- Packet-switching capability over GSM
- Low migration cost just need to upgrade some components in GSM network
- Charge by packets
- Similar infrastructure to UMTS

#### **GPRS Architecture**



#### **GPRS Components**

- Core Network
  - Serving GPRS Support Node (SGSN)
    - Gateway of BSSs.
  - Gateway GSN Support Node (GGSN)
    - Gateway to external network.
- Base Station System(BSS)
  - Packet Data Unit
- HLR & VLR need some softwares upgrade to support GPRS.

#### **GPRS Components**

- Terminal Equipment(TE)
  - Class A,B,C duplex, half duplex, simplex of voice and data
  - Speed one time slot : 13.4 kbps
    - Class 8 4 down 1 up
    - Class 10 4 down 2 up
- The same channel allocation method as GSM network

## Mobile Sets with GPRS Capability







#### **GPRS Protocol Stacks**

- GPRS Tunnel Protocol(GTP)
  - Tunneling the packet through GPRS networks.
- MAC Protocol
  - To coordinate the usage of time slot between BSSs.
- Radio Link Control(RLC)
  - Protocol between BSSs and SGSN

#### Outline

- Introduction
- Overview of GPRS Technology
- Brief about VoIP
- Description of Experiments
- Result of Experiments
- Discussion and Conclusion

#### **VolP** overview

- Protocols
  - Signaling: H.323, SIP
  - Media encoding
    - Voice: G.723, G.723a, G.729
    - Video: H.261, H.263
  - Gateway: MGCP, MEGACO

#### VolP encode technologies

| Standard | Algorithm            | Bit Rate<br>(Kbit/s) | Typical end-to-end<br>delay (ms)<br>(excluding channel<br>delay) | Resultant Voice<br>Quality               |
|----------|----------------------|----------------------|------------------------------------------------------------------|------------------------------------------|
| G.711    | PCM                  | 48, 56, 64           | <<1                                                              | Excellent<br>Good(6.3), Fair             |
| G./23.1  | MPE/ACELP            | 5.3, 6.3             | 67-97                                                            | (5.3)                                    |
| H.728    | LD-CELP              | 16                   | <<2                                                              | Good                                     |
| G.729    | CS-ACELP             | 8                    | 25-35                                                            | Good                                     |
| G.729a   | CS-ACELP<br>Sub-band | 8                    | 25-35                                                            | Good                                     |
| G.722    | ADPCM                | 48, 56, 64           | <<2                                                              | Good                                     |
| G.726    | ADPCM                | 16,24,32,40          | 60                                                               | Good(40), Fair<br>(24)<br>Good(40), Fair |
| G.727    | AEDPCM               | 16, 24, 32, 40       | 60                                                               | (24)                                     |

From www.protocols.com

#### Outline

- Introduction
- Overview of GPRS Technology
- Brief about VoIP
- Description of Experiments
- Result of Experiments
- Discussion and Conclusion

#### **Motivation of Experiment**

- To evaluate the performance of GPRS network.
- Real-time application : simulated VoIP packet.
- Performance metrics
  - Delay time
  - Packet loss ratio
  - Jitter

#### **Experiment Environment**

- Two different operators(A,B), all of them claim that they can provide full features of GPRS.
- Several mobile sets have been tested in experiment.
- Show only one mobile set with GPRS capability 2d1u.

#### **Experiment Design**

- Sensitivite to
  - Data rate
  - Operator
  - Movement Speed
- One test set on three different environment.

|                             | Packet Size<br>(byte) | Transmit<br>Interval(ms) | Move Speed |
|-----------------------------|-----------------------|--------------------------|------------|
| Experiment I                | 36-1024               | 100-600                  | 0          |
| Experiment II (Operator A)  | 36-1024               | 100-600                  | MRT        |
| Experiment III (Operator B) | 36-1024               | 100-600                  | MRT        |

#### **Experiment Design (cont')**

- Each experiment has 20 test instances.
- Test Instances: (system can not perform when transmission interval is below 100ms.)
- Transmit 100 packets in each test instance, and take average delay, packet loss ratio and jitter.

| interval\packet<br>size | 36bytes | 64bytes | 128bytes | 256bytes |
|-------------------------|---------|---------|----------|----------|
| 100ms                   | #1      | #6      | #11      | #16      |
| 200ms                   | #2      | #7      | #12      | #17      |
| 300ms                   | #3      | #8      | #13      | #18      |
| 400ms                   | #4      | #9      | #14      | #19      |
| 500ms                   | #5      | #10     | #15      | #20      |

#### **Packet Travel Path**



Process time on server is very small(<=1ms), so it has been omitted.

#### One Way Delay



#### Outline

- Introduction
- Overview of GPRS Technology
- Brief about VoIP
- Description of Experiments
- Result of Experiments
- Discussion and Conclusion

### **Experiment I: Fixed Location**

#### **Transmission Interval and Delay**



When transmission interval increase, delay decrease.

#### Packet Size and Delay



When packet size increase, the delay decrease.

#### Discussion

- In all time interval, transmission delay will be low when packet size is less than 128 bytes.
- When packet size is larger than 256 bytes, the limit of system transmission speed, the delay will increase very quickly.

# Sawtooth Phenomenon (Rayman Phenomenon) transmission interval: 100ms



# Sawtooth Phenomenon (Rayman Phenomenon) transmission interval: 300ms



# Sawtooth Phenomenon (Rayman Phenomenon) transmission interval: 500ms



#### Discussion of Sawtooth Phenomenon

- The results are similiar in different times of days.
- The phenomenon is independent to system load.
- The phenomenon might be caused by batch operation of GPRS networks.

#### **Jitter**

| Transmission interval |        | Average   |
|-----------------------|--------|-----------|
| 100ms                 | 213.84 | 1024.96ms |
| 200ms                 | 171.57 | 1143.52ms |
| 300ms                 | 178.78 | 1017.34ms |
| 400ms                 | 173.13 | 1193.41ms |
| 500ms                 | 152.11 | 993.44ms  |

Note: Packet Size -36bytes

#### Remark about Jitter

- Jitter seems very large.
- GPRS networks may not adaguate to carry jitter sensitive services.

# Experiment II: Test in movment over GPRS Network of Operator A

#### Transmission interval and delay



When transmission interval increase, delay decrease.

### Transmission interval and packet loss ratio



When transmission interval increase, packet loss ratio also increase.

#### **Packet Size and Delay**



When packet size increase, delay also increase.

#### **Packet Size and Packet Loss Ratio**



packet loss ratio is independent of packet size.

# Observation on Experiment II

- Packet loss ratio is unstable when packet size is over 36byte.
- When transmission interval is over 500ms, the delay will also increase.

# Experiment III: Test in movment over GPRS Network of Operator B

# **Transmission Interval and Delay**



When transmission interval increase, delay decrease.

# Transmission Interval and Packet Loss Ratio



When transmission interval increase, packet loss ratio is unstable.

### Packet Size and Delay



When packet size increase, delay also increase.

#### Packet Size and Packet Loss Ratio



packet loss ratio is independent to packet size.

# Observation of Experiment III

- Most of chareristics are the same as Operator A.
- The performance is better than Operator A, when transmission interval is between 200ms and 400ms.
- In average, operator B has better performance than operator A.

#### Outline

- Introduction
- Overview of GPRS Technology
- Brief about VoIP
- Description of Experiments
- Solution of Experiments
- Discussion and Conclusion

# **Quality of Transmission**

- 無論是縱貫鐵路或中山高,在山區裡通訊品質較差
- 行車速度在80-90以上時, loss rate 增加, 也常會斷訊
- 受到網路擁擠的影響,在通訊尖峰時段內, 封包遺失率較多

# **User Experiences**

- 撥接程序非常耗時,網路經常斷線需要重撥,將對使用者造成極大困擾
- Connection Oriented Services (例如 telnet 或 vi) 在品質不穩定的情況下使用非常不方便,工作 容易半途而廢
- 封包遺失可能由 TCP 等協定負責處理へ重傳〉, 使用者所感覺到的是資料之延遲
- 電池消耗問題 手機電力不足,無法在上網這類I dle時間較長的行為中,讓使用者完成所需的工 作。

#### Conclusion

- 綜合以上網路品質與行動使用者的經驗,在對包延遲時間,對包遺失率以及斷訊三種品質因素中,斷訊導致斷線對GPRS上網使用者所造成的困擾最為嚴重。
- 封包傳送時間呈現鋸齒狀的現象,將對具時效性的應用造成傷害性的影響。
- 從以上在GPRS網路上的實驗看來,具時效性 應用在的現行GPRS網路上,仍不可行,有待 大幅改進。