User Efficient Blind Signatures and Its Applications in Digital Cash and Electronic Voting

雷欽隆 Chin-Laung Lei

Department of Electrical Engineering National Taiwan University Taipei, Taiwan, R.O.C.

Outlines

- I. Introduction
- II. Preliminary
- III. User Efficient Blind Signatures
- IV. Untraceable Digital Cash
- V. Anonymous Electronic Voting
- VI. Conclusions

Introduction



Features of Internet Services:

- Efficiency: Faster than traditional services
- Ubiquity: Users can obtain services anywhere.
- Flexibility: Clients can request services anytime.
- Openness: Popularization
- Examples: Digital cash and electronic voting services

Some Challenges to Internet Services:

- Robust security mechanisms and protocols
 - Hackers and viruses
 - Privacy and policy considerations

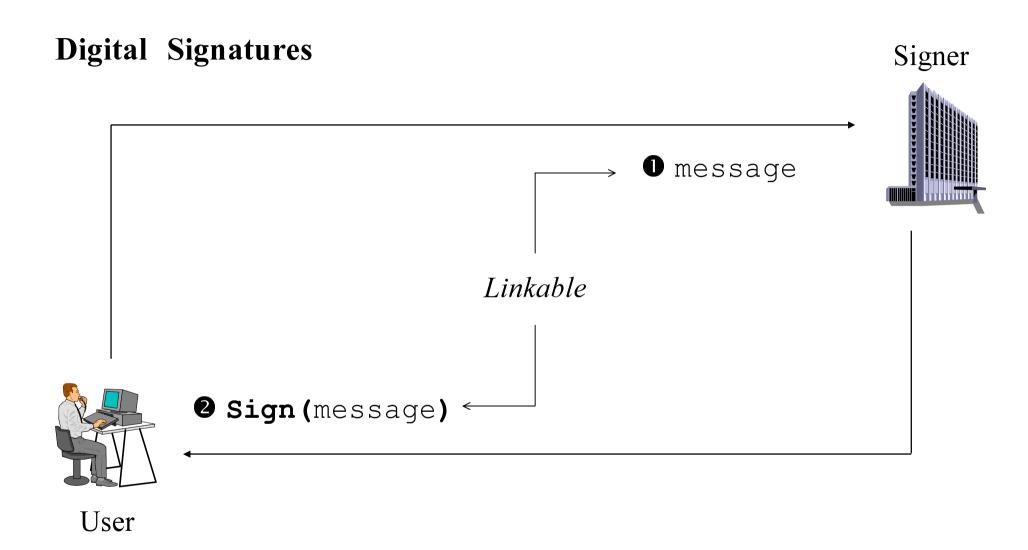
• Efficiency

- A lot of extra computations must be performed by users.
- Limited power of devices such as mobile units or smart cards

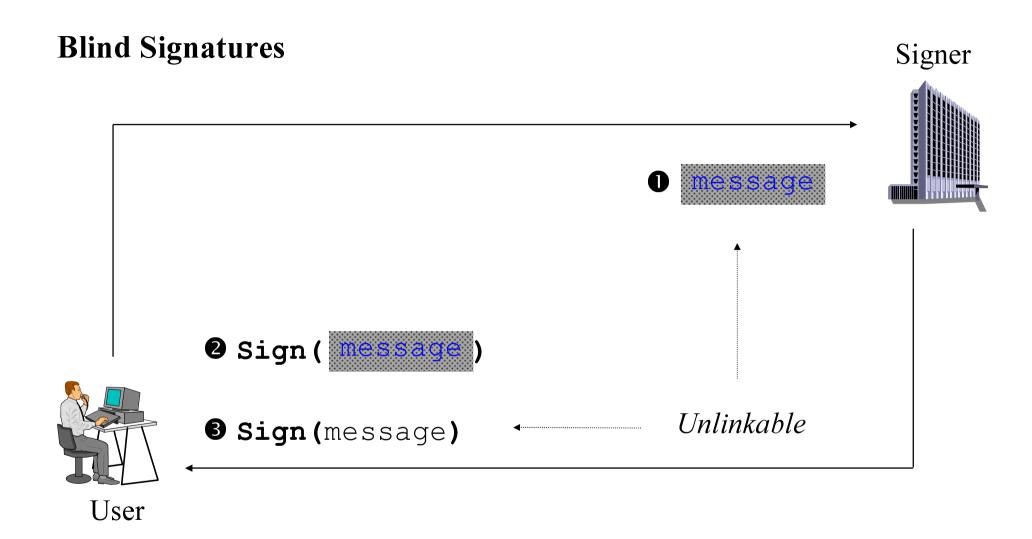
Goals:

- 1. Design efficient blind signature schemes to reduce the computation overheads of users especially for digital cash and electronic voting.
- 2. Develop flexible digital cash services for different types of transactions
- 3. Construct practical voting services to strengthen the security of electronic elections.

Preliminary



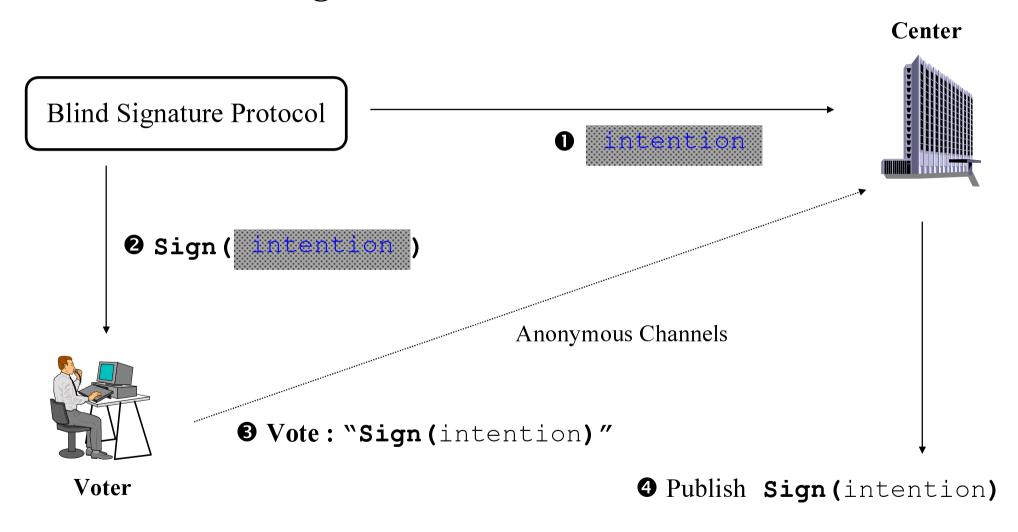
Authentication



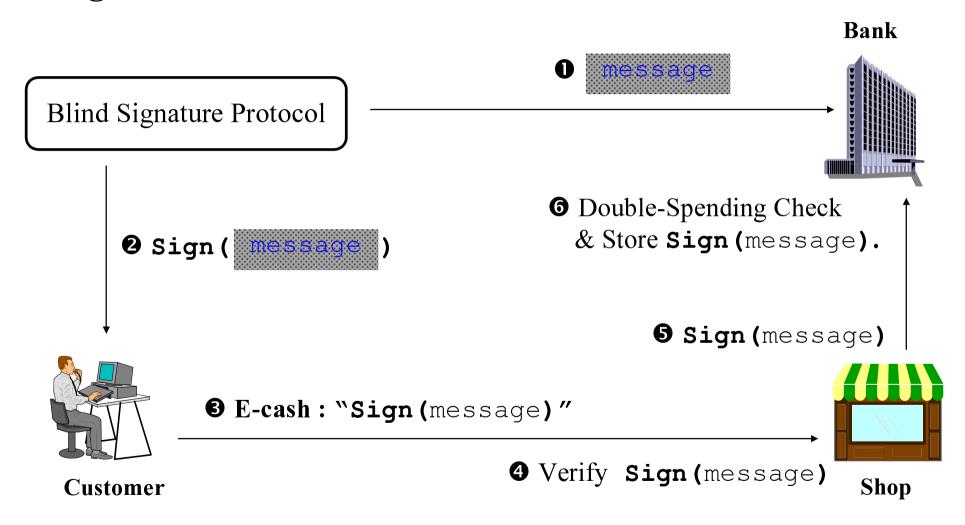
Blind Signatures

- Blind Signatures → Unforgeability + Unlinkability
- Anonymous Electronic Voting
- Untraceable Digital Cash

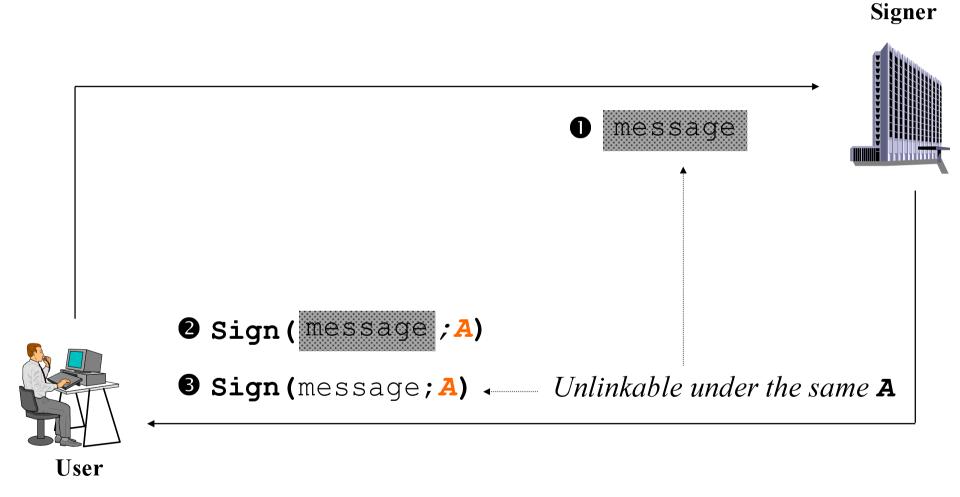
Electronic Voting



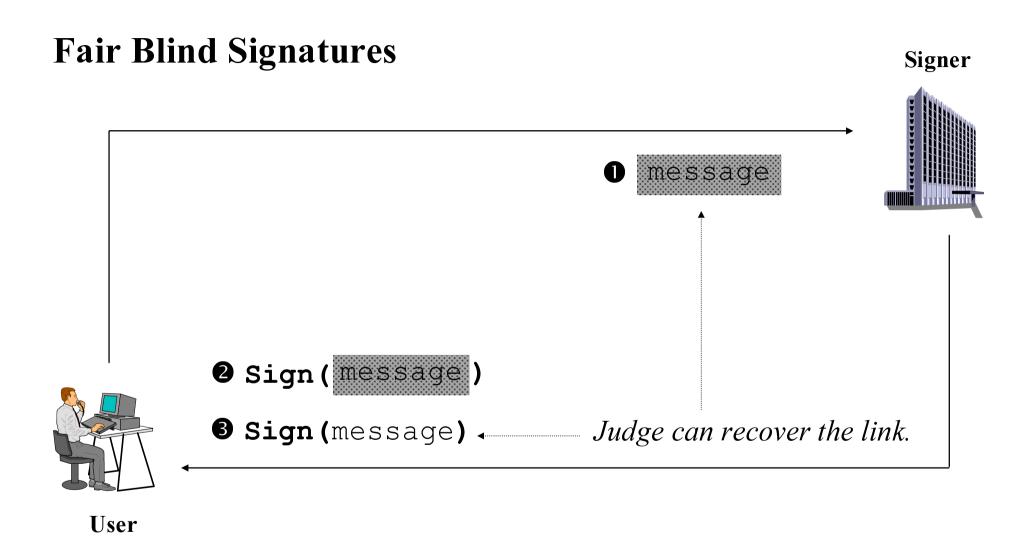
Digital Cash



Partially Blind Signatures



★Prevent the bank's database from growing unlimitedly.



*****Cope with the misuse problem of unlinkability.

Divisible Blind Signatures Signer message 2 Sign (message Sign (message) User

★Reduce the storage of digital cash.

User Efficient Blind Signatures

\blacksquare A Typical Blind Signature Scheme X

M is the underlying set of messages.

R is a finite set of random integers.

 $S_X: M \to M$ is the signing function kept secret by the signer.

 $V_X: S_X(M) \times M \to \{\text{true, false}\}\$ is the verification formula.

 $B_X: M \times R \to M$ is the blinding function.

 $U_X: S_X(M) \times R \to S_X(M)$ is the unblinding function, and $\forall m \in M \text{ and } r \in R, U_X(S_X(B_X(m, r)), r) = S_X(m).$

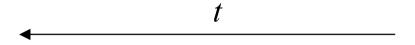
User

Signer

 $m \in M$ $r \in R$

Blinding: $B_X(m, r)$

Blind Signing: $t = S_X(B_X(m, r))$



Unblinding: $U_X(t, r) = S_X(m)$

Signature: $(S_X(m), m)$

Verifying: $V_X(S_X(m), m) \stackrel{?}{=} \text{True}$

■ The Proposed Blind Signature Scheme

- The first blind signature scheme based on Quadratic Residues.
- If $x^2 = y \pmod{n}$, then y is a quadratic residue (QR) in \mathbb{Z}_n^* and x is a square root of y.
- If $n = p_1p_2$ and p_1 , p_2 are distinct large primes, then, given y and n, it is intractable to compute x without p_1 or p_2 .

User

Signer

$$m \in Z_n$$

$$u, v \in_R Z_n$$

$$\Delta = H(m)(u^2 + v^2) \mod n$$

$$x \in_R Z_n$$

$$\delta = b^2 \mod n$$

$$\beta = \delta(u - vx) \mod n$$

$$(t, \lambda)$$

$$c = \delta\lambda(ux + v) \mod n$$

$$s = bt \mod n$$

$$Verify $(c, m, s) : s^4 \stackrel{?}{=}_n H(m)(c^2 + 1)$$$

Discussions:

- Since b, u, and v are randomly chosen by the user, the signer cannot link the signature-message triple (c, m, s) to the instance of the signature protocol producing that triple. (Unlinkability)
- As p, q are kept secret by the signer and H is one-way, it is computationally infeasible for an intruder to forge a valid signature. (Unforgeability)
- The user only requires to perform 10 multiplications to obtain a valid signature-message triple, and only 4 multiplications is needed to verify a signature-message triple. (Efficiency)

Property Comparisons:

	Our Scheme [30, 33]	Camenisch [10]	Chaum [12]	Ferguson [39]	Pointcheval [62]	Pointcheval [63]
Foundation	QR	DL/DL	RSA	RSA	DL/RSA	QR/QR
Unlinkability	0	0/0	0	0	0/0	0/0
Randomization	0	0/0	×	0	0/0	0/0
Message Recovery	0	x /O	0	×	× /×	× /×

Comparisons of Computation Overheads for Users:

	Our Scheme [30, 33]	Camenisch [10]	Chaum [12]	Ferguson [39]	Pointcheval [62]	Pointcheval [63]
Exponentiations	0	4	2	4	6	3
Inverses	0	2	1	1	0	0
Hashings	2	0	2	2	2	2
Multiplications	14	6	2	3	5	2 <i>k</i>
Reduced by:		> 99%	> 99%	> 99%	> 99%	> 99%

■ The Proposed Partially Blind Signature Scheme

- The first partially blind signature scheme based on QR.
- The signer ensures that every signature issued by him contains the information a he desires, such as the expiration date of an e-cash or the identity of an election.
- The property of partial blindness makes it possible for the bank to minimize its database which keeps the spent e-cash.

User

Signer

$$m, a \in \mathbb{Z}_n; u, v \in_R \mathbb{Z}_n$$

 $\alpha = H(m)(u^2+v^2) \mod n$

 (a, α)

 $\boldsymbol{\mathcal{X}}$

Verify a.

$$x \in_R \mathbf{Z}_n$$

$$b \in_R \mathbf{Z}_n$$
$$\delta = b^4 \bmod n$$

$$\beta = \delta(u - vx) \bmod n$$

 $\lambda = \beta^{-1} \mod n$ $t^8 \equiv_n H(a)(\alpha(x^2+1))^3 \lambda^6$

 $c = \delta \lambda (ux + v) \bmod n$

 $s = b^3 t \mod n$

Verify $(a, c, m, s) : s^8 \stackrel{?}{=}_n H(a)(H(m)(c^2+1))^3$

Discussions:

- The signer cannot link the signature-message 4-tuple (a, c, m, s) to the instance of the signature protocol producing that 4-tuple under the same a. (Unlinkability under the same embedded information)
- Computing $(H(a)^{3^{-1} \mod \phi(n)} \mod n)$ is infeasible without p or q where $\phi(n) = (p-1)(q-1)$. Furthermore, we can select p and q with 3|(p-1) or 3|(q-1) such that $(3^{-1} \mod \phi(n))$ does not exist.
- The user only performs 12 multiplications to obtain a valid signature and 8 multiplications to verify a signature, respectively.

Property Comparisons:

	Ours [30, 33]	Abe [1]	Camenisch [10]	Chaum [12]	Ferguson [39]	Pointcheval [62]	Pointcheval [63]
Foundation	QR	RSA	DL/DL	RSA	RSA	DL/RSA	QR/QR
Unlinkability	0	0	0/0	0	0	0/0	0/0
Randomization	0	×	0/0	×	0	0/0	0/0
Message Recovery	0	0	x /O	0	×	× /×	× /×
Partial Blindness	0	0	× /×	×	×	× /×	× /×

Comparisons of Computation Overheads for Users:

	Ours [30, 33]	Abe [1]	Camenisch [10]	Chaum [12]	Ferguson [39]	Pointcheval [62]	Pointcheval [63]
Exponentiations	0	2	4	2	4	6	3
Inverses	0	1	2	1	1	0	0
Hashings	3	4	0	2	2	2	2
Multiplications	20	4	6	2	3	5	2 <i>k</i>
Reduced by:		> 99%	> 99%	> 99%	> 99%	> 99%	> 99%

■ The Proposed Fair Blind Signature Scheme

- The unlinkability property of blind signatures may be misused by criminals, such as to launder money or to safely get a ransom.
- In a fair blind signature scheme, the judge can make signatures linkable when necessary.
- The proposed scheme is the first fair blind signature scheme based on QR, and comparing with the existing schemes, our method largely reduces the computation overheads of users.

User

Judge

 β , γ , b, z: random

Signer

$$u = H(\beta)$$

$$(b, u, v, z, S(z)) \quad v = H(\gamma)$$

m : message

$$\alpha \equiv_n H(m)(u^2+v^2)$$

$$(\alpha, z, S(z))$$

• Verify S(z).

 δ : random

$$(x, z, S(z)) \quad x = H(\delta)$$

$$\lambda \equiv_n b^2(u - vx)$$

$$e \equiv_n \lambda^{-1}$$

$$t^4 \equiv_n \alpha(x^2 + 1)e^2$$

$$c = b^2 e(ux + v) \bmod n$$

$$s = bt \mod n$$

Verify
$$(c, m, s) : s^4 \stackrel{?}{=}_n H(m)(c^2+1)$$

Discussions:

- Given a triple (c, m, s), the judge can reveal (β, γ, b, z) to the signer where $c \equiv_n (H(\beta)x + H(\gamma))(H(\beta) H(\gamma)x)^{-1}$, so that the signer can link (c, m, s) to the identifier z. (Linkage Recovery)
- If the judge does not reveal necessary information to the signer, the unlinkability of signatures is preserved.
- The user only performs 14 multiplications to obtain a valid signature and 4 multiplications to verify a signature-message triple, respectively.

Property Comparisons:

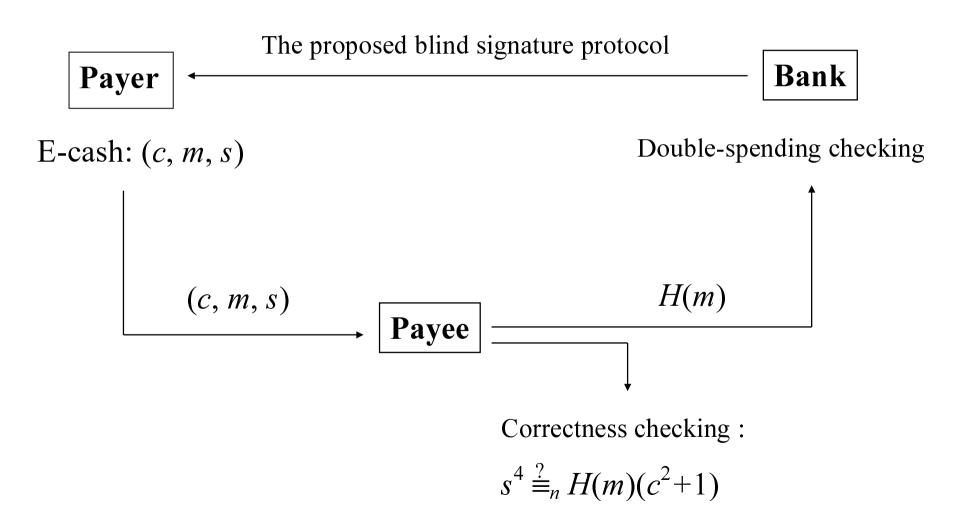
	Ours [30, 33]	Camenisch [10]	Chaum [12]	Ferguson [39]	Pointcheval [62]	Pointcheval [63]	Stadler [78]
Foundation	QR	DL/DL	RSA	RSA	DL/RSA	QR/QR	RSA/DL/DL
Unlinkability	0	0/0	0	0	0/0	0/0	0/0/0
Randomization	0	0/0	×	0	0/0	0/0	x /O/O
Message Recovery	0	× /O	0	×	× /×	× /×	x /x /x
Fairness	0	× /×	×	×	× /×	× /×	0/0/0

Comparisons of Computation Overheads for Users:

	Ours [30, 33]	Camenisch [10]	Chaum [12]	Ferguson [39]	Pointcheval [62]	Pointcheval [63]	Stadler [78]
Exponentiations	0	4	2	4	6	10	3
Inverses	0	2	1	1	0	1	0
Hashings	2	0	2	2	2	2	2
Multiplications	18	6	2	3	5	6	2k
Reduced by:		> 99%	> 99%	> 99%	> 99%	> 99%	> 99%

Untraceable Digital Cash

■ User Efficient Untraceable Digital Cash



■ Divisible Digital Cash

Initialization:

 H_1 , H_2 , H_3 , ..., H_w are one-way hash functions.

$$H_{i:j}(\mathbf{m}) = \begin{cases} H_i(H_{i+1}(H_{i+2}(...(H_j(\mathbf{m})))), & \text{if } i \leq j \\ \\ \mathbf{m} & \text{otherwise.} \end{cases}$$

User

Bank

$$m \in \mathbb{Z}_n$$

 $u, v \in_R \mathbb{Z}_n$

Publish w.

$$\alpha = H(m)_{1:w}(u^2+v^2)$$

 \mathcal{X}

$$x \in R Z_n$$

$$b \in_R \mathbf{Z}_n$$
$$\delta = b^2 \bmod n$$

$$\beta = \delta(u - vx) \bmod n$$

$$(t,\lambda)$$

$$\lambda = \beta^{-1} \bmod n$$
$$t^4 \equiv_n \alpha(x^2 + 1)\lambda^2$$

$$c = \delta \lambda (ux + v) \bmod n$$

$$s = bt \mod n$$

Verify
$$(c, m, s, w) : s^4 \stackrel{?}{=}_n H_{1:w}(m)(c^2+1)$$

Divide (c, m, s, w) into q sub-cash:

$$(c, m, s, w)$$
 (c, m_1, s, w_1) (c, m_2, s, w_2) (c, m_2, s, w_2) (c, m_q, s, w_q)

where
$$w_1 + w_2 + ... + w_q = w$$

 $m_i = H_{(e_i + w_i + 1) : w}(m)$
 $e_i = w_1 + w_2 + ... + w_{i-1}$

Verification:

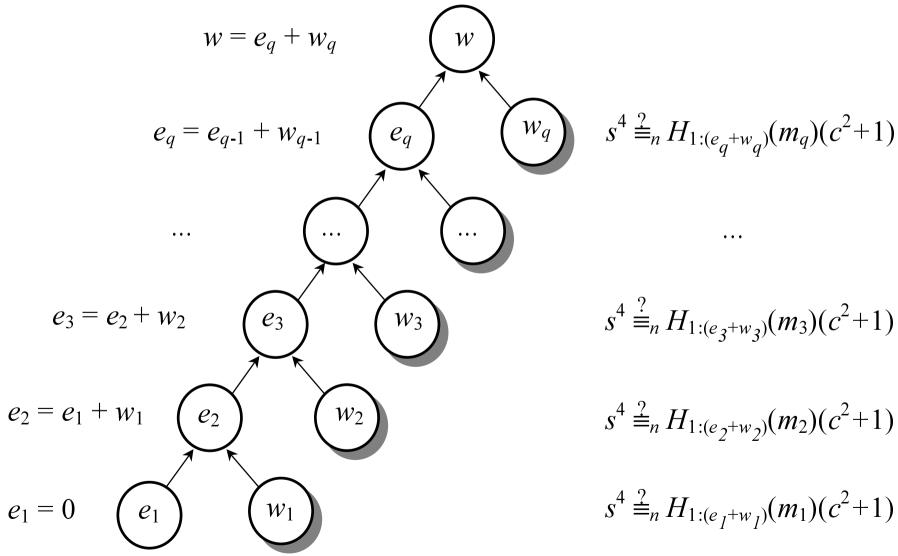
For each (c, m_i, s, w_i) :

$$s^4 \stackrel{?}{\equiv}_n H_{1:(e_i+w_i)}(m_i)(c^2+1)$$

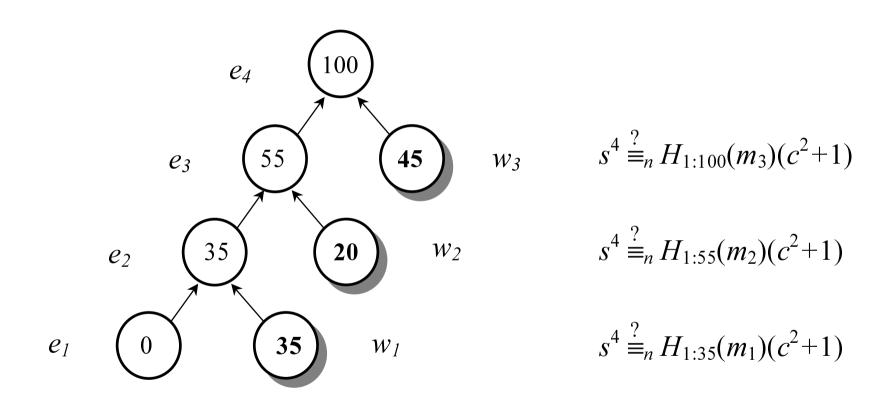
where
$$e_1 = 0$$

 $e_i = w_1 + w_2 + ... + w_{i-1}$

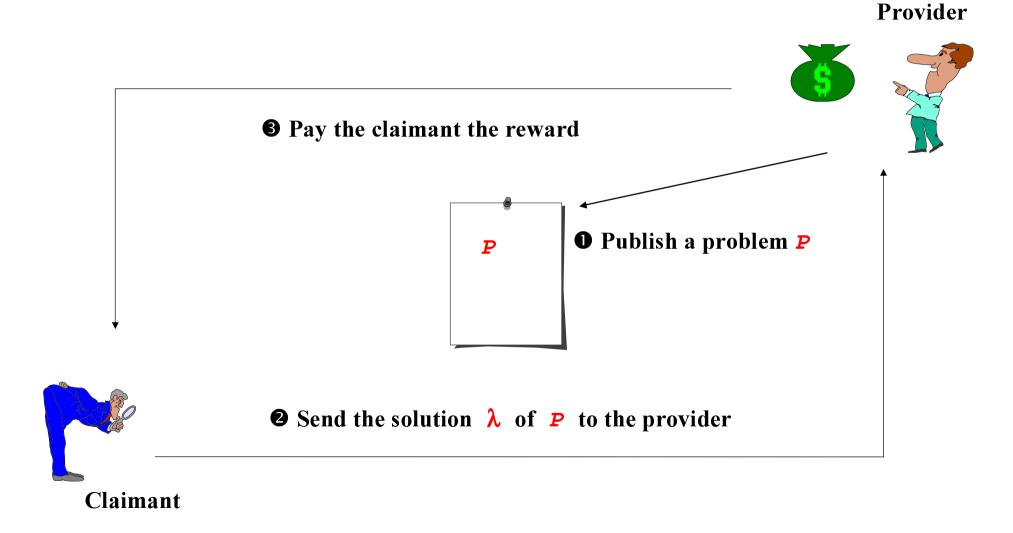
The Division Tree:



An Example:



■ Anonymous Rewarding Schemes



An Example:

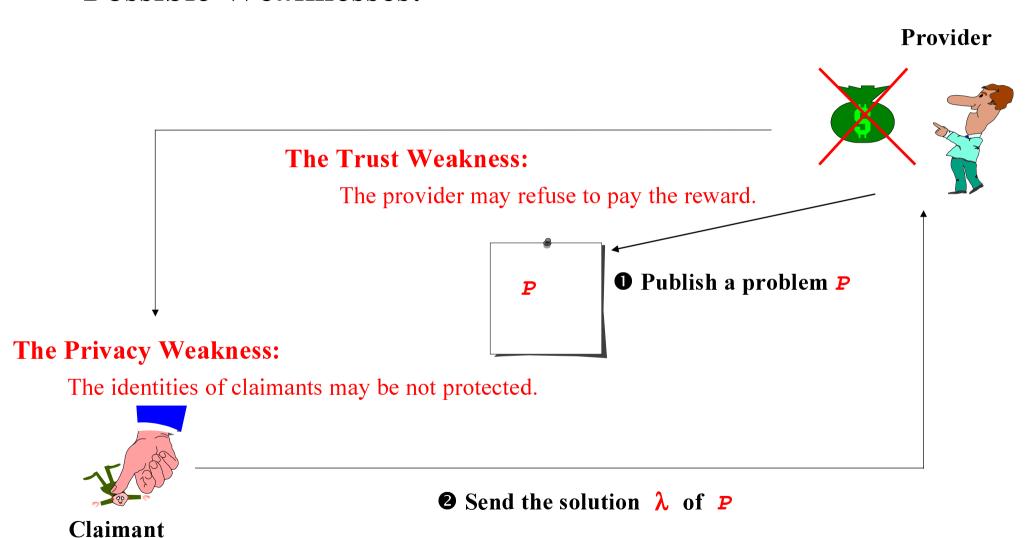
Provider

• A provider provides a reward to the people who can offer him the clue to a crime.

2 Send the clue to the provider

Claimant

Possible Weaknesses:



The Proposed Rewarding Scheme

■ A Reward Provider

A person who publishes a problem and offers a reward.

■ A Reward Claimant

A has the solution of the problem and claims the reward.

■ A Verifier

It has enough power to verify the solution of the problem, and it does not reveal the solution to the provider before he pays the reward.

For example: the credit bureaus or the government

■ A Bank

It issues electronic cash.

Claimant

Verifier

Provider

Bank

2. E_V (solution), H(solution), a blinded message

1. Publish a problem.

- 3. $S_P(E_V(\text{solution}), \text{ blinded message, sequence no.})$ s
- 4. Verify solutions.
 - 5. The first qualified one
- 6. The blinded message
 - 7. A blinded cash
- 8. Publish the blinded cash.
- 9. Verify the blinded cash.
 - 10. The selected solution and all previous solutions
- 11. Unblind the blinded cash.

Discussions:

- The identities of the reward claimants are protected against anyone else.
- The reward provider cannot decline the selected claimant his entitled reward after the provider obtains the solution.
- The verifier cannot select a claimant other than the first qualified one to obtain the reward without being detected by the provider.

■ Information Attachable Electronic Cash

X is the underlying blind signature scheme.

 $M = \{1, 2, ..., t\}$ is the set of messages.

G and **H** are two public one-way hash functions.

$$G^{i}(u) = G(G^{i-1}(u))$$
 with $i \in M$ where $G^{0}(u) = u$.

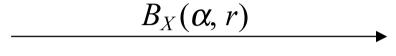
$$H^{i}(v) = H(H^{i-1}(v))$$
 with $i \in M$ where $H^{0}(v) = v$.

User

Bank

 $r, u, v \in R$

$$\alpha = (G^t(u)||H^t(v))$$



 $oldsymbol{eta}$

Signing:

$$\beta = S_X(B_X(\alpha, r))$$

Unblinding : $U_X(\beta, r) = S_X(\alpha)$

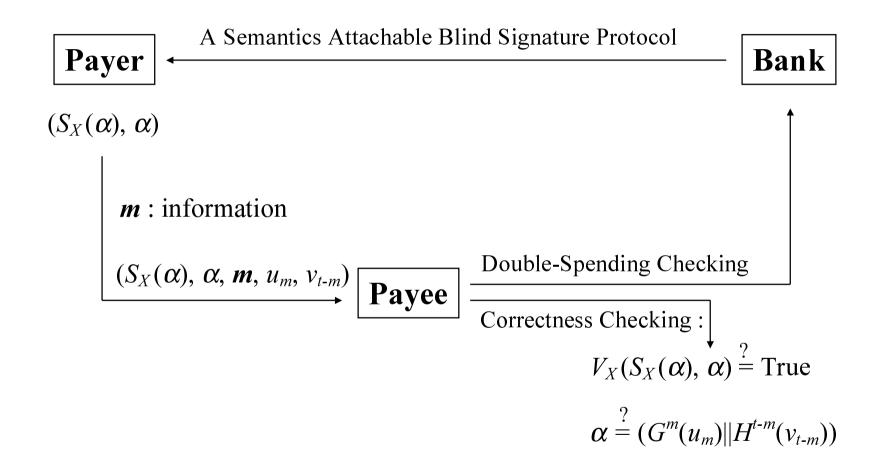
Choose $m \in M$.

$$u_m = G^{t-m}(u) \text{ and } v_{t-m} = H^m(v)$$

Signature : $(S_X(\alpha), \alpha, m, u_m, v_{t-m})$

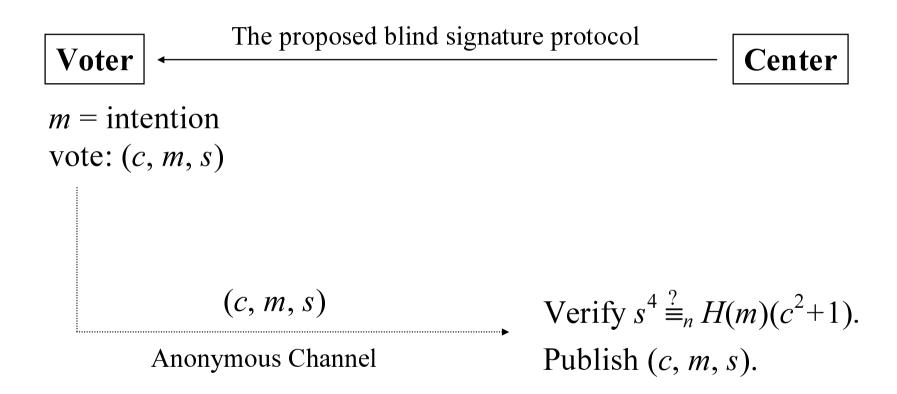
Verifying:
$$V_X(S_X(\alpha), \alpha) \stackrel{?}{=} \text{True}$$

$$\alpha \stackrel{?}{=} (G^m(u_m)||H^{t-m}(v_{t-m}))$$

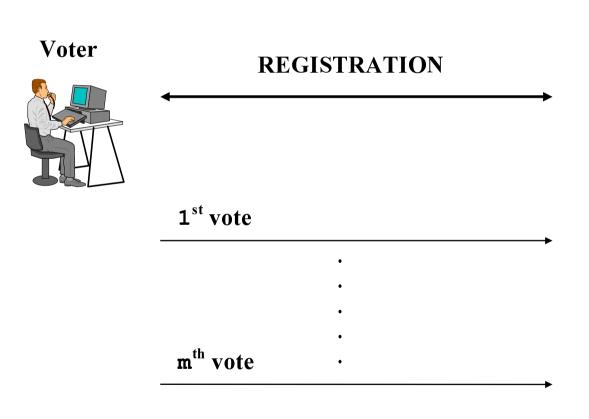


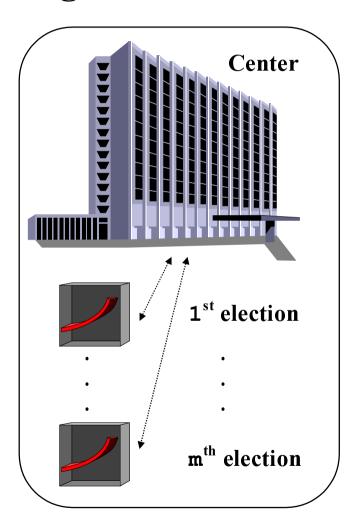
Anonymous Electronic Voting

■ A User Efficient Electronic Voting Scheme



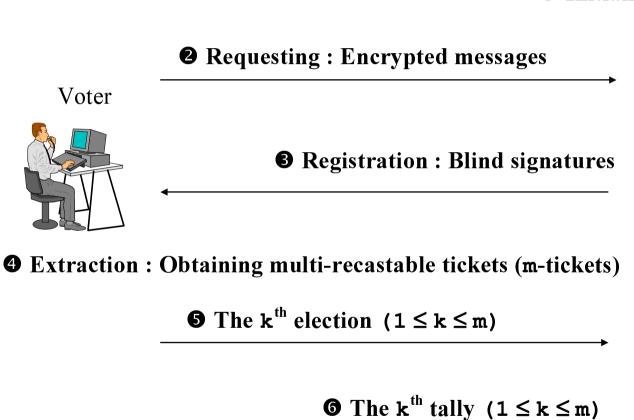
■ Multi-Recastable Electronic Voting

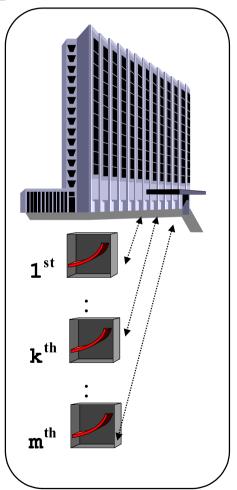




The Proposed Multi-Recastable Voting Scheme

Initialization





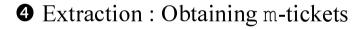
O Initialization:

 p_1 , p_2 , p_3 , p_4 are large primes.

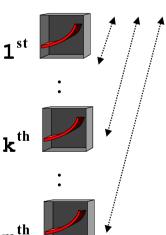
Publish
$$n_{aff} = p_1 p_2$$
, $n_{opp} = p_3 p_4$, $n = n_{aff} n_{opp}$.

2 Requesting : Encrypted messages

3 Registration : Blind signatures



6 The k^{th} election $(1 \le k \le m)$

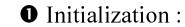


H, R_0 , $R_{k,aff}$, $R_{k,opp}$: random integers $(1 \le k \le m)$ $w_0 \mod n = (H||RE_0||R_0) \rightarrow \text{authentication message}$ $w_k \mod n_{aff} = (H||RE_k||R_{k,aff}) \rightarrow \text{affirmative message}$ $w_k \mod n_{opp} = (H||RE_k||R_{k,opp}) \rightarrow \text{oppositive message}$

Encrypted Message (EM)
$$\equiv_n (u^2 + v^2)r^2 \prod_{i=0}^m w_i^{2^{i+1}}$$

3 Registration : Blind signatures

6 The
$$k^{th}$$
 election $(1 \le k \le m)$



$$n_{aff} = p_1 p_2$$

$$n_{opp} = p_3 p_4$$

$$n = n_{aff}n_{opp}$$

$$\begin{aligned} w_0 & \text{mod } n = (H||RE_0||R_0) \\ w_k & \text{mod } n_{\text{aff}} = (H||RE_k||R_{k,\text{aff}}) \\ w_k & \text{mod } n_{\text{opp}} = (H||RE_k||R_{k,\text{opp}}) \\ EM & \equiv_n (u^2 + v^2) r^{2^{m+2}} \prod_{i=0}^m w_i^{2^{i+1}} \end{aligned}$$

Initialization :

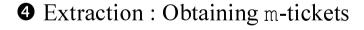
$$n_{aff} = p_1 p_2$$

$$n_{opp} = p_3 p_4$$

$$n = n_{aff} n_{opp}$$

Registration:

$$t \equiv_{n} \sqrt{(EM)(x^{2} + y^{2})(uy - vx)b^{2^{m+1}}})^{-2}$$



5 The k^{th} election $(1 \le k \le m)$

$$\begin{split} & w_0 \; \text{mod} \; n = \; (H||RE_0||R_0) \\ & w_k \; \text{mod} \; n_{\text{aff}} = \; (H||RE_k||R_k,_{\text{aff}}) \\ & w_k \; \text{mod} \; n_{\text{opp}} = \; (H||RE_k||R_k,_{\text{opp}}) \\ & EM \; \equiv_n \; (u^2 + v^2) r^{2^{m+2}} \prod_{i=0}^m w_i^{2^{i+1}} \end{split}$$

$$n_{aff} = p_1 p_2$$
$$n_{opp} = p_3 p_4$$

$$n = n_{aff}n_{opp}$$

3 Registration :

$$t \equiv_{n} \sqrt{(EM)(x^{2} + y^{2})(uy - vx)b^{2^{m+1}})^{-2}}$$

4 Extraction:

$$s \equiv_n r^{-1}bt$$

$$c \equiv_n (ux+vy)(uy-vx)^{-1}$$

$$m-ticket = (s, \prod_{i=0}^{m} w_i^{2^{i+1}}, c)$$

Extract
$$\beta_0 \equiv_n \sqrt[4]{\mathbf{w}_0^2(\mathbf{c}^2 + 1)}$$
 from s.

Submit (β_0, w_0, c) to the authority.

The center verifies:

$$(\beta_0)^4 \stackrel{?}{=} (w_0)^2(c^2+1) \pmod{n}$$

5 The k^{th} election $(1 \le k \le m)$

$$\begin{aligned} & w_0 \bmod n = (H||RE_0||R_0) \\ & w_k \bmod n_{aff} = (H||RE_k||R_{k,aff}) = \mathbf{w_{k,aff}} \\ & w_k \bmod n_{opp} = (H||RE_k||R_{k,opp}) = \mathbf{w_{k,opp}} \\ & EM \equiv_n (u^2 + v^2) r^{2^{m+2}} \prod_{i=0}^m w_i^{2^{i+1}} \end{aligned}$$

Registration:

$$t \equiv_{n} \sqrt{(EM)(x^{2} + y^{2})(uy - vx)b^{2^{m+1}})^{-2}}$$

6 The k^{th} election $(1 \le k \le m)$:

Extract
$$\beta_k \equiv_n \sqrt{w_k \sqrt{...\sqrt{...}}}$$
 from s. inten = aff or opp. $\beta_{k, \text{inten}} = \beta_k \mod n_{\text{inten}}$. The k^{th} vote = $(\beta_{k, \text{inten}}, w_{k, \text{inten}})$

Extraction :

$$s \equiv_{n} r^{-1}bt$$

$$c \equiv_{n} (ux+vy)(uy-vx)^{-1}$$

$$m-ticket = (s, \prod_{i=0}^{m} W_{i}^{2^{i+1}}, c)$$

Initialization :

$$n_{aff} = p_1 p_2$$
 $n_{opp} = p_3 p_4$
 $n = n_{aff} n_{opp}$

6 The
$$k^{th}$$
 tally $(1 \le k \le m)$

$$w_0 \mod n = (H||RE_0||R_0)$$
 $w_k \mod n_{aff} = (H||RE_k||R_{k,aff}) = w_{k,aff}$
 $w_k \mod n_{opp} = (H||RE_k||R_{k,opp}) = w_{k,opp}$
 $EM \equiv_n (u^2 + v^2)r^{2^{m+2}} \prod_{i=0}^m w_i^{2^{i+1}}$

3 Registration:

$$t \equiv_{n} \sqrt[2^{m+2}]{(EM)(x^{2} + y^{2})(uy - vx)b^{2^{m+1}})^{-2}}$$

4 Extraction:

$$s \equiv_{n} r^{-1}bt$$

$$c \equiv_{n} (ux+vy)(uy-vx)^{-1}$$

$$m-ticket = (s, \prod_{i=0}^{m} W_{i}^{2^{i+1}}, c)$$

5 The k^{th} election $(1 \le k \le m)$:

Extract
$$\beta_k \equiv_n \sqrt{w_k \sqrt{...}\sqrt{...}}$$
 from s.
inten = aff or opp.
 $\beta_{k,inten} = \beta_k \mod n_{inten}$.
The k^{th} vote = $(\beta_{k,inten}, w_{k,inten})$

1 Initialization :

$$n_{aff} = p_1 p_2$$

$$n_{opp} = p_3 p_4$$

$$n = n_{aff} n_{opp}$$

6 The k^{th} tally $(1 \le k \le m)$:

Verification:

$$\beta_{k,inten}^{2^{k+2}} \stackrel{?}{=}_{n_{inten}} w_{k,inten}^{2^{k+1}} \cdots$$

Discussions:

- Only one round of registration action is needed for a voter to participate in a sequence of different elections.
- If both affirmative and oppositive votes are cast by a voter in an election, then they can be detected.
- All of the votes cast by a voter in a sequence of elections can be linked together by the tally center.

■ An Efficient Election Scheme for Resolving Ties

X is the underlying blind signature scheme.

 $M = \{1, 2, ..., t\}$ is the set of messages.

G and **H** are two public one-way hash functions.

$$G^{i}(u) = G(G^{i-1}(u))$$
 with $i \in M$ where $G^{0}(u) = u$.

$$H^{i}(v) = H(H^{i-1}(v))$$
 with $i \in M$ where $H^{0}(v) = v$.

User

Center

i: intention

$$r, u, v \in R$$

$$\alpha = (G^t(u)||H^t(v))$$

$$B_X(i||\alpha,r)$$

Signing:

$$\beta = S_X(B_X(i||\alpha, r))$$

Unblinding : $U_X(\beta, r) = S_X(i||\alpha)$

Vote =
$$(S_X(i||\alpha), (i||\alpha))$$

Verifying:

$$V_X(S_X(i||\alpha),(i||\alpha)) \stackrel{?}{=} \text{True}$$

Ties:

Choose $m \in M$.

$$u_m = G^{t-m}(u) \text{ and } v_{t-m} = H^m(v)$$

Re-voting: Submit $(\alpha, m, u_m, v_{t-m})$.

Verifying:

$$\boldsymbol{\alpha} \stackrel{?}{=} (G^m(u_m)||H^{t-m}(v_{t-m}))$$

Voter

A Semantics Attachable Blind Signature Protocol

Center

Voting:
$$(S_X(i||\alpha), i||\alpha)$$

$$V_X(S_X(i||\alpha), (i||\alpha)) \stackrel{?}{=} \text{True}$$

Re-voting:
$$(\alpha, m, u_m, v_{t-m})$$

$$\alpha \stackrel{?}{=} (G^m(u_m)||H^{t-m}(v_{t-m}))$$

■ A Receipt Free Electronic Voting Scheme

- It is easier to buy votes in a typical electronic election.
- In a receipt free electronic voting scheme, every voter cannot convince any other voter of the value of his vote.
- The proposed receipt free voting scheme is based on probabilistic encryption methods (PEM) and blind signatures.

Probabilistic Encryption Methods (PEM)

Encryption:

- For every message m, the encryption E(m) is an element in $R_E(m)$
- $E(m_1)E(m_2) = E(m_1+m_2)$.
- $E(m_1)E(m_2)^{-1} = E(m_1-m_2)$.

Decryption:

- Given $z \in R_E(m)$, the decryption D(z) = m.
- A certificate D'(z) can prove that $z \in R_E(m)$.

Protocol Show_Zero(a):

• If $a \in R_E(0)$, the center can convince the voter in a voting booth that a is indeed in $R_E(0)$ without revealing the certificate D'(a).

Protocol Show_Zero_One(a):

- If $a \in R_E(0) \cup R_E(1)$, the center can convince all voters that a is indeed in $R_E(0) \cup R_E(1)$ without revealing the certificate of D'(a).
- The protocol cannot show that a is exactly in $R_E(0)$ or $R_E(1)$.

The Proposed Voting Protocol

M is the underlying set of messages.

R is a finite set of random integers.

 $S_X: M \to M$ is the signing function kept secret by the center.

 $V_X: S_X(M) \times M \rightarrow \{\text{true, false}\}\$ is the verification formula.

 $B_X: M \times R \to M$ is the blinding function.

 $U_X: S_X(M) \times R \to S_X(M)$ is the unblinding function.

User

Center

$$m \in \{0, 1\}$$
 $E(m) \in R_E(m)$
 $r \in R$
 $B_X(E(m), r)$

(In a voting booth)

$$(\beta, b)$$

$$U_X(\beta, r) = S_X(E(m)b) = S_X(E(m'))$$

Signing:

$$b = E(0) \in R_E(0)$$

$$\beta = S_X(B_X(E(m)b, r))$$

Perform Show Zero(b).

 $(S_X(E(m')), E(m'))$

Verify $V_X(S_X(E(m')), E(m')) \stackrel{?}{=} \text{True.}$ Perform Show Zero One(E(m')).

$$A = \prod_{i} E(m'_{i}) = E(\Sigma_{i} m'_{i})$$

Publish D(A) and D'(A).

Discussions:

- PEM + Interactive Proof Protocols → Freedom from Receipts
- Since every voter has no license of his vote, he cannot convince any other voter of the value of his vote.
- Blind Signatures + Anonymous Channels → Privacy Protection
- In the proposed scheme, the privacy of every voter is protected against anyone else.

Conclusions

■ Blind Signatures

Efficiency: User Efficient Blind Signatures
 Low-Computation Partially Blind Signatures
 Efficient Fair Blind Signatures

Variations: Divisible Blind Signatures
 Semantics Attachable Blind Signatures

■ Applications

Digital Cash: Anonymous Rewarding Schemes
 Divisible Digital Cash
 Information Attachable Electronic Cash

Electronic Voting: Multi-Recastable Electronic Voting
 Receipt Free Electronic Voting
 Efficient Elections for Resolving Ties

■ Future Research

• Enlarge the domain of the attached messages in the proposed information attachable electronic cash scheme.

• Design efficient methods to allow arbitrary-valued votes in the proposed multi-recastable voting and receipt free elections.