通信系統技術發展趨勢
演講者:鄭聖慶博士
演講摘要
用戶端
1. 電腦
2. 電話
3. FAX
網路接取 : 由用戶端到進入網路的部分
交換網路 : 網路如何連接交換其資訊
公司產業網路 : 整個公司如何運用網路
智慧型網路
通訊產業與數位產業
數位化: HDTV
頻寬 : 56k modem
mobility :wirelss行動電話,個人PDA
傳輸
光纖
ADSL (modem)
cable modem
交換機
台灣主要的三大交換機廠商:澳代爾 ,西門思,AT&T
Software的難度
Video Phone
network access : up to giga byte
transmition : ADSL modem
cable modem
ISDN的發展與沒落 : ADSL興起與56 K modem夾殺
頻寬與傳送距離的互相影響
ADSL access mux :用戶端及電信局需為一對
Mobil Ip
cable modem :未來將有在tcp/ip之上的protocol
cable TV打電話
notebook
Lan access device
台灣的產業佔有的地位
IC產業的影響
一些實例 :網路卡,集線器(hop)
ATM (switch)的問題
LAN
Ethernet access :可滿足DVD
HFC (Hybrid Fiber Coax):未成功的原因
wireless access node : fiber node
share頻寬的方式 : 用listen的方式
PDH(Plesiochronous Digital Hierarchy)與SDH(Synchronize Digital Hierarchical) :DS1,DSL2,T1,T3,D1,D3
ADSL :STM1,STM4(Synchronize Transfer Mode)
調整傳輸速率 :不用改變fiber
WDM
企業網路
corss connect
PBX
voice on net
Intelligent network : IN的服務
電話民意調查
080
prepare card
caller screen ,caller source
credit card calling service
SCP(service control point)
call model(finite state machine)
演講內容
所以,你們是三年級是不是?
答:四年級。
我想我今天講的主題是淺顯一點的,介紹性的東西,那麼,我想今天是時間的儘量的,這個到接近一個半小時的時間喔,把通信的技術整個跟大家大概的介紹,後來,所以通信的狀況,有線的通訊,我今天講的是有線的通訊,連教授希望我再加強智慧型網路的東西,等一下這個部份我看我再梢微介紹一下。
今天這個部份也都是介紹性質,大致上我想很快的先跟大家整個介紹一下,國內外現在通訊工業的狀況,讓大家先對通訊工業有一個了解,那我今天會從這個用戶端,大家面前使用的東西,叫用戶終端設備,像電話,電腦,FAX,PC,都屬於這個東西,那稍微介紹跟通訊有關的部份,那再來一個就是你怎麼進到這個從用戶端進到網路有一個網路接取的部份,那稍微跟大家做個介紹,然後進到這個網路接取以後呢?你會進到這個傳輸的網路,那這裡面還有所謂的交換網路,大家碰到的機會比較少一點,所以稍微帶過一下,沒有針對交換網路,交換技術做一個介紹,然後最後我們再看整個,如果你是整個公司或整個企業,怎麼運用這些網路,大致上,overall,從這個用戶端到企業端可能會碰到的狀況跟大家介紹一下,那最後會從有一個網路,智慧型網路方面很快跟大家介紹一下,我今天的內容都是比較介紹性質的,所以技術的東西稍微少一點。
我們先這樣看一下,我們整個通訊產業跟我們知道的資訊產業很多都是有關係的,這是說整個通訊產業它進步的factor,它是影響了很多東西,例如說這個數位化,很多的東西都是數位化,或是你看到像電視,HDTV (high definition television),有很多東西都呈現在網路部份,另外的一個部份寬頻,所謂的寬頻例如像電話,電話所需最大是到64k的頻寬,還有剛才跟大家講的pc,56k的modem,這些都還不是叫寬頻,但是逐較會到mega級,幾mega,那個就是寬頻,這個我們通訊的部份都逐漸的往這個方面走。
那我還有其他的因素,我們來看一下,那mobility就是,因為我想技術的進步,大家動來動去,不管是從pc有一個ip跑來跑去,或者是你的行動電話,你的手機,你的人會跑來跑去,這些都會逐漸的影響這個factor,通訊技術都在handle這些情形,那另外這些電信自由化的全球電信,我想電信有一個很重要的就是任何一通電話,或是一封e-mail,都可以傳到全求各個地方,那像這些東西都會影響到通訊的情形,那大致上我想有這些東西在成長。
那當然另外兩個關鍵點是,資訊技術和有線電視的技術,這些服務技術也再推動資訊產業,這些技術對通訊產葉怎麼去變化,大致上稍微跟大家介紹一下,這一張跟前一張差不多,不過想大家就先看一下,computer communcation,consumer,另外還有contact,這裡面其實未來最賺錢的還是在contact,但這些整合,在未來的五年內,都是一個重要的指標,未來的進步都會跟這個有關。
整個來看,產業的技術結論就是在這三個,逐漸的,wireless越來越發達,預估在兩千年出頭,兩千零二,兩千零三,像所謂的行動電話,或是個人的PDA (personal digital assistant),還有像wireless的PC,還有wireless PDA這樣的東西,大致上會超過有線的東西,大概在兩千零二,零三左右,這是很重要的impact,wireless的東西,用戶的設備幾乎會有一半左右是這樣的東西。
另外還有一個很重要的就是internet,環繞著這三個東西,所以通訊技術也是朝這個三個方面發展,這大概是從產業面上看出來的發展趨勢是這樣。
接下來我們回過頭來看,我們對一個網路來看,我們會看到的狀況會是怎樣?第一個是我們的用戶端技術上的進步,然後再講接取的部份,所謂網路接取的部份有兩種,一種是所謂這就是主要是說我們怎麼從用戶端進到我們所謂的PSTN(public switched telephone network)或是PSDN,這是工作的交換網路,不管是數據或是電話的網路,這個從這裡到你家裡有一個用戶迴路,這個部份就是網路接取,它包括LAN,WAN的接取,在這個部份。等一下我們會再講。
現在這個裡面,我們會用到的網路,裡頭有有線的也有無線的,不過今天我所講的就是在有線的情況上大致上的情況是怎樣,大致上一個通訊網路的technology就在這裡,那電話在這個地方還有交換的設備,我想連教授在AT&T的時候所做的就是在這裡面交換的東西,不過今天不cover那個部份,主要是給大家overall的一個概念,我們剛剛是整個網路的架構,雖然我們在通訊的產業我們會這樣子的來分,有交換設備,傳輸的設備,網路的接取設備,還有用戶端的設備,這是從通訊工業來看,網路的設備有這些東西,當然相對應有其他的東西。
另外還有跟我們息息相關的就是網路服務業,一般來說我們會分成網路業跟服務業,那服務業就是中華電信,大哥大的業者,這些業者提供的服務,有些是在第一類有些是在第二類,我們在服訊服務業的分格是這樣,這是給大家做一個refernce,針對剛剛提的這些,目前在現在的發展大致是這樣,我們平常聽的到看的到的technology大概是這些,wireless local loop,ISDN(Integrated Services Digital Network),我想這些有有線有無線,我想今天會focus在有線的部份跟大家講。
一般來說我們可以這樣做一個summary,這是從技術面上做一個summary,這個電信產業無線化,公眾網路的智慧化,這不管在電信產業或是在公眾網路都是越來的越重要,寬頻化,另外還有兩個對電信產業很重要的因素是逐漸的open,不一樣的平台出來的產品要能夠互相的接連的話,是要有一些技術,這個我想大家應該會有一些study,standard protocol,這都是這些理念的一環,那另外還有一個很重要的factor就是這幾年的電信技術進步的非常的快,這個資訊技術被用來做營運,operation,或是operation support,這裡面有很多的東西在這個裡面,那這個地方我想今天會比較沒有cover。
不過這是我們從電信產業技術上所做的一個summary,那從每一個每一個term來看,我想從傳輸來說,光纖是越來越普及,尤其是在網路上來說,因為光纖的關係,我們讓網路的寬頻化越來越容易,這些是有一些趨勢(見圖),到最後,大概是兩千零五,零六年左右,要做到光纖可以到家,這個時候你要到每個家裡做到寬頻就比較容易,在這個之前有很多的技術,今天介紹的技術大概是到ADSL(Asymmetric Digital Subscriber Line)這個部份,至於用戶終端設備未來的趨勢,就是跟大家都有關係的,這裡面有幾個比較重要的趨勢,例如cable modem,還有ADSL的modem,都會逐漸的用到用戶端的設備,這些都是在資訊領域非常重要的,這邊有幾張市場的資料讓大家看一下,讓大家有一個感覺,這個是我們全球在這個wire line的市場,大概在2002,2003年,有線跟無線會有一個交點,所以無線通訊的發展會逐漸跟有線通訊merge,這是技術趨勢的一個發展。
另外還有一張圖,是各個國家在電信服務業上所佔比例的圖,從這張圖可以看出來,目前台灣在有線電話上,100個人大概有50個人左右有電話,大致上應該是十幾名的位置,行動電話的部份目前100個人大概是10幾個人有行動電話,讓大家有一個感覺就是台灣的通訊狀況在世界大概是維持十幾名的位置。
連:那個是以人為單位是不是?
答:是,100個人有幾隻電話,目前是51還是50出頭。
連:如果以一個家庭為單位呢?
答:大概是1.7還是1.8。
連:那家附近有電話線接進來的比例呢?
答:大概是80幾percent。在電力方面有90幾percent,這是台灣跟別的國家比較不一樣的,就是電比電話還多,電力大概到97,98 percent,電話的話是80幾,那如果是有線電視的線大概是70幾接近80 percent,這大概是這幾個數字。
這邊有幾張有關我國通訊的產業的圖,介紹一下讓大家有一個感覺,到97年的時候,台灣的通訊產業大概有880億左右,在全世界大概是佔16,7名左右,就是通訊產業佔全球通訊產業的產值,我國目前在資訊產業大概是第3名,IC產業大概是第4名,而通訊產業大概是10幾名,在這方面還要多努力一點,我們是有預期大概在五年內能夠跑到十名內。
這張圖是國內所用的通訊產品照產值的比例來排,這裡面除了局用交換機跟GLC是比較大的產品比外,大部份都是用戶端的產品,可以看出來產品大都是用戶端跟網路接取的部份,這是從產業面上來看。
連:那個局用交換機的成長率為什麼是-61%?
答:因為我們台灣在95,96年有一家公司,它一年大概有250億的生意在大陸,但是有一年因為就是生意被要求用大陸場廠商提供,後來台灣在大陸的生意馬上就drop下來了,就是奧戴爾公司總公司法國決定不讓台灣銷到大陸,所以生意馬上drop下,由大陸一個上海合資公司接手。
連:在這裡面的產品多少是台灣自主性的?
答:大都是。
連:GPS(編案: Global Positioning System?)呢?
答:GPS不完全啦。不過除了GPS其他應該都是。 局用交換機是中華電信用的那個交換機,不是我們台灣自己做的,局用交換機的門號至少是6萬門,它minimum至少是6萬門,6萬去成長,現在AT&T拿到一門大概是50美金,全球最低的,因為很早以前,事實上在中華電信標案以前大概是100多塊,140到150左右,在大陸可以賣到70到80,但AT&T不知道為什麼搶中華電信的標搶到50美金。
連:以前我在美國的時候大概200美金都快要做不下去了。
我補充一下剛才連教授所講的交換機的東西,其實交換機不是全部都組裝不完全,交換機裡面我想大部份都是一個一個card,大部份用戶接的這邊最多的是叫做line card,那個line card大概是286的cpu板,據我瞭解,奧戴爾-台灣還有很多東西是還給全球在用的,這是台灣那個公司在各地的分公司,一般來說就是全世界有一個東西要開發的時候就由大家來爭取,台灣也做的不錯,台灣也做了好幾個特別的東西,像台灣做了一個交換機跟TCP/IP之間相連interface的板子,所以不是完全都是組裝,因為奧戴爾大概維持有250工程師的,這在台灣是非常大的電信公司,如果以台灣來說,一般公司沒有到250個那麼多,台灣大致有三個較大的交換機廠,一個是奧戴爾,有250,另一個西門思-台灣,大概有150那麼多,另一個AT&T比較少,還沒到100,但是相對的,這些人跟台灣的電信公司比起來,隨便舉一個例子,像這個KTS或PTS,大致上20幾個人就夠了,不是需要上百個人那麼多,這裡面像網路卡,大概30幾個人就是一個公司,可以看的出來,就算是交換機也是一樣,新型的交換機大概也是30個人就夠了,交換機比較特別,因為system software,但是system software大都是原廠,台灣動到的機會也不多,一個交換機像IN的話要5,6百萬行的code,改一行大概半年以上的時間,因為改一行牽涉到的地方很多,要確定那一行沒改錯,半年就過去了。
連:靈魂的地方就是在那個軟體,hardware那些只是一個空殼子,大概要7。8千人做那個軟體。
交換機是一個非常大的software,事實上有時電信的研發單位並不是很看的起電腦的,交換機裡面或傳輸設備裡有的software比電腦多太多了,不是一點點,因為剛剛講的一個live card就是一個ip,通常那一個,3,40個板子在上面,所以交換機事實上是非常大的東西,那我剛剛把電信趨勢跟國內的趨勢大概上跟大家講了一下,那我想這是電通所在通訊領域的發展,目前我們在pc端做的是video phone,現在的focus在做video phone,可以看的到影像變化這樣的東西,在做network access的部份,目前我們在做的是100mega的user switch,已經做出來了,目前會跳到gigabit的switch,在transmition的部份,目前比較focus的部份是在做ADSL的modem,那也有做cable modem,無線通訊的部份有包括各式各樣的手機,DCP,GSM,這是目前我們正在做的,通常電通所所做的通常是國內廠商一兩年後開始要賣的產品,一兩年後要賣的東西,台灣的市場通常都是國外的,不會是台灣的,就是國外大家在用的東西,所以這是產品面上我們所裡面在為大家做的東西。
接下來我就就每一個部份開始講,用戶端的設備,大概在兩三年前,fly的非常的快,ISDN有十年的光景沒有fly,那兩三年前為什麼會fly,這邊有講,事實上,因為internet access的出現,另外還有一個就是說,在美國很多的公司,我大概四年前去美國一趟,碰到一個同學,在syscol,syscol已經是work at home,四,五年前,不是現在,公司也幫你組裝電腦,也幫你出ISDN的線,,就讓你去做access,在美國就是這個樣子,所以,這些讓整個ISDN有一個環境,不過最近又開始降低了,原因是,有兩個東西起來了,因為ISDN一般來說一對有64K,用到一個程度就不夠了,所以internet access假如你有一些video的東西,或multimedia的東西,這個幾K的頻寬大概都不夠,所以現在大家都開始在等這兩個東西了,ADSL跟cable modem。
cable modem是大家在30mega裡大家可以去搶,這兩個技術是一直在角力,有一段時間有人說cable modem會起來,有一段時間有人說ADSL會起來,cable modem主要是在有線電視網路上,如果家裡有接有線電視,再接上cable modem,他那一端有access server,你就可以進internet,就可以用,過去一段時間,我們所裡面把cable modem的重心擺下來,最近要趕快跑上來,因為市場起來了,就是市場起來了,因為在美國已經是幾百萬的order開始在下,過去都是這兩個在角力,但是過去為什麼大家都認為是ADSL會fly?那ADSL我等一下會講,它有其它的factor,那麼還有一個東西,就是56K的modem也出來了,56K跟64K差不了很多,1點多倍的差距感覺不太出來,我想56k的modem還是最便宜的,第一個你只要買一個modem就好了,傳統的33.6k的modem已經開始在下降了,ISDN被其它的服務根據圖裡來看,被夾殺在他們之間,沒有空間可以生存。
這邊有一張圖,可以跟大家講一件事情,這是三年前我們幫三軍總醫院做的一個project,這是說在三軍總醫院跟馬祖醫院,透過六對的ISDN線連線,他可以做什麼事情?因為在馬祖,通常是軍人很多,因為軍人很多易骨折,或是砲彈灼傷這類的傷勢,因為很少有好的醫生願意到馬祖去,就可以透過這個方式解決,因為在那邊有一個專門的房間有一些設備,可以看的很清楚,透過ISDN線,回到三軍總醫院,由這邊專門的醫生指導那邊資淺的醫生來做醫療,這個是已經開始在做的,讓人覺得說ISDN的用途就是這樣子,ISDN就是一對64K一直架,架到某一個程度,這個大概是到700多k,可以到700多k,那個時候就已經看的滿清楚了,這個可以做,當然骨折還是沒辦法,骨折要自己去看,摸,才能做一個診療,不過也可以有一些遠端醫療的協助,台灣已經有幾個地方已經開始再用了,這是一個實際的例子,ISDN可以做這些事情。
連:這些總共做起來要多少錢?
答:總共是兩百多萬。大概是三個點,三總擺兩個點,一個是在急診室,總共兩個地方,這不會很貴,記得有兩個點是比較好的resolution,有一個點是PC。
ADSL方面最進開始討論,這有很多不同的理由,大家總是想越變越高,高到我記得大概是8mega左右,這邊還有人來做到52mega,就我們用戶端來說,這已經開始慢慢的回過頭來在收斂,這是為什麼?這是我們在科技技術上所能做到的壓縮,coding,我可以做到9mega,但是後來,就發現,如果我要做到9mega,這兩點的線,距離就要縮短,這是一個問題,就是太長的時候,coding就不work,所以後來,他們就研究到1。5mega是最能接受的範圍,就是mega越高,距離就越短,越低,距離就越長,因為這個是用在我們用戶端,我們用戶端的線主要是用銅線,銅線就是我們的電話線,這個就是說,我們原來用modem也是有在做coding,但是modem主要是compression比較低,所以做到56K,但是這用到digital的技術,讓compression的比率更高,讓這個能夠傳的頻寬變高,但是因為距離長的時候有時候有些問題,所以這個大家也是試了很久,因為常常是在很多國家是ADSL,在korea,韓國在試的時候,就發現,它所有的銅線全部都要重換,因為銅線是放在外面的,因為放在外面會濕,濕了以後這些訊號就不能傳的遠,所以後來也是因為這樣,做了很多很多的實驗,才發現,1.5mega是最好的,我那個銅線也不用換那麼多。
另外還有一個factor就是說,在1.5mega的狀況下,它把這個頻寬shift到說,在這個線裡面,電話是用一個frequence,另外data用另外逼個frequence,就不用特別的方式,我一插上去,電話歸電話,data歸data,就等於一個standard在這裡,也就是因為這樣,standard確立以後,市場會起來,但是,這是怎麼樣接ATS?有兩種方式,我們先看,上面是直接接局用交換機,不管是這個或是這個,這是從remote端,你可以從某一個局用交換機透過一個網路,在一個鄉鎮,可能不用到一個局用交換機,一個村莊,它可以接這樣,也可以接這樣,但這裡面有一兩個東西是一樣的,ADSL的mux,這個叫ADSL的access mux,就是說你每一條線進來,一個mux可以接很多條線,這個有點像說我們叫作,如果你原來在做modem的時候,有一個叫做modem pool,在isp端它有一個這樣的東西,那這個是誰要投資,是電信局,這個就會慢了,因為電信局投資這樣就是要加東西,一個一個一直加,所以本身,ADSL索費起來,但是他比較slowly,因為他要慢慢的去install,買這些東西,這個要時間的,所以本身,ADSL的技術已經確定了,但是再接下來就是compression的時間,它要拖多久,跟過去ISDN是一樣的,過去ISDN換一個東西為什麼那麼久?因為它所有的東西都要換,所有的交換機都要換,那這一次也是一樣,這是要加一個access mux在這邊,這個也是錢,所以它會稍微慢一點,但是應該也會起來。
連:那當它頻寬匯集起來,對track的影響是怎樣?
答:這是一個point,等一下在傳輸的部份再談。 因為這個頻寬上來,那邊好解決,我剛剛講說,他們有dm,就是有解決的方式,那比較不是問題,只是你要不要做而已,技術上是可以的,大致上這是從access上是你在家裡面這樣子以後就是你電話或是multimedia,internet access都可以做,透過原來的電話線銅纜,兩端各接一個ADSL的modem,在電信局那邊要有一個access mux,大致上是這樣,那這個就是在寬頻的,我想這個standard已經確定了,過去就是說我這一個跟另外一個會不會通,或者是我這個跟這個是不是通,前一陣子這兩個是不通的,除非這兩個是同一個廠商,但是standard出來以後,台灣去買的這個access mux也才會通,這樣市場才會起來,就是這個地方任何一個廠商都能進來,而不是電信局幫你買這一對,如果電信局還再幫你買這一對,那都不容易起來,這是user是不是在一般的情況下能不能買的到,買的到就起來了,那這個關鍵點就是說這個standard是不是確立,確立就起來,現在就確立了,所以這個時間會隨著一天一天價錢會隨著這個越買越多就解決了,另外一個問題點就是,bandwith的問題,等一下我再講。
那cable modem的話,這個就是透過cable modem的網路可以access,不過這個在我台北的了解,東森,跟力霸,跟和信都會提供,在大台北地區,但實際會提供的service到多少錢我就不了解了,因為我上次有去看過,他們技術上已經ready了,怎麼樣推出我是不清楚了,實際上已經可行了,那這邊我要提的是這樣,這次cable modem的架構,這裡面我要提一個東西,這個是現在,不過想會改的,我想五年內會改的,這個地方有一個ip的protocal,五年後應該會有一個mobile ip,這個mobile ip一確定下來,在有線電視網路上電話就不是問題,現在我們在談的cable modem是data access,internet的data access,但是它的架構已經朝著tcp/ip的架構在做,那麼目前這個一個很hot的東西,這個是架在這個整個上面做moies,當確定這個東西,配合standard protocal來做的話,可以做起來的話,那麼未來在cable TV的網路上要打電話就變的可行的,那我在最後還會再講。
剛剛有講一個用戶端的設備,從這一張圖可以看一下,這些就是所有看的到notebook,pc,全部都叫作用戶端設備,這邊是有一張分析,就是說,如果你要做一個東西,我想internet是一個很重要的東西,在未來,我想在四年內應該會有一個很重大的impact,這裡面是講說你用pc access,但是還有很多不是用pc access,那剛剛那張圖有各式各樣的東西,那接下來我們要從這些用戶端進到網路有幾種網路,一種所謂的LAN,我想你們的實驗室pc都是透過所的LAN連起來的,在怎樣,就是怎麼從電話進到電信局,就是電信網路,那另外還有一個有線電視的網路,就是cable tv的網路,我稍微從這個面上來談整個的這個接取,我想談的比較多的會是第一種,後面兩種用一兩張圖介紹。
這裡面有什麼東西?pc上的網路卡,跟一些hop,switch louter,然後這裡是router,remote access device,或者是gateway,這一類型都屬於LAN的access device,LAN我要接取的網路設備會碰到的大致上是這些,那這邊這張圖給大家一個感覺,這個產業我們是全球第二的產業,並不差,很多是第一,但是overall在這個產業面上是全球第二,這是很特別的一點,台灣在過去很多,一,二十年來,很多的產業都是從日本來,這個產業跟日本無關,你看我們的電視產業,汽車產業都是從日本來,但是網路,台灣是直接跟美國合作,事實上現在全球網路做的好的就是美國跟台灣,日本在這個上面事實上是落後我們的,這是台灣難得有東西是比日本的。
問:這些網路卡等都不是很複雜的東西,為什麼我們可以領先?是人家不要還是我們有過人之處?
答:因為這個跟資訊一樣,這大都部份都在電腦裡面的東西,這裡面幾乎都有cpu,網路卡的cpu可能大家都不知道,什麼8051,那是十幾年前才有的cpu,這個東西大致上用到188,186,這一個大致上要用到486,這裡面都是cpu,都是一塊主機板,那還有一些網路的interface,這都是台灣很專長的地方,事實上台灣的pc工業有很多地方是比日本強,這是日本來台灣的觀察,為什麼台灣的資訊工業可以做的這麼好?他們最後有一個結論,這個結論非常的重要,他是說在台灣的廠商,你可以在一個多小時就可以拿到任何一個你想要的component,這個就是說比如這個pc,pc裡面你要的那個connect,那個cable,或者裡面要的IC,裡面要的板子,在台灣,一個工廠,一個多小時就可以拿到,在日本是四個小時,日本是在東京的範圍四個小時,這為什麼台灣的資訊業這麼強,在台灣的資訊業集中在台北縣,桃園縣,新竹縣,這個都是在一個多小時之內就可以做的到的,這個也是日本人檢討再檢討的原因,再舉一個例子,在美國人要下單的時候,像pc,通常他們給的時間是兩個禮拜,台灣廠商大概也是,日本廠商要四個月,這個我們工程師的彈性跟努力可能你們不會感覺到,在科學園區裡面,很多公司都是做到十一,二點的,很普遍啦,在新竹是這樣,我們也是這樣子啦,像我的部門也有人兩個禮拜沒睡覺,這是事實,到最後睡在高速公路旁邊,這在新竹很多是這樣的現象,台灣很多人在打拼,很多可能跟政治都無關的人都在新竹,不過總是很多人在努力,還有一個很重要的factor,就是台灣不大,很多上,下游的產業都有,這也是很關鍵的,因為過去沒有IC工業,IC工業一起來很多的controller也是需要這些東西,這個已經是把上下游串起來了,現在也是藉著這個人力我們希望進入網路的工業跟電信的工業,那這些工業的特質都是一樣的,不是很複雜也不是很簡單,但是價位都不高,坦白說我們台灣賣出去的,一,二萬以下的東西都還賣的出去;上百萬的,困難度就滿高的。
我們再看下來,這個圖是在這個產業很closed的情況,先看這個往下掉的是10mega的網路卡,現在已經都跑上100mega了,有一個在closed的是gigabit,可以很清楚市場是在往那邊走,所以現在是100mega為主,但三,四年後可能gigabit可能就提高了,這就是你在access端,你在LAN端的access bit的增加了,這個要提醒的就是這一點,像我以前在用的10mega一張三,四萬塊,現在幾百塊,現在100mega也大概是幾千塊,這都是一直在掉,但市場是一直起來,那這邊這個圖也差不多是這個樣子,這邊這個圖是在hop的部份,hop就是很多user集中到一個地方再往上,就是集線器,那這個部份也可以看到起來的也是100mega的,這跟網路卡一樣,趨勢應該都一樣,整個看起來,我們在區域網路上的發展,從過去的token ring,ethernet一直到現在的gigabit,這裡面有用到100mega,現在有一些是ATM,但ATM的市場不是沒有,closed的很好,ATM很可能在backphone上面會有,那對LAN來說我想是需要一個access,大致上是這樣。
那在LAN上面來說,我想會100mega逐漸到giga level,目前的猜測是這樣,但是現在看起來,ATM在LAN上看起來太明顯了,這一張是一些standard,我就講最後一個,目前2mega的wireless LAN已經出來了,已經開始在賣了,正在做的是10mega,那在有線的部份就是我們剛剛講的已經到1000個mega,目前是2~10,在賣的是2,公司在做的是10,那這裡面就是有一個分析比較,這個是可以傳送的距離,如果是gigabit就是要舒緩一點,但是是500公尺,某一個角度已經是make sense,因為ethernet出來的時候已經是幾百公尺了,所以這個giga level的user switch應該也會有出現,甚至在用戶端,這裡有一個東西有爭議,現在很多的operator,電信的operator,都是在provide IP over ATM,但是有很多研發是IP over SDH或IP over SONET,現在很多的電信公司都有over ATM,但是在背後又一群人就是不要ATM,就是往下,少掉一層,但是這個關鍵點就是在一般在LAN上電信公司為什麼不用IP over SONET或是IP over SDH,原因是在那個部份的QoS沒有ready,他們為什麼要用ATM,因為ATM的QoS沒有問題,最簡單的一個理由是因為這些都是hand switch,堅持QoS就是當要你傳5mega的時候,就是在5mega的頻寬狀況下不會有lost,在ATM switch有辦法做的到,但是如果沒有ATM switch目前是不行的,在LAN的環境,我們剛剛講在wireless是沒有辦法做這件事情的,有人說快把gigabit的QoS趕快做起來,那這裡面是不是就做的起來?是可以做,那目前都還是在研發的階段,那比較明確的東西就是IP over ATM,IP over SONET這些事情,show and work,目前在美國比較大的operator是在做這些事情,這是目前最新的狀況,所以這張圖上,ATM face是什麼意思?就是用戶端的設備有ATM的serve,但是很多人在做這個研發。大致上這裡是把LAN的部份大致上的講一下。
可能不需要那麼好,因為我想我們在看Ethernet access那個,如果有DVD的品質一定夠,從某一個角度來說應該是一定夠的,因為人沒有那麼苛啦,人的眼睛也沒有那麼尖銳,那這個是我們另外一個access方式,是透過有線電視的網路,這是目前我們在台灣提供的服務,包括E8行動式的HFC(Hybrid Fiber Coax),它有一段從它的機房,有一段出來的時候室光纖,這一定要是光纖,然後進到這所謂Fiber Node以後,這一段會變成cable,這通常來說是1000~2000戶,不是很多,這種東西有一種特點,事實上有些電視網路在全世界做電話一直沒有很成功,只有最近AT&T去買了TCA,大家都在拭目以待,但也都還沒真的成功,原因是什麼?這基本原因是這是一個tree structure的網路,從這一點一開始在這一點裡面,如果我在這裡剪斷,這下面全部毀了,看剪到哪裡,因為它是tree,這是第一點,那第二點為什麼那麼好剪,因為它不帶電電不死人,事實上電話線有電,你們去摸會有觸電的感覺,但是完全電不死人,所以在台灣有線電視一開始大家都剪來剪去的,你剪我的我剪你的,搞到大家最後都不work了,這個變成網路的服務品質會有問題,所以這個在技術上在2、3年前就已經ready了,也可以打電話,也可以做access,只是standard沒有那麼確定。
這個技術本身這個技術大概我在四年前去AT&T的時候,我已經看到這樣的level,從這個地方可以打電話到5E去,都可以了,但就是沒有起來,那這沒有起來就是剛剛講的,因為這還有一個問題,因為它不帶電,像這支電話如果你停電了,它就不work了,這個在美國是違反電信基本法的,在美國電信法是規定的很嚴格,因為電信是基礎的service,任何時候要能夠打911,這做不到就不能提供電話服務,這在美國是非常嚴苛的,這個沒有電,那要在外面加一個power hitter,這個裝在家裡,家裡停電911不能打,裝在外面有外面的複雜度,所以cost structure不見的划得來,所以這個在技術上一直是work的,但是因此沒有起來,但國內一直有人想試,不過這個拭目以待。
不過這個就是跟大家講說,透過這個有線電視呢,也可以打電話,當然也有人嘗試著把,因為我也可以做一個wireless access node,也可以做無線電話進來,所以這個是這個狀況,當然要做internet access也可以,那這裡面我剛剛有提到說,那麼我假設這裡是一個cable modem,這是什麼意思,就是我這個fiber node下面這一群人,比如說1000~2000大家share那個30Mbits,所以這還不完全guarantee你的品質會很好。
連教授:『可是為什麼是30Mbits。你這個cable它可以…』
A:它是一個頻道,大家在這個30Mbits去share。
連教授:『所以就是說那30Mbits,那有很多電影台我可以不要看…』
A:對,那30Mbits是這個去share,是指定在head-end這邊,所以這個operator要營運要做,可以,這個可以增加的,你剛講的就是可以增加沒有錯,但是就是這個變成這個地方還有些message的issue,它所謂level 2 gateway,這個是在handle那30Mbits,那in general就是說,30Mbits很多人分到某一個程度不夠,那operator在這個要在create一個新的channel出來,那這個裡面就變成大家去搶那30Mbits嘛。
連教授:『一般一個電影channel是佔多少,4還是5?』
A:它也是30Mbits,然後分給10個channel,還是12個,這數字我不太記得了。
同學:『那如果我在同一個網域呢?』
A:就是說你在這個下面嗎?是這個branch加起來才是,當然不夠的時候還會再create一個,但是原則上酒是30Mbits大家分。
連教授:『等一下,那這30Mbits是像Ethernet 30Mbits大家分呢?還是說dedicate某一條』
A:大家share。
連教授:『可以,隨時你要就抓,一些不要的就把它release』
但是它沒有QoS,這個地方沒有QoS,它就是說這30Mbits喔是由這邊來決定,這個動作我稍微描述一下,一開始的時候呢,你開這個cable modem的時候呢,你會送一個訊號過來,說我要一個channel,然後,我要用啦,然後這邊就會送一個訊號給你說我要給你多少個,我允許你用,在這個頻道還是互相negotiate,因為這個是在很大頻寬裡的某一個30Mbits的地方,那我就是告訴你可以用這個地方,那用的時候是大家共用,所以你這個cable modem就去listen那個30Mbits,你有一個tuner去聽那個地方,聽的時候是你的你才抓下來,因為它剛剛也給了你一個address,你有他要,你有送你cable modem的identify出去,所以你本身有一個negotiate,它告訴你你用那個,然後你就一直聽,是你的你才抓下來,你也可以聽別人的,送的話,送是不一樣的線路,送的線路就比較少了,所以本身它是有一個這樣的溝通,但是那30Mbits是大家去share的,是你的你才抓,當然別人的你抓也可以啦,是用listen的方式去聽,那30Mbits是大家去share這個傳輸喔,剛剛多少講過了。
那這張再說,這是過去的PDH(Plesiochronous Digital Hierarchy)改成SDH(Synchronous Digital Hierarchy),現在在台灣中華電信今年度開始採用這種PDH-1的SDH,過去我們會用DS1、DS2、T1、T3,以後都會變成D1、D3,這個一兩年內中華電信會從這邊的非national standard改成national standard,那目前會變成用SDH,那SDH一個很重要的issue就是network management上會好很多,就在這個營運管理,traffic量的handle上會好很多,那這張圖是從網路面上看網路的傳輸,大致上是這樣,我們剛剛講了一堆,是在access端,那access端我們剛剛講過你也可以用SDN1、SDN2,當然也可以用有一個像ADSL這個地方上來,那這個地方是在access,那access方式STM1、STM4(STM:Synchronous Transport Modules),就是155Mbits或650Mbits,600Mbits的頻寬在這邊。那再上來的時候你可以用4or 16,16的話就是2.4GBits,那剛剛連教授問的,因為這個速度不一樣,可能是一比四或一比十六,那你在這邊要一個change,就是那個頻寬要塞到那個bandwidth上去,那再上來可能是STM60型,或者改成ATM,這裡是10GBits,或者是10Gbits的N倍,WDM的意思是可以64的1、2、…over,目前的產品是大概到7倍到8倍的10Gbits,剛剛連教授在問,如果我們這邊都變成寬頻的話怎麼辦?就是在這個地方往上調,這個地方的關鍵只是把這些地方的傳輸速率往上升,光纖不用動,這是一個很重要的issue,你只要換傳輸設備,那目前台灣我們只需要用到這個階段STM16,STM16的node大概十幾個吧,不是很多,目前中華電信會買STM64的node大概3、4個node,那這是什麼意思,這張圖不是apply for Taiwan,Taiwan 的網路在某一個角度只是regional的,這是像美國、歐洲、大陸那種大國家才需要的backbone,這會分層,大部分頻寬要道10Gbits是很難啦,那目前的解決方式就是WDM,WDM的意思就是我可以用不一樣的光的channel,那多少種不一樣的光九可以跑多少的10Gbits,目前這產品都已經出來了。
連教授:『能不能解釋一下STM跟SDH這兩個term的意思』
A:SDH是Synchronous Digital Hierarchy,STM是Synchronous Transport Modules,這個跟SONET架構是一樣的,不同在hardware部分。
再下來看企業網路,這張是未來用在軍方的網路,這是最新的research,你要怎麼去handle一個這麼複雜的network,它各軍種不同但架構在同一個網路上,後面講的是一個較整合面的,我們剛看的傳輸網路在這邊,剛剛看的cross connect,這張圖示給大家一個感覺,剛剛我們講的PBX是可以這樣看的,這樣子就可以把有線跟無線放在一起,這個是我下面一個部門正在做的,就像政大是一個院區,那每個院區都會有一個小型的PBX,我們在這下面加了一個無線系統,這裡面包括如mobility system,就是人在哪裡都知道,這是我們現在把有線跟無線communicate integrate起來的一個project。
再下來我給大家看個information,這個是voice on net,這是什麼,就是聲音透過internet來傳輸,這個看來會實現,我把電信這幾年新的發展講了一下,不好意思,我覺得IN是可以講個兩個鐘頭,我後來抽了幾張,intelligent network在我們那邊,再我們這個部門大概三年多,去年年初的時候做到差不多,我今天沒有講我們做的那個部分,我覺得那個對大學部的同學困難了一點,那我講讓大家get一個feeling什麼叫IN,事實上大家在電視上看到的那個民意調查,選舉的時候你撥什麼號碼就選誰,這就是max coding,這是一個IN的服務,你同時很多人打同一個號碼,它也可以count,它有一個counter,你一個打進去,它就count,那這在一般電話網路會有些問題,同時很多人跑到一條線上去,這不會work的,一定要有一個東西在後面backup,就是一個counter在後面計算,電話沒有辦法同時很多人打一支電話,IN就是協助以解決這個問題,這是其中的一個例子,那還有一個就是說,像080,這就是一個IN的service,像prepare card,或者是出國所打的國際預付卡,那都是IN的service,它後面actually有一個counter,IN的service是什麼,就是有一個database去存某些的information,那這個information可以發展成service,為什麼會有這些東西,我們可以看這些預估,事實上在美國,歐美國家2000年時會有30% IN的服務。
電信服務來自於IN,是大家不自覺而已,在台灣目前只提供080和max coding,那還有一個還沒有推出,就是credit card打電話,還有就是BPN,Personal number,這都還沒推出來,台灣的服務都是美國賣的很好的服務,那美國還有一個服務我們還沒有,就是caller screen & caller source,caller screen其中一個功能就是把caller的名字show在電話的螢幕上,caller source就是回查caller的電話號碼,我舉兩個例子讓大家看一下,比如麥當勞,你只要打同一個電話號碼,然後它就會把你route到和你最近的麥當勞,這是location dependent的routing,它的名字叫做universal access number,不一樣的時間撥到不同地方,再business上像這樣,在美國它有時差,那我這邊是晚上,我打過去那邊不是晚上,別人就可以接這個電話,這個國家比較有用;這是credit card calling service,你credit card相對一個pin number,將來費用就算在你的credit card上這個是說這通電話的錢有一些給電信局,一些給某一個公司,這是說你有database可以query或是service可以query,在電信服務一般也是這個最先起來,這也是一個IN的service。
我想我講了很多那這裡面關鍵是什麼,大家看到右上角那個table喔,actually那是一個database,同一個號碼,每一個交換機都有人打進來,如果這個table每一個交換機都有,當然要換information的時候,每一個交換機都要換,這是不得了的事,我剛講過,修改交換機的一行程式可能就是半年或全年,這table也一樣,怎麼辦呢,就是把這會變動的放到一個地方,叫做SCP,service control point,某一個角度來說這是一個database machine,這東西不是哪麼簡單,IN的服務隨時會變,有了這個東西一個service大概可以縮短到9個月,一般從有想法出現到推出服務要三年的時間,concept上,這個等於是說每一通電話都有一個這個東西,這叫做call model,這是一個finite state machine,電話的每一個動作都會跳到一個狀態,這裡面是蠻複雜的,那我想這樣就可以了,IN就這樣。
相關資料
PSTN (public switched telephone network)
The PSTN (public switched telephone network) refers to the world's collection of interconnected voice-oriented public telephone networks, both commercial and government-owned. It's also referred to as the Plain Old Telephone Service (POTS). It's the aggregation of circuit-switching telephone networks that has evolved from the days of Alexander Graham Bell ("Doctor Watson,come here!"). Today,it is almost entirely digital in technology except for the final link from the central (local) telephone office to the user.
In relation to the Internet,the PSTN actually furnishes much of the Internet's long-distance infrastructure. Because Internet service providers ISPs pay the long-distance providers for access to their infrastructure and share the circuits among many users through packet-switching,Internet users avoid having to pay usage tolls to anyone other than their ISPs.
PCS (personal communications services)
PCS is a wireless phone service somewhat similar to cellular telephone service. It's sometimes referred to as digital cellular. Like cellular,PCS is for mobile users and requires a number of antennas to blanket an area of coverage. As a user moves around,the user's phone signal is picked up by the nearest antenna and then forwarded to a base station that connects to the wired network. The phone itself is slightly smaller than a cellular phone. Typically,PCS will be introduced first in highly urban areas for large numbers of users. As of September 1, 1996,it was currently being installed by several companies in New York City. Rates are expected to be somewhat less than cellular phone rates.
ATM (asynchronous transfer mode)
ATM (asynchronous transfer mode) is a dedicated-connection switching technology that organizes digital data into 53-byte cells or packets and transmits them over a medium using digital signal technology. Individually,a cell is processed asynchronously relative to other related cells and is queued before being multiplexed over the line.
Because ATM is designed to be easily implemented by hardware (rather than software),faster processing speeds are possible. The prespecified bit rates are either 155.520 Mbps or 622.080 Mpbs. IEEE Spectrum reports that speeds on ATM networks are expected to reach 10 Gbps. Along with SONET and several other technologies,ATM is a key component of broadband ISDN (BISDN).
SONET (Synchronous Optical Network)
SONET is the U.S. (ANSI) standard for synchronous data transmission on optical media. The international equivalent of SONET is synchronous digital hierarchy (SDH). Together,they ensure standards so that digital networks can interconnect internationally and that existing conventional transmission systems can take advantage of optical media through tributary attachments.
SONET provides standards for a number of line rates up to the maximum line rate of 9.953 gigabits per second (Gbps). Actual line rates approaching 20 gigabits per second are possible. SONET is considered to be the foundation for the physical layer of the broadband ISDN (BISDN).
ATM runs as a layer on top of SONET as well as on top of other technologies.
SONET defines a base rate of 51.84 Mbps and a set of multiples of the base rate known as "Optical Carrier levels."
SDH (Synchronous Digital Hierarchy)
SDH (Synchronous Digital Hierarchy) is a standard technology for synchronous data transmission on optical media. It is the international equivalent of SONET. Both technologies provide faster and less expensive network interconnection than traditional PDH (Plesiochronous Digital Hierarchy) equipment.
In digital telephone transmission,"synchronous" means the bits from one call are carried within one transmission frame. "Plesiochronous" means "almost (but not) synchronous," or a call that must be extracted from more than one transmission frame.
SDH uses the following Synchronous Transport Modules (STM) and rates: STM-1 (155 megabits per second),STM-4 (622 Mbps),STM-16 (2.5 gigabits per second),and STM-64 (10 Gbps).
ISDN (Integrated Services Digital Network)
Integrated Services Digital Network (ISDN) is a set of CCITT/ITU standards for digital transmission over ordinary telephone copper wire as well as over other media. Home and business users who install ISDN adapters (in place of their modems) can see highly-graphic Web pages arriving very quickly (up to 128 Kbps). ISDN requires adapters at both ends of the transmission so your access provider also needs an ISDN adapter. ISDN is generally available from your phone company in most urban areas in the United States and Europe.
There are two levels of service: the Basic Rate Interface (BRI),intended for the home and small enterprise,and the Primary Rate Interface (PRI),for larger users. Both rates include a number of B (bearer) channels and a D (delta) channel. The B channels carry data,voice,and other services. The D channel carries control and signaling information.
The Basic Rate Interface consists of two 64 Kbps B channels and one 16 Kbps D channel. Thus,a Basic Rate user can have up to 128 Kbps service. The Primary Rate consists of 23 B channels and one 64 Kpbs D channel in the United States or 30 B channels and 1 D channel in Europe.
Integrated Services Digital Network in concept is the integration of both analog or voice data together with digital data over the same network. Although the ISDN you can install is integrating these on a medium designed for analog transmission,broadband ISDN (BISDN) will extend the integration of both services throughout the rest of the end-to-end path using fiber optic and radio media. Broadband ISDN will encompass frame relay service for high-speed data that can be sent in large bursts,the Fiber Distributed-Data Interface (FDDI),and the Synchronous Opical Network (SONET). BISDN will support transmission from 2 Mbps up to much higher,but as yet unspecified,rates.
BISDN (Broadband Integrated Services Digital Network)
BISDN is both a concept and a set of services and developing standards for integrating digital transmission services in a broadband network of fiber optic and radio media. BISDN will encompass frame relay service for high-speed data that can be sent in large bursts,the Fiber Distributed-Data Interface (FDDI),and the Synchronous Optical Network (SONET). BISDN will support transmission from 2 Mbps up to much higher,but as yet unspecified,rates.
BISDN is the broadband counterpart to ISDN,which provides digital transmission over ordinary telephone company copper wires on the narrowband local loop.
cable modem
A cable modem is a device that enables you to hook up your PC to a local cable TV line and receive data at about 1.5 Mbps. This data rate far exceeds that of the prevalent 28.8 and 56 Kbps telephone modems and the up to 128 Kbps of ISDN and is about the data rate available to subscribers of Digital Subscriber Line (DSL) telephone service. A cable modem can be added to or integrated with a set top box that turns your TV set into an Internet channel. For PC attachment,the cable line must be split so that part of the line goes to the TV set and the other part goes to the cable modem and the PC.
A cable modem is really more like a network interface card (NIC) than a computer modem. All of the cable modems attached to a cable TV company coaxial cable line communicate with a Cable Modem Termination System (CMTS) at the local cable TV company office. All cable modems can receive from and send signals to only to the CMTS,but not to other cable modems on the line.
The actual bandwidth for Internet service over a cable TV line is up to 27 Mbps on the download path to the subscriber with about 2.5 Mbps of bandwidth for interactive responses in the other direction. However,since the local provider may not be connected to the Internet on a line faster than a T-1 at 1.5 Mpbs,a more likely data rate will be close to 1.5 Mpbs.
Among companies using cable TV to bring the Internet to homes and businesses are @Home,a service of TCI,and Time-Warner.
In addition to the faster data rate,one advantage of cable over telephone Internet access is that it is a continuous connection.
frame relay
Frame relay is a telecommunication service designed for cost-efficient data transmission for intermittent traffic between local area networks (LANs) and between end-points in a wide area network (WAN). Frame relay puts data in a variable-size unit called a frame and leaves any necessary error correction (retransmission of data) up to the end-points,which speeds up overall data transmission. For most services,the network provides a permanent virtual circuit (PVC),which means that the customer sees a continous,dedicated connection without having to pay for a full-time leased line,while the service provider figures out the route each frame travels to its destination and can charge based on usage. An enterprise can select a level of service quality - prioritizing some frames and making others less important. Frame relay is offered by a number of service providers,including AT&T. Frame relay is provided on fractional or full T-1 carriers. Frame relay complements and provides a mid-range service between ISDN,which offers bandwidth at 128 Kbps,and Asynchronous Transfer Mode (ATM),which operates in somewhat similar fashion to frame relay but at speeds from 155.520 Mbps or 622.080 Mpbs.
Frame relay is based on the older X.25 packet-switching technology which was designed for transmitting analog data such as voice conversations. Unlike X.25 which was designed for analog signals,frame relay is a fast-packet technology,which means that the protocol does not attempt to correct errors. When an error is detected in a frame,it is simply "dropped." (thrown away). The end points are responsible for detecting and retransmitting dropped frames. (However,the incidence of error in digital networks is extraordinarily small relative to analog networks.)
Frame relay is often used to connect local area networks with major backbones as well as on public wide area networks and also in private network environments with leased lines over T-1 lines. . It requires a dedicated connection during the transmission period. It's not ideally suited for voice or video transmission,which requires a steady flow of transmissions. However,under certain circumstances,it is used for voice and video transmission.
Frame relay relays packets at the data-link layer of the Open Systems Interconnection (OSI) model rather than at the network layer. A frame can incorporate packets from different protocols such as Ethernet and X.25. It is variable in size and can be as large as a thousand bytes or more.
DSL and xDSL (Digital Subscriber Line and its variations)
DSL (Digital Subscriber Line) is a technology for bringing high-bandwidth information to homes and small businesses over ordinary copper telephone lines. xDSL refers to different variations of DSL,such as ADSL,HDSL,and RADSL. Assuming your home or small business is close enough to a telephone company central office that offers DSL service, you may soon be able to receive data at rates up to 6.1 megabits (millions of bits) per second (of a theoretical 8.448 megabits per second),enabling continuous transmission of motion video,audio,and even 3-D effects. More typically,individual connections will provide either 512 kilobits (thousands of bits) per second or 1 megabits per second. During 1998 and 1999, DSL is being installed in a number of communities in the U.S. and elsewhere. Compaq,Intel,and Microsoft are among companies working with manufacturers to accelerate deployment of an easier-to-install form of DSL called "DSL Lite." Within a few years,DSL is expected to replace ISDN in many areas and to compete with the cable modem in bringing multimedia and 3-D to homes and small businesses. Dataquest,a market research firm, forecasts 5.8 million lines installed by the end of the century.
How It Works
Traditional phone service (sometimes called "Plain Old Telephone Service" or POTS) connects your home or small business to a telephone company office over copper wires that are wound around each other and called twisted pair. Traditional phone service was created to let you exchange voice information with other phone users and the type of signal used for this kind of transmission is called an analog signal. An input device such as a phone set takes an acoustic signal (which is a natural analog signal) and converts it into an electrical equivalent in terms of volume (signal amplitude) and pitch (frequency of wave change). Since the telephone company's signalling is already set up for this analog wave transmission,it's easier for it to use that as the way to get information back and forth between your telephone and the telephone company. That's why your computer has to have a modem - so that it can demodulate the analog signal and turn its values into the string of 0 and 1 values that is called digital information.
Because analog transmission only uses a small portion of the available amount of information that could be transmitted over copper wires,the maximum amount of data that you can receive using ordinary modems is about 56 Kbps (thousands of bits per second). (With ISDN,which one might think of as a limited precursor to DSL,you can receive up to 128 Kbps.) The ability of your computer to receive information is constrained by the fact that the telephone company filters information that arrives as digital data, puts it into analog form for your telephone line,and requires your modem to change it back into digital. In other words,the analog transmission between your home or business and the phone company is a bandwidth bottleneck.
Digital Subscriber Line is a technology that assumes digital data does not require change into analog form and back. Digital data is transmitted to your computer directly as digital data and this allows the phone company to use a much wider bandwidth for transmitting it to you. Meanwhile,if you choose,the signal can be separated so that some of the bandwidth is used to transmit an analog signal so that you can use your telephone and computer on the same line and at the same time.
Splitter-based vs. Splitterless DSL
Most DSL technologies require that a signal splitter be installed at a home or business,requiring the expense of a phone company visit and installation. However,it is possible to manage the splitting remotely from the central office. This is known as splitterless DSL or "DSL Lite."
Modulation Technologies
The modulation technology that is used for the various kinds of DSL is likely to be settled late in 1998 by the International Telecommunication Union (ITU). Meanwhile,different DSL modem makers are using either Discrete Multitone Technology (DMT) or Carrierless Amplitude Modulation (CAP). A third technology,known as Multiple Virtual Line (MVL),is another possibility.
Factors Affecting the Experienced Data Rate
DSL modems follow the data rate multiples established by North American and European standards. In general,the maximum range for DSL without repeaters is 5.5 km (18,000 feet). As distance decreases toward the telephone company office,the data rate increases. Another factor is the gauge of the copper wire. The heavier 24 gauge wire carries the same data rate farther than 26 gauge wire. If you live beyond the 5.5 kilometer range,you may still be able to have DSL if your phone company has extended the local loop with optical fiber cable. The
Digital Subscriber Line Access Multiplexer (DSLAM)
To interconnect multiple DSL users to a high-speed backbone network,the telephone company uses a Digital Subscriber Line Access Multiplexer (DSLAM). Typically,the DSLAM connects to an asynchronous transfer mode (ATM) network that can aggregate data transmission at gigabit data rates. At the other end of each transmission,a DSLAM demultiplexes the signals and forwards them to appropriate individual DSL connections.
Types of DSL
ADSL
The variation called ADSL (Asymmetric Digital Subscriber Line) is the form of DSL that will become most familiar to home and small business users. ADSL is called "asymmetric" because most of its two-way or duplex bandwidth is devoted to the downstream direction,sending data to the user. Only a small portion of bandwidth is available for upstream or user-interaction messages. However,most Internet and especially graphics- or multi-media intensive Web data need lots of downstream bandwidth,but user requests and responses are small and require little upstream bandwidth. Using ADSL,up to 6.1 megabits per second of data can be sent downstream and up to 640 Kbps upstream. The high downstream bandwidth means that your telephone line will be able to bring motion video,audio,and 3-D images to your computer or hooked-in TV set. In addition, a small portion of the downstream bandwidth can be devoted to voice rather data,and you can hold phone conversations without requiring a separate line. Unlike a similar service over your cable TV line,using ADSL,you won't be competing for bandwidth with neighbors in your area. In many cases,your existing telephone lines will work with ADSL. In some areas,they may need upgrading. Unless your phone company offers "splitterless" ADSL (see DSL Lite),you will need to install a DSL modem in your computer.
CDSL
CDSL (Consumer DSL) is a trademarked version of DSL that is somewhat slower than ADSL (1 Mbps downstream,probably less upstream) but has the advantage that a "splitter" does not need to be installed at the user's end. Rockwell,which owns the technology and makes a chipset for it,believes that phone companies should be able to deliver it in the $40-45 a month price range. CDSL uses its own carrier technology rather than DMT or CAP ADSL technology.
DSL Lite
DSL Lite is essentially a slower ADSL that doesn't require splitting of the line at the user end but manages to split it for the user remotely at the telephone company. While this saves the cost of what the phone companies call "the truck roll," it reduces the maximum data rate to 1.544 Mbps (which is still considerably greater than current modem data rates).
HDSL
The earliest variation of DSL to be widely used has been HDSL (High bit-rate DSL) which is used for wideband digital transmission within a corporate site and between the telephone company and a customer. The main characteristic of HDSL is that it is symmetrical: an equal amount of bandwidth is available in both directions. For this reason,the maximum data rate is lower than for ADSL. HDSL can carry as much on a single wire of twisted-pair as can be carried on a T1 line in North America or an E1 line in Europe (2,320 Kbps).
IDSL
IDSL (ISDN DSL) is somewhat of a misnomer since it's really closer to ISDN data rates and service at 128 Kbps than to the much higher rates of ADSL.
RADSL
RADSL (Rate-Adaptive DSL) is an ADSL technology from Westell in which software is able to determine the rate at which signals can be transmitted on a given customer phone line and adjust the delivery rate accordingly. Westell's FlexCap2 system uses RADSL to deliver from 640 Kbps to 2.2 Mbps downstream and from 272 Kbps to 1.088 Mbps upstream over an existing line.
SDSL
SDSL (Single-line DSL) is apparently the same thing as HDSL with a single line, carrying 1.544 Mbps (U.S. and Canada) or 2.048 Mbps (Europe) each direction on a duplex line.
UDSL
UDSL (Unidirectional DSL) is a proposal from a European company. It's a unidirectional version of HDSL.
VDSL
VDSL (Very high data rate DSL) is a developing technology that promises much higher data rates over relatively short distances (between 51 and 55 Mbps over lines up to 1,000 feet or 300 meters in length). It's envisioned that VDSL may emerge somewhat after ADSL is widely deployed and co-exist with it. The transmission technology (CAP,DMT,or other) and its effectiveness in some environments is not yet determined. A number of standards organizations are working on it.
x2/DSL
x2/DSL is a planned modem from 3Com and US Robotics that supports 56 Kbps modem communication but is upgradeable through new software installation to ADSL when it becomes available in the user's area. 3Com calls it "the last modem you will ever need."
A DSL Summary Table
DSL Type | Description | Data Rate Downstream; Upstream |
Distance Limit | Application |
---|---|---|---|---|
IDSL | ISDN Digital Subscriber Line | 128 Kbps | 18,000 feet on 24 gauge wire | Similar to the ISDN BRI service but data only (no voice on the same line) |
CDSL | Consumer DSL from Rockwell |
1 Mbps downstream; less upstream | 18,000 feet on 24 gauge wire | Splitterless home and small business service; similar to DSL Lite |
DSL Lite | "Splitterless" DSL without the "truck roll" | 1.544 Mbps downstream | 18,000 feet on 24 gauge wire | Similar to ADSL; sacrifices speed for not having to install a splitter at the user's home or business |
HDSL | High bit-rate Digital Subscriber Line | 1.544 Mbps duplex on two
twisted-pair lines; 2.048 Mbps duplex on three twisted-pair lines |
12,000 feet on 24 gauge wire | T1/E1 service between
server and phone company or within a company; WAN,LAN,server access |
SDSL | Single-line DSL | 1.544 Mbps duplex (U.S. and Canada); 2.048 Mbps (Europe) on a single duplex line downstream and upstream | 12,000 feet on 24 gauge wire | Same as for HDSL but requiring only one line of twisted-pair |
ADSL | Asymmetric Digital Subscriber Line | 1.544 to 6.1 Mbps
downstream; 16 to 640 Kbps upstream |
1.544 Mbps at 18,000 feet; 2.048 Mbps at 16,000 feet; 6.312 Mpbs at 12,000 feet; 8.448 Mbps at 9,000 feet |
Used for Internet and Web access,motion video,video on demand,remote LAN access |
RADSL | Rate-Adaptive DSL from Westell | Adapted to the line,640 Kbps to 2.2 Mbps downstream; 272 Kbps to 1.088 Mbps upstream | Not provided | Similar to ADSL |
UDSL | Unidirectional DSL proposed by a company in Europe | Not known | Not known | Similar to HDSL |
VDSL | Very high Digital Subscriber Line | 12.9 to 52.8 Mbps
downstream; 1.5 to 2.3 Mbps upstream; 1.6 Mbps to 2.3 Mbps downstream |
4,500 feet at 12.96 Mbps; 3,000 feet at 25.82 Mbps; 1,000 feet at 51.84 Mbps |
ATM networks; Fiber to the Neighborhood |
Advanced Intelligent Network (AIN)
Advanced Intelligent Network (AIN) is a telephone network architecture that separates service logic from switching equipment, allowing new services to be added without having to redesign switches to support new services. It encourages competition among service providers since it makes it easier for a provider to add services and it offers customers more service choices.
Developed by Bell Communications Research,AIN is recognized as an industry standard in North America. Its initial version,AIN Release 1,is considered a model toward which services will evolve. Meanwhile,evolutionary subsets of AIN Release 1 have been developed. These are shown in the AIN Release Table below. Elsewhere,the International Telecommunications Union (see ITU-T),endorsing the concepts of AIN,developed an equivalent version of AIN called Capability Set 1 (CS-1). It comes in evolutionary subsets called the Core INAP capabilities.
How It Works
Briefly,here's how AIN Release 1 works:
- A telephone caller dials a number that is received by a switch at the telephone company central office.
- The switch - known as the Service Switching Point (SSP) - forwards the call over a Signaling System 7 (SS7) network to a Service Control Point (SCP) where the service logic is located.
- The Service Control Point identifies the service requested from part of the number that was dialed and returns information about how to handle the call to the Service Switching Point. Examples of services that the SCP might provide include area number calling service,disaster recovery service,do not disturb service,and 5-digit extension dialing service.
- In some cases,the call can be handled more quickly by an Intelligent Peripheral (IP) that is attached to the Service Switching Point over a high-speed connection. For example,a customized voice announcement can be delivered in response to the dialed number or a voice call can be analyzed and recognized.
- In addition,an "adjunct" facility can be added directly to the Service Switching Point for high-speed connection to additional,undefined services.
One of the services that AIN makes possible is Local Number Portability (LNP).
The AIN Release Table
(Some terms in this table are not yet defined on whatis.com.)
AIN Release | Capabilities |
---|---|
Release 0 | Trigger
checkpoints at off-hook,digit collection and
analysis, and routing points of call Code gapping to check for overload conditions at SCP 75 announcements at the switching system Based on ANSI TCAP issue 1 |
Release 0.1 | Adds a formal
call model that distinguishes the originating half of the
call from the terminating half Additional triggers 254 announcements at the switching system Based on ANSI TCAP issue 2 |
Release 0.2 | Adds Phase 2
Personal Communication Service (PCS) support Voice Activated Dialing (VAD) ISDN-based SSP-IP interface Busy and no-answer triggers Next events list processing at SCP Default routing |
Release 1 | A full set of capabilities |
IP telephony
IP telephony (Internet Protocol telephony) is a general term for the technologies that use the Internet Protocol's packet-switched connections to exchange voice,fax,and other forms of information that have traditionally been carried over the dedicated circuit-switched connections of the public switched telephone network (PSTN). Using the Internet,calls travel as packets of data on shared lines,avoiding the tolls of the PSTN. The challenge in IP telephony is to deliver the voice,fax,or video packets in a dependable flow to the user. Much of IP telephony focuses on that challenge.
IP telephony service providers include or soon will include local telephone companies,long distance providers such as AT&T, cable TV companies,Internet service providers (ISPs), and fixed service wireless operators. IP telephony services also affect customer premise equipment (CPE) vendors of traditional hand-held devices.
Currently,unlike traditional phone service,IP telephony service is relatively unregulated by government. In the United States,the Federal Communications Commission (FCC) regulates phone-to-phone connections,but says they do not plan to regulate connections between a phone user and an IP telephony service provider.
VoIP is an organized effort to standardize IP telephony. IP telephony is an important part of the convergence of computers, telephones,and television into a single integrated information environment. Also see another general term, computer-telephony integration (CTI),which describes technologies for using computers to manage telephone calls.
Internet telephony
Telephony is the technology associated with the electronic transmission of voice,fax,or other information between distant parties using systems historically associated with the telephone, a handheld device containing both a speaker or transmitter and a receiver. With the arrival of computers and the transmittal of digital information over telephone systems and the use of radio to transmit telephone signals,the distinction between telephony and telecommunication has become difficult to find. However,we believe that telephony does connote voice or spoken and heard information predominately and it usually assumes a point-to-point (rather than a broadcast) connection. It also tends to assume a temporarily dedicated connection.
Internet telephony is the use of the Internet rather than the traditional telephone company infrastructure and rate structure to exchange spoken or other telephone information. Since access to the Internet is available at local phone connection rates,an international or other long-distance call will be much less expensive than through the traditional call arrangement.
On the Internet,three new services are now or will soon be available:
- The ability to make a normal voice phone call (whether or not the person called is immediately available; that is, the phone will ring at the location of the person called)
- The ability to send fax transmissions at very low cost (at local call prices) through a gateway point on the Internet in major cities
- The ability to leave voice mail at a called number
Some companies that make products that provide or plan to provide these capabilities include: IDT Corporation (Net2Phone), Netspeak,NetXchange,Rockwell International,VocalTec, and Voxspeak. Among uses planned for Internet phone services are phone calls to customer service people while viewing a product catalog online at a Web site.
QoS (Quality of Service)
On the Internet and in other networks,QoS (Quality of Service) is the idea that transmission rates,error rates,and other characteristics can be measured,improved,and,to some extent,guaranteed in advance. QoS is of particular concern for the continuous transmission of high-bandwidth video and multimedia information. Transmitting this kind of content dependably is difficult in public networks using ordinary "best effort" protocols.
Using the Internet's Resource Reservation Protocol (RSVP),packets passing through a gateway host can be expedited based on policy and reservation criteria arranged in advance. Using ATM, which also lets a company or user preselect a level of quality in terms of service,QoS can be measured and guaranteed in terms of the average delay at a gateway, the variation in delay in a group of cells (cells are 53-byte transmission units),cell losses,and the transmission error rate.
Speed
Carrier Technology | Speed | Physical Medium | Application |
---|---|---|---|
Regular telephone service (POTS) | 14.4 to 56 Kbps | Twisted-pair | Home and small business access |
Dedicated 56Kbps on Frame Relay | 56 Kbps | Various | Business e-mail with fairly large file attachments |
DS0 | 64 Kbps | All | The base signal on a channel in the set of Digital Signal levels |
ISDN | BRI: 64 Kbps to
128 Kbps PRI: 23 (T-1) or 30 (E1) assignable 64-Kbps channels plus control channel; up to 1.544 Mbps (T-1) or 2.048 (E1) |
BRI:
Twisted-pair PRI: T-1 or E1 line |
BRI: Faster
home and small business access PRI: Medium and large enterprise access |
IDSL | 128 Kbps | Twisted-pair | Faster home and small business access |
Satellite | 400 Kbps (DirecPC) | Airwaves | Faster home and small enterprise access |
Frame relay | 56 Kbps to 1.544 Mbps | Twisted-pair or coaxial cable | Large company
backbone for LANs to ISP ISP to Internet infrastructure |
T-1 (DS1) | 1.544 Mbps | Twisted-pair, coaxial cable,or optical fiber | Large company
to ISP ISP to Internet infrastructure |
E-1 (DS1) | 2.048 Mbps | Twisted-pair, coaxial cable,or optical fiber | European equivalent of T-1 |
T-1C (DS1C) | 3.152 Mbps | Twisted-pair, coaxial cable,or optical fiber | Large company
to ISP ISP to Internet infrastructure |
T-2 (DS2) | 6.312 Mbps | Twisted-pair, coaxial cable,or optical fiber | Large company
to ISP ISP to Internet infrastructure |
Digital Subscriber Line (DSL) | 512 Kbps to 8 Mbps | Twisted-pair (used as a digital,broadband medium) | Home,small business,and enterprise access using existing copper lines |
E-2 | 8.448 Mbps | Twisted-pair, coaxial cable,or optical fiber | Carries four multiplexed E-1 signals |
Cable modem | 512 Kbps to 52
Mbps (see Key and explanation) |
Coaxial cable (usually uses Ethernet); in some systems,telephone used for upstream requests | Home,business, school access |
Ethernet | 10 Mbps | 10BASE-T (twisted-pair); 10BASE-2 or -5 (coaxial cable); 10BASE-F (optical fiber) | Most popular business local area network (LAN) |
E-3 | 34.368 Mbps | Twisted-pair or optical fiber | Carries 16 E-l signals |
T-3 (DS3) | 45 Mbps | Coaxial cable | ISP to Internet
infrastructure Smaller links within Internet infrastructure |
OC-1 | 51.84 Mbps | Optical fiber | ISP to Internet
infrastructure Smaller links within Internet infrastructure |
Fast Ethernet | 100 Mbps | 100BASE-T4 (twisted pair); 100BASE-TX (twisted pair); 100BASE-FX (optical fiber) | Workstations with 10 Mbps Ethernet cards can plug into a Fast Ethernet LAN |
FDDI | 100 Mbps | Optical fiber | Large, wide-range LAN usually in a large company or a larger ISP |
T-3D (DS3D) | 135 Mbps | Optical fiber | ISP to Internet
infrastructure Smaller links within Internet infrastructure |
E4 | 139.264 Mbps | Optical fiber | Carries 4 E3
channels Up to 1,920 simultaneous voice conversations |
OC-3/STM-1 | 155.52 Mbps | Optical fiber | Large company
backbone Internet backbone |
E5 | 565.148 Mbps | Optical fiber | Carries 4 E4
channels Up to 7,680 simultaneous voice conversations |
OC-12/STM-4 | 622.08 Mbps | Optical fiber | Internet backbone |
Gigabit Ethernet | 1 Gbps | Optical fiber (and "copper" up to 25 meters) | Workstations/networks with 10/100 Mbps Ethernet will plug into Gigabit Ethernet switches |
OC-24 | 1.244 Gbps | Optical fiber | Internet backbone |
SciNet | 2.325 Gbps (15 OC-3 lines) | Optical fiber | Part of the vBNS backbone |
OC-48/STM-16 | 2.488 Gbps | Optical fiber | Internet backbone |
OC-192/STM-64 | 10 Gbps | Optical fiber | Backbone |
OC-256 | 13.271 Gbps | Optical fiber | Backbone |
Key and Explanation |
|
Telecommunication Trend
|
Global Telecommunication
Networking Trend
|
Technology / Service Trend
|
Personal Communication
Services
|
Access Network Evolution |
相關網站
Anixter - Ethernet Switching
http://www.anixter.com/techlib/whiteppr/network/anixeswp.htm
IBM - Migration to Switched Ethernet
http://www.networking.ibm.com/mse/mse0c01.html
3Com - Virtual LAN Technology Report
http://www.3com.com/nsc/200374.html
Cisco - VLAN Roadmap
http://www.cisco.com/warp/public/538/7.html
Asante Technologies - 100Base-T
http://www.asante.com/Press/wpfast.html
Migrating FDDI to Switched Fast Ethernet
http://www.cisco.com/warp/public/729/c5000/swfet_wp.htm
Token Ring Switching: An Anixter White Paperhttp://www.anixter.com/techlib/whiteppr/network/anxtrswp.htm
Singapore International Conference On Networks
http://www.iscs.nus.sg/~sicon/
高速通訊技術與圖書資訊服務
http://www.ncl.edu.tw/pub/c_news/75/4.html
SDH 專家論壇 --- 其他技術 --- 光纖通訊簡史(I)
http://www.tl.gov.tw/tl/forum/sdh/Chinese/fiber_1.htm
無線通訊微波關鍵零組件技術及產品發展計畫
http://www.csistdup.org.tw/newpage/p66-67.htm
美國「高效能計算與通訊」計畫簡介
http://www.nchc.gov.tw/NCHC/Journal/Other/V2N1/P25-P28.html
ATM 交換技術
http://www.scu.edu.tw/~distedu/chap9/section9-6a.htm
中華電信長途及行動通信分公司智慧型網路
http://www.chtldm.com.tw/home/inhome.htm
智慧型網路服務機能交互作用之研究
http://www.tl.gov.tw/tl/forum/in/feat0724.htm
研究發展-智慧型網路合作開放計畫
http://www.itri.org.tw/rd/rd-4308.htm
智慧型網路--「虛擬私有網路」服務
http://www.ccl.itri.org.tw/Text/3C/v-18/page-12.html