
A Semantic Privacy-Preserving Model
for Data Sharing and Integration∗

Yuh-Jong Hu
ENT Lab., Dept. of CS

National Chengchi University
Taipei, Taiwan, 11605

hu@cs.nccu.edu.tw

Jiun-Jan Yang
ENT Lab., Dept. of CS

National Chengchi University
Taipei, Taiwan, 11605

98753036@nccu.edu.tw

ABSTRACT
In this paper, we encompass and extend previous ontology-
based data integration system. A semantic privacy-preserving
model provides authorized view-based query answering over
a widespread multiple servers for data sharing and integra-
tion. The combined semantics-enabled privacy protection
policies are used to empower the data integration and access
control services at the virtual platform (VP). The ontology
mapping and merging algorithm with a local-as-view (LAV)
source description that creates a global ontology schema at
the VP by integrating multiple local ontology schemas for
data sharing. The perfect rules integration of datalog rules
enforces the data query and protection services. Semantics-
enable policies are combined together at the VP, but the ac-
cess control criteria specified in each server are still satisfied.
Therefore the soundness and completeness of data sharing
and protection criteria are ensured to support the validity
of policy combination. This guarantees the trustworthiness
of data sharing and protection services in multiple servers.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—query formulation; H.3.5 [Information
Storage and Retrieval]: Online Information Services—
data sharing ; K.4.1 [Computers and Society]: Public
Policy Issues—privacy, regulation

General Terms
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1. INTRODUCTION
Large enterprises spend a great deal of time and money on
data (or information) integration [3]. Data integration is
the problem of combining the data from autonomous and
heterogeneous sources, and providing users with a unified
view of these data through so called global (or mediated)
schema. The global schema, which is a reconciled view of the
information, that provides query services to end users. The
design of a data integration system is a very complex task,
which includes several different issues: heterogeneity of the
data sources, relation between the global schema and the
data sources, limitations on the mechanisms for accessing
the sources, and how to process queries expressed on the
global schema, etc [11].

Three approaches have been proposed to model a set of
source descriptions that specify the semantic mapping be-
tween the source schema and the global schema. The first
one, called global-as-view (GAV), requires that the each con-
cept in the global schema is expressed in terms of query over
the data sources. The GAV deals with the case when the
stable data source contains details not present in the global
schema so it is not used for dynamically adding or deleting
data sources.

The second one, called local-as-view (LAV), requires the
global schema to be specified independently from the sources,
and the source descriptions between the stable global schema,
such as ontology and the dynamic data sources are estab-
lished by defining each concept in the data sources as a view
over the global schema [10] [26]. LAV descriptions handle
the case in which the global schema contains details that are
not present in every data sources.

The third one, called global-local-as-view (GLAV), a source
description that combines the expressive power of both GAV
and LAV, allowing flexible schema definitions independent
of the particular details of the data sources [14] [30]. The
data integration system uses these different source descrip-
tions to reformulate a user query into a query over the source
schemas. However, data sharing and integration are ham-
pered by legitimate and widespread privacy concerns so it
is critical to develop techniques that enables the integration
and sharing of data without losing a user’s privacy [12].



Privacy protection policies represent a long-term promise
made by an enterprise to its users and are determined by
business practice and legal concerns. It is undesirable to
change an enterprise’s promises to customers every time an
internal access control rule changes. If possible, we should
enable the integration of Platform for Privacy Preferences
(P3P) and Enterprise Privacy Authorization Language (EPAL)
policies to provide accountable and transparent information
processing for data owners to revise their data usage per-
missions [2].

Although many organizations post online privacy policies,
they must realize that simply posting a privacy policy on
their websites does not guarantee true compliance with ex-
isting legislation. Following the OECD’s Fair Information
Principles (FIPs)1, an organization should provide norms
of personal information process for its data collection, re-
tention, use, disclosure, and destruction. An organization
must also be accountable for its information possession and
should declare the purposes of information usage before col-
lection. Moreover, an organization should collect personal
information with an individual’s consent and disclose per-
sonal information only for previously identified purposes.

In this paper we are addressing the following research issues.
More detailed modelling and implementation will be shown
in the later sections.

• Data sharing and protection services are considered in
a large number of servers. The incentives for using
the virtual platform (VP) is to avoid solving the com-
plex pair-wise problem of ontology matching and rule
integration between these servers. Therefore a uni-
fied global data sharing and protection service can be
achieved at the VP.

• Privacy protection policies are expressed as a combi-
nation ontology and rule, i.e. O +R, where ontol-
ogy O includes TBox schema and ABox instances, and
rules R include deductive rule set (RS) and facts (F).
Data sharing and protection in multiple servers are
achieved through a combination of semantics-enabled
formal protection policy (FPP).

• The challenge of designing a semantic privacy protec-
tion model is to ensure a soundness and a complete-
ness of data sharing and protection in multiple servers.
For the soundness criterion, we do not allow unin-
tended data being released to the data users through
the global policy schema (GPS) at the VP. Other-
wise, it violates the privacy protection policies. As for
the completeness criterion, we do not miss any eligible
shared data when a user asks for a data request ser-
vice at the VP. Therefore, shareable data obtained at
the VP should equal data obtained directly from each
server.

Each enterprise server declares its P3P privacy protection
policies that takes into account the FIPs criteria (see Fig-
ure 1). Then EPAL policies are established in each site,
corresponding to the P3P [24]. For each data request, the

1See http://www.privacyrights.org/ar/fairinfo.htm

data handling and usage controls are based on the EPAL
policies. However P3P and EPAL lack formal and unam-
biguous semantics to specify privacy protection policies so
they are limited in the policy enforcement and auditing sup-
port for the software agents. One of the research challenges
for the online privacy protection problem is to develop a
privacy management framework and a formal semantics lan-
guage to empower agents to enforce privacy protection poli-
cies. Agents must avoid any policy violation of each data
request. We attempt to establish a semantic privacy pro-
tection model to address this issue. Each server shares its
collected data with other servers but without breaking the
original data usage commitment to its clients [25].

The contributions of this paper are twofold. We first of-
fer a three layers semantic privacy-preserving model which
encompasses and extends the existing work on data shar-
ing and integration by using a combination of ontology and
rule for the representation of privacy protection policies. In
particular, we define a formal policy using ontology for pri-
vacy protection concept descriptions and rule for data query
and access control services. Then we focus on solving the
soundness and completeness of query rewriting problem us-
ing a perfect ontology merging and a perfect rule integration
from the local formal protection policies. Followed by each
possible data query at the VP, we briefly demonstrate how
the soundness and completeness criteria for privacy protec-
tion data integration can be achieved using this semantics-
enabled privacy-preserving model.

The paper is organized as follows. In section 2, we present a
semantic privacy-preserving model as a framework for data
sharing and integration services. In section 3, we define a
formal policy combination as an integration of formal poli-
cies from autonomous data sources. Each formal policy is
composed of ontologies and rules for each independent data
source. A privacy protection policy is a type of formal pol-
icy used for specifying a data usage constraint from a data
owner. In section 4, we formally define a formal policy com-
bination in terms of ontology mapping, merging, and align-
ment. Then we demonstrate how a perfect rule integration
is used for query rewriting at the VP corresponding to each
local schema. In section 6, we briefly prove the soundness
and completeness of privacy-preserving data sharing and in-
tegration based on this semantic privacy-preserving model.
We conclude with related work and discussion in the last
two sections.

2. A PRIVACY-PRESERVING MODEL
A semantic privacy protection model is proposed with three
layers, where the bottom layer provides data sources from
the relational databases, the middle layer provides a semantics-
enabled local schema for each independent service domain.
The top layer is served at the VP, which provides a unified
global view of privacy-preserving data sharing and integra-
tion services (see Figure 2).

We have a merged global ontology schema created by map-
ping and aligning local ontology schemas with a LAV source
description from multiple local schemas in the middle layer.
The idea of using description logic (DL) to model the local
and global schemas is to empower the ontology’s abstract
concept representation and reasoning capabilities. A query



Figure 1: A semantic privacy protection model extended from the integration of P3P and EPAL for data
sharing and protection in multiple servers

is defined as an SQWRL datalog rule in the SWRL-based
policy to access to a global ontology [31]. Each SQWRL
data service query for a global ontology at the VP is mapped
to multiple queries as SQWRL datalog rules for each local
schema. This is a LAV query rewriting service which has
been investigated in databases but it is largely unexplored
in the context of DL-based ontologies [14].

2.1 Formal Privacy Protection Policy
A policy’s explicit representation in terms of ontologies or
rules depends on what the underlying logic foundation of
your policy language is. If your policies are created from DL-
based policy language, such as Rein or KAoS, then ordinary
policies are shown as TBox schema and ABox instances.
Otherwise, policies created from LP-based policy language,
such as EPAL or Protune ordinary policies are a set of rules
with predicates of unary, binary, or ternary variables and
facts [5].

In the SemPIF framework [21], we define Policy Interchange
Format (PIF) to follows W3CO +R standards [6] and strives
to provide a mechanism for agents to preserve different pol-
icy syntax and semantics throughout its policy integration
and interchange. In addition, agents can use meta-PIF, pro-
viding further management and reconciliation services of
PIF-enabled multiple policies across various domains. In
this paper, we apply the SemPIF framework for the privacy-
preserving data integration through a combination of formal
policies.

A formal policy (FP) is a declarative expression correspond-
ing to a human legal norm that can be executed in a com-
puter system without causing any semantic ambiguity. An
FP is created from a policy language (PL), and this PL
is shown as a combination of ontology language and rule
language . Therefore, an FP is composed of ontologies O
and rules R, where ontologies are created from an ontology
language and rules are created from a rule language.

A formal protection policy (FPP) is an FP that aims at
representing and enforcing resource protection principles,
where the structure of resources is modelled as ontologies
O but the resources protection is shown as rules R.

A privacy protection policy shown as an FPP is a combina-
tion of ontologies and rules, e.g., O +R, where DL-based on-
tologies, such as OWL-DL ontologies provide a well-defined
structure data model for data sharing, while Logic Program
(LP)-based rules, such as datalog rules provide further ex-
pressive power for data query and protection. There are nu-
merous O +R combinations available for designing privacy
protection policies, such as SWRL [20], and OWL2 RL [17].
Each O +R combination implies what expressive power we
can extract from ontologies for the rules and vice versa.

The SWRL is one of the O +R semantic web languages
suitable for a policy representation in the privacy protection
model. But this is not an exclusive selection. Other O +R
combinations, such as CARIN, OWL2 RL are also possi-
ble for modeling formal privacy protection policy whenever
their underlying theoretical foundations and development
tools are available. We fully utilize the SWRLTab develop-
ment tools and SQWRL OWL-DL query language [31] in
the Protégé to model and enforce semantic privacy protec-
tion policies.

We face a research challenge of combining SWRL-based pri-
vacy protection policies from multiple servers to ensure the
soundness and completeness of data sharing and protection
criteria. Another challenge is to solve the policy’s syntax
and semantics incompatibility when we allow policy combi-
nation in multiple servers. SWRL is based on the classical
first order logic (FOL) semantics that mitigates a possible
semantic and syntax inconsistency when policies come from
different servers.

But we still face a background policy inconsistency prob-
lem when default policy assumptions vary between different



Figure 2: A semantic privacy protection model

servers. For example, one server uses open policy assump-
tion, where no explicit option-out for data usage means
option-in, but the other server uses closed policy assump-
tion, where no explicit option-in for data usage means option-
out. We avoid this kind of policy inconsistency by requesting
all sites to use a uniform policy assumption, and to collect
option-in data usage choices from users whenever multiple
policies are integrated.

Previous studies for policy combination did not consider
solving the problem of merging multiple schemas and inte-
grating access control rules from multiple servers [4] [28]. In
this paper we propose a semantic privacy protection model
that allows flexibly combining TBoxes of privacy protection
policies without moving ABox instances from its original data
source until a data request service is initiated (see Figure 3).
Therefor the global ontology TBox schema and rules created
at the VP have the latest updated incoming data from each
server when a user asks a query.

Data integration aims at providing unified and transpar-
ent access to a set of autonomous and heterogeneous data
sources. The semantic privacy protection model providing
global ontology schema for data sharing is similar to the
data integration problem solved by DL − LiteA ontologies
shown in [8]. Here we are also focusing on data protection
besides data sharing and integration.

The goal of ontology-based data integration in DL− LiteA
is to provide a uniform access mechanism to a set of hetero-
geneous relational database sources, freeing the user from
having the knowledge about where the data are, what they
are stored, and how they can be accessed. The idea is based
on decoupling information access from its relational data
storage so users only access the conceptual layer shown as
ontology, while the relational data layer, hidden to users,
manages the data.

Compared with DL−LiteA, we have extended and used it as
a part of our semantic privacy protection model. We have
three layers of data sharing and integration infrastructure

instead of two layers shown in DL − LiteA so we face a
research challenge of ontology merging and rule integration
from the middle layer to the top layer when we enforce a
privacy protection policy (see Figure 3).

A semantic privacy protection model composed of three main
components:

• In the top layer at the VP, we have a global policy
schema (GPS), including a global ontology schema
(GS) aligned and merged from several local schemas
(LS), e.g. TBox and a set of rule integration at the
middle layer. The VP provides conceptual data ac-
cess and protection services that give users a unified
conceptual “global view” with access control power for
each data request.

• Ontology-based data sources are external, independent,
and heterogeneous, and each local ontology was com-
bined with logic program (LP)-based rules for each
server in the middle layer.

• Mapping language (ML), which semantically links a
GS and integrated rule set in the top layer to each
server’s ontology LS and privacy protection rules in
the middle layer.

3. A FORMAL POLICY COMBINATION
A formal policy combination (FPC) in a global policy schema
(GPS) allows data sharing as integration of FP from a va-
riety of servers.

Each FP is shown as K = O +R, where ontology
O = (T ,A) and ruleR = (RS,F), T is TBox, and A is ABox;
RS is a set of rules, and F is a set of facts.

FPC = ⊕
i
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i
Oi,�

i
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Figure 3: A virtual platform for ontology mapping, merging, and rule integration from multiple servers

where
i is the index of a server i.
⊕ is an operator for formal policy combination,
� is an operator for ontology mapping and merging,
� is an operator for rule integration.

In a semantic privacy protection model, a formal protec-
tion policy combination (FPPC) allows data sharing and
protection from FPC = ⊕

i
Ki = (�

i
Oi,�

i
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i
Ri =
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i
Fi) provides data query and protection services in

�
i
Oi.

3.1 FPP for Privacy Protection
A privacy protection policy is a type of FPP. We designed
an ontology that declares the FIPs’ attributes as classes in an
FPP (see Figure 4). The attributes, purpose, datauser, data,
obligation, and action that allow people to specify the
constraints of privacy protection policies using related prop-
erty chains.

Constraint properties is a type of owl : ObjectProperty that
specify what are the feasible domain and range classes of the
above attributes. For example, a property hasOptInPurpose

has its domain and range classes shown as follows:

T v ∀ hasOptInPurpose.Data,
T v ∀ hasOptInPurpose−.Purpose.

Then a datalog rule, in the SWRL-based policy representa-
tion, allows us to use a property chain to combine the two
feasible classes together:

hasOptInPurpose.Data(?data)
∧ hasOptInPurpose−.Purpose(?purpose)
−→ hasOptInPurpose(?data, ?purpose) ←− (1)

Similarly, a hasOptInDatauser property has its domain and
range classes shown as follows:

T v ∀ hasOptInDatauser.Data,
T v ∀ hasOptInDatauser−.Datauser.

Then another datalog rule allows us to use another property
chain to combine another two feasible classes together:

hasOptInDatauser.Data(?data)
∧ hasOptInDatauser−.Datauser(?datauser)
−→ hasOptInDatauser(?data, ?datauser) ←− (2)

Based on (1) and (2), we have a feasible set of ABox instances
with data, purpose, and datauser combinations of an at-
tribute set that was permitted from the original dataowner
to allow a particular type of datauser to ask for a data set
with a permissive purpose. When a server collects a cus-
tomer’s data, the promise of data usage will be ensured if a
data user’s identity and usage purpose are verified success-
fully. Otherwise, the data will be kept secret without a data
user’s awareness.

These are easily extended to the other two attributes, action
and obligation, to complete the FIPs’ privacy protection
criteria. An ordinary data user is allowed to ask a query
service with action = read at the VP. The other actions,
such as deletion or modify, are only allowed for a system
administrator in the middle layer when (s)he asks to delete a
user’s data to satisfy the obligation of data retention period
or for a data owner updates his or her own profile data.



Figure 4: A partial ontology schema for OECD FIPs’ attributes shown as owl : Class, and constraints shown
as owl : Property

3.2 Data Request Services
A server declares its privacy policy in P3P before a data
owner’s data is collected. Once a user accepts a server’s pri-
vacy declaration policy, the data usage constraints are speci-
fied as Figure 5, where FIP’s five attributes (?d, ?p, ?du, ?a, ?o)
for data, purpose, datauser, action, and obligation, are
classes, and hasOptInDatauser, hasOptInPurpose, etc., are
properties proposed as chains of usage constraints for at-
tributes. For each data request service, an initial feasi-
ble parameter input set is FS = input(?du, ?r, ?p), where
?du ∈ Datauser, ?r = read ∈ Action, ?p ∈ Purpose and
output dataset with associated obligations is output(?d, ?o),
where ?d ∈ Data, ?o ∈ Obligation. The feasible dataset
shown as ABox instances will be discovered by using SQWRL
datalog rules. Further permissible actions will be activated
when the following data protection policies are satisfied.

Figure 5: Five major FIP’s attributes, such
as data, purpose, etc are shown as owl : class
and chained by associated owl : Property, such as
hasOptInDatauser, hasOptInPurpose, etc.

3.3 FPPC at the VP
A data user still possibly collects a shareable data by ask-
ing each server individually without using a formal privacy
protection policy combination (FPPC). But the high com-
plexity of using query services for all of data sources hinders

people from using this data sharing approach. The other
possible approach to collect a shareable data is to combine
pair-wise servers’ policies. Then, we face another scalability
problem when more than two servers are intending to share
their data.

In this semantic privacy-preserving model, we propose the
VP infrastructure to allow a server in each data source to
offer its FPP at the VP to enforce FPPC. FPP in each
data source is shown as K = O +R, where ontology O =
(T ,A) and rule R = (RS,F). At the VP, we only map
and merge T , e.g. TBox but leave A, e.g. ABox instances in
its original RDB data source. Similarly, we only integrate
RS, a set of rules at the VP but leave F , a set of facts
in its original RDB data source. The benefit of using this
approach is to map and merge the TBoxes and to integrate
the RS with the updated data only once.

4. ONTOLOGY MAPPING AND MERGING
A merged ontology come from mapping and alignment that
provides data integration services. In particular, data inte-
gration through ontologies, such as LAV is possible for mul-
tiple servers if a mapping languageML provides a semantic
mapping description between the GS and the underlying LS
for each server [14]. In LAV, the relationships between the
GS and the LS are established by making LAV assertions.
Every assertions has the form QLS  QGS , where QLS pro-
vides the views of the conjunctive query (CQ) over the global
schema GS for each data source, and QGS is a CQ over the
global schema GS at the VP.

A CQ for QLS can be defined as a privacy-aware authorized
view of each server so we do not disclose any non-shareable
data to the VP whenever each server submits its FPP for
ontology merging and rule integration. A CQ can be defined
as a subset of Datalog program, i.e. CQ containment prob-
lem, for query the relational database. This problem was
previously investigated in [34].



On the other hand, the connection between the problem of
answering queries using extensions of views and the problem
rewriting queries using views were studied before through
an ontology expressed in DL [15]. In [8], a relational data
integration was obtained by mapping each ontology element,
e.g. class and property, in the GS into an SQL query of a
relational data source. This is a GAV approach, focusing
on mapping the elements of the GS to a view (SQL query)
over the sources. However, our approach is more like LAV ,
where each term in a SQWRL query for each LSi is defined
as a view for a SQWRL query in the GS.

4.1 Perfect Ontology Alignment
A mapping can be shown as (uid, e1, e2, n, ρ), where uid is
a unique identity for the mapping, e1, e2 are entity names,
such as class or property, and in the vocabulary of O1, O2,
n is a numeric confidence measure between 0 and 1, and ρ
is a relation such as subsumption (v), equivalence (≡), or
disjointness (⊥) between e1 and e2 [23].

In this study, the entity names for describing the ontology’s
class and property, and the structure of using these entity
names in the root of the ontology schema for Oi to define
the FIPs’ privacy protection criteria (see Figure 5) that are
required to be the same. This is a strict constraint to achieve
a perfect ontology alignment of this study. Moreover, a per-
fect mapping languageML provides semantic mappings for
each entity e ∈ GS at the VP to the corresponding entities
ei ∈ LSi.

A perfect ontology alignment obtained via a mapping
(uid, ei, ej , n, ρ) and merging between Ti in Oi and Tj in Oj

satisfies the following conditions:

• ei ∈ Ti and ej ∈ Tj entity names are either defined for
describing the root class names which corresponding to
the privacy protection concepts, such as purpose, action,
datauser, data, and obligation or property names,
such as hasOptInDatauser, hasOptInPurpose, etc; Fur-
thermore entity names below the root class and root
property are also defined for the descriptions of the
underlying subclass and subproperty names.

• A numeric confidence measure n is always equal 1.

• ρ is either equivalence (≡) or subsumption (v) between
entity names of Ti and Tj schemas. In an equivalent
(≡) case, we can find a pair of one-to-one correspond-
ing entity names for ei ∈ Ti and ej ∈ Tj in the same
layer of the respective ontology schema with n = 1;
In a subsumption (v) case, there are subclass or sub-
property entity names not in the same layer so ei ∈ Ti
and ei v ej ∈ Tj , and vice versa.

4.2 Query Rewriting Services
SWRL combines OWL-DL’s ontology language with an ad-
ditional datalog rule language, where a datalog rule language
is shown as an axiom of ontology, a little extension of the
OWL-DL language that overcomes the limitations of prop-
erty chaining in the OWL-DL language [20]. The computa-
tion complexity of answering SWRL-based policies might
be undecidable regarding the verification of rights access

permission unless these policies satisfy the DL− Safe con-
ditions [29].

SPARQL is a query language for the RDF(S)-based ontolo-
gies. OWL2 QL is another query language for the OWL2-
based ontologies. We did not use SPARQL query language
or OWL2 QL, since our current local and global ontologies
are modelled as the OWL-DL ontology language. In fact,
SPARQL might not be able to query the complete seman-
tics of the OWL-DL’s ontologies. The OWL-DL’s ontology
queries can be shown as the SQWRL datalog rules, where
the CQ conditions are shown as the rule’s body and the
query results, i.e., views are shown as the rule’s conclusion.
SQWRL uses SWRL’s strong FOL semantic foundation as
its formal semantics so this query language provides a small
but powerful array of operators that allows users to con-
struct queries over OWL-DL ontologies [31].

For each data request query service, a perfect mapping lan-
guage ML provide the semantically linking of an entity
name e ∈ GS in the datalog rule at the VP to the entity
name ei ∈ LSi in the datalog rule at serveri, where LSi is
the TBox of Oi, and e is a class or a property name. If there
does not exist an ei ∈ TBoxi in a subtree of the LSi on the
same layer as e ∈ TBox in the global tree of GS, then we
can recursively find a superclass or superproperty of e′i with
e v e′i as the corresponding entity name, with a confidence
measure of n = 1.

To successfully fulfill the semantically linking of any entity
name e ∈ GS via ML, an ontology schema designer must
follow the principles we propose using the specifications of
concepts and relations for the FIPs on the root layer of each
ontology’s local schema’s LSi. But we still allow the de-
signer to use different entity name string, ei ∈ LSi below
the root layer of each local schema and to have an entirely
different underlying subtree structure. We use Prompt ontol-
ogy mapping algorithm first to synchronize the entity names
between LSi and further perform the ontology mappings
and aligning operations. Finally we perfectly merge their
schemas even if the subtrees of the local schemas are vari-
ant.

We use ML to map the name of a class entity c ∈ GS to
one of the equivalent local ontology schema’s class entity
name in a deeper subtree, say cj ∈ LSj , i.e., c! cj in the
datalog rule’s conditions of each data request service. When
the class semantics for c is c v ci in the LSi , i.e., we do
not have a corresponding class c′i ∈ LSi on the same lower
layer of a schema tree as c ∈ GS. All of the ABox instances
ai in the class name entity ci, i.e., ai ∈ ci are still feasibly
collected for this data request. Because class ci is a legal
domain class or range class for a particular property in the
datalog rule for enforcing its privacy protection.

Similarly, a property p ∈ GS is mapped to another equiva-
lent property pj ∈ LSj for the associated datalog rule’s body
conditions. Then property p! pj might be on a lower layer
in the schema tree when compared with property pi ∈ LSi.
We still regard property pi as feasible for its enforcement of
the datalog rule on data sharing and protection. Finally, if
we consider mappings for binding property and class from
the aligning ontology schema GS to LSi and LSj to the



respective datalog rule, then we have the following semanti-
cally linking relationships by using ML’s mapping to align
the ontology’s class and property shown as follows:

Property p ∈ GS with its domain class dc and range class rc
that are mapped to property pi ∈ LSi with its domain class
dci and its range class rci. For each data request service
using a perfect mapping languageML, when p v pi, we use
property pi. Otherwise, when pi v p, we use property p for
the datalog rule ri. When dc v dci and rc v rci, we use
class dci and rci. Otherwise, when dci v dc and rci v rc,
we use class dc and rc for the datalog rule ri.

Here we did not explicitly consider an algebra operations,
such as intersection or union, for class/subclass with prop-
erty as shown in OWL-DL. Intuitively, this class/subclass
and property algebra operation problem can be transformed
to the generic class/property problem when terms from dif-
ferent data sources can be mapped and aligned at the VP.

Example 1. In Figure 6, after we map and align two local
partial ontology schemas, LS1 and LS2, into a merged par-
tial ontology global schema GS, we receive a data request
service with class P212. In the purpose class P, P111 ! P211,
but P212 ∈ GS does not have a corresponding subclass in
LS1, since P212 v P21 and P21 ! P11. When a data request
service asks for class P212 ∈ GS, mapping languageML will
map P212 to P11 for the datalog rule ri to query the LS1.

5. PERFECT RULE INTEGRATION
In FPPC, we define an integrated rule set�

i
Ri = (�

i
RSi,�

i
Fi)

to enforce data query and protection services in �
i
Oi. In fact,

an integrated rule set �
i
RSi is a part of FPC that was cre-

ated by collecting the datalog rules, e.g. SQWRL queries, in
the formal policies FPi, from local servers. A datalog rule
ri in the Ri of FPi is shown as 2:

H ←− B1 ∧ B2∧, · · · ,∧Bn,

whereH, the query results (or views) are expressed as SQWRL
built-ins, such as sqwrl : select and the rule antecedent
Bi, are defined as a pattern matching specifications, i.e.,
query conditions that are either SQWRL built-ins or class
and property predicates from the ontology schema.

A perfect rule integration is defined for the integration of any
datalog rules as: ∃ri ∈ RSi in FPi, for the purpose of data
sharing and protection without causing conflicts with ∃r′i ∈
�
i
Ri, λi ∈ �

i
Oi, i.e., conditions do not exist for ∃ri |= λi ⇒

∃r′i 2 λi, or ∃ri 2 λi ⇒ ∃r′i |= λi. Then, ∃r′i ∈ �
i
Ri at the

VP can be activated and mapped by the perfect mapping
language ML into ∃ri, to enable a global data query and
protection service of multiple servers.

2This datalog rule is related to a CQ of the form:
vi ← conji(

−→x i) [9]

Example 2. A rule r′i is one of the rules within the in-
tegrated rule set at the VP. It asks for a data set ?d
with related obligations ?o under the feasible parameter in-
put set FSi = (M1, TMarketing6, Read2), where data user
M1 is a marketing staff with a purpose of achieving tele-
phone marking TMarketing, A rule r′i is mapped to a rule
ri and a rule rj using the rule mapping processes when we
have done an upward perfect ontology mapping, alignment,
merging and a perfect rule integration. A downward perfect
mapping languageML operation maps the r′i’s predicates,
such as class, property to the corresponding predicates in
a rule ri and a rule rj with MUser(M1) v Datauser(M1),
TMarketing(TMarketing6) v Purpose(TMarketing6). There-
fore, real data query and protection services requested by a
rule r′i are performed by a rule ri and a rule rj .

A rule r′i queries at the ∀i �
i
Oi:

MUser(M1) ∧ TMarketing(TMarketing6)

∧datauserHasPurpose(M1, TMarketing6)
∧datauserHasAction(M1, Read2)
∧ hasOptInPurpose(?d, TMarketing6)
∧hasOptInDataUser(?d, M1)
∧ purposeHasObligation(TMarketing6, ?o)
−→ sqwrl : selectDistinct(?d, M1, TMarketing6, Read2, ?o)

A rule ri queries at the Oi:
V iew(Datauser(M1)) ∧ V iew(TMarketing(TMarketing6))

∧ datauserHasPurpose(M1, TMarketing6)
∧ datauserHasAction(M1, Read2)
∧ hasOptInPurpose(?d, TMarketing6)
∧ hasOptInDataUser(?d, M1)
∧ purposeHasObligation(TMarketing6, ?o)
−→ sqwrl : selectDistinct(?d, M1, TMarketing6, Read2, ?o)

A rule rj queries at the Oj :
V iew(MUser(M1)) ∧ V iew(Purpose(TMarketing6))

∧ datauserHasPurpose(M1, TMarketing6)
∧ datauserHasAction(M1, Read2)
∧ hasOptInPurpose(?d, TMarketing6)
∧ hasOptInDataUser(?d, M1)
∧ purposeHasObligation(TMarketing6, ?o)
−→ sqwrl : selectDistinct(?d, M1, TMarketing6, Read2, ?o)

Example 3. Under the data protection law, two hospitals,
A and B, have allowed to share their patients’ Electronic
Health Records (EHRs) after patients give their consents for
the medication purpose . A patient was hospitalized in the
hospital A for a surgery. After that, this patient went to the
hospital B for an outpatient medication. A physician in the
hospital B was authorized to query this patient’s shareable
EHR at the VP collected from hospital A and hospital B’s
RDB data sources. The vocabularies of partial ontology
schemas for hospital A’s local schema LSA, hospital B’s local
schema LSB , and the global schemaGS at the VP are shown
as Figure 7.

Hospital A has the following terms as its ontology’s local
schema LSA vocabularies:
Class: Clinic and HealthData with subClass SurgeryData
and HospitalizationData

Property: create with domain class as Clinic and range



Figure 6: Partial ontology mapping for class alignment and ontology merging

class as HealthData, i.e.,
T v ∀ create.Clinic
T v ∀ create−.HealthData

Hospital B has the following terms as its ontology’s local
schema LSB vocabularies:
Class: Person, HealthCenter, and PatientData with sub-
Class OutPatientData

Property: own, beMedicared with their respective domain
and range class are shown as follows:

T v ∀ own.Person, T v ∀ Own−.PatientData.
T v ∀ beMedicated.Person,
T v ∀ beMedicated−.HealthCenter.

The VP offers the following vocabularies:
Class: Patient, Hospital, Surgery, and HealthRecord

Property: beCured, hasHealthRecord, generate with their
respective domain and range class are shown as follows:

T v ∀ beCured.Patient, T v ∀ beCured−.Hospital
T v ∀ hasHealthRecord.Patient
T v ∀ hasHealthRecord−.HealthRecord
T v ∀ generate.Hospital
T v ∀ generate−.HealthRecord

Use LAV approach to define each class and property in these
two hospital local schemas as views in terms of the global
schema’s vocabularies shown as follows:

Views use at the VP created from the hospital A local schema’s
vocabularies are:

def(V1Clinic) = Hospital

def(V2HealthData) = HealthRecord

def(V3SuregeryData)
= HealthRecord ∧ ∀hasMedType.Surgery

def(V4HospitalizationData)
=HealthRecord ∧ ∀ hasMedType.Hospitalization
def(V5create) = generate

Views use at the VP created from the hospital B local schema’s
vocabularies are:

def(V6Person) = Patient

def(V7HealthCenter) = Hospital

def(V8PatientData) = HealthRecord

def(V9OutPatientData)
= HealthRecord ∧ ∀ hasMedType.OutPatient
def(V10beMedicated) = beCured

def(V11own) = hasHealthRecrod

A physician queries a patient’s surgery record at the VP by
using a merged global ontology schema based on LAV query
rewriting instead of directly requesting each hospital. An
original datalog-based SQWRL rule for a query q at the VP
is shown as:

Patient(?x) ∧ beCured(?x, ?y) ∧ hasHealthRecrod(?x, ?r)
∧ HealthRecord(?r) ∧ hasMedType(?r, Surgery)
∧ generate(?y, ?r) −→ sqwrl : select(?x, ?r)

Query rewriting of the q in terms of two CQs, e.g., qva and
qvb, uses views defined at the VP:

V6Person ∧ V10beMedicated ∧ V11own ∧ V9OutPatientData ∧ V5create
−→ sqwrl : select(?x, ?r) ←− (qva)

Above qva query is corresponding to a query as:
B : Person(?p) ∧ B : beMedicated(?p, ?c) ∧ B : own(?p, ?d)
∧ B : OutPatientData(?od) ∧ A : create(?h, ?hd)
−→ sqwrl : select(?p, ?od)

V6Person ∧ V10beMedicated ∧ V11own ∧ V3SuregeryData ∧ V5create
−→ sqwrl : select(?x, ?r) ←− (qvb)



Figure 7: A partial ontology for Electronic Health Record (EHR) sharing and privacy protection

Above qvb query is corresponding to a query as:
B : Person(?p) ∧ B : beMedicated(?p, ?c) ∧ B : own(?p, ?d)
∧ A : SuregeryData(?sd) ∧ A : create(?h, ?hd)
−→ sqwrl : select(?p, ?sd)

6. SOUNDNESS AND COMPLETENESS
In this section, we briefly demonstrate how the exact query
rewriting service satisfies the soundness and completeness
criteria by using the LAV source descriptions based on the
GPS = (�

i
Oi,�

i
Ri) at the VP: If q(x) is a CQ over �

i
Oi at

the VP and qvi(x) is a CQ over Oi using LAV source de-
scriptions from a data serveri, then ∀x q(x) ←→

⊔
i

qvi(x).

In [15], authors showed that when a query has a finite num-
ber of maximally contained conjunctive rewritings, then the
complete set of its answers can be obtained as the union of
the answer sets of its rewritings. The datalog-rewriting was
introduced, in which query language is a hybrid language
with CARIN as its combination of O +R, and the rewrit-
ing language is a relational language. They also provided a
rewriting algorithm, and showed that the RewriteQuery is
sound and complete.

In comparison, we use LAV for rewriting queries and use
SWRL as a combination of O +R. A perfect ontology
merging and a rule integration ensure the soundness and
completeness of data sharing and integration in the seman-
tic privacy-preserving model. This will be briefly shown as
follow:

6.1 [Soundness]
For the soundness criterion, we do not allow any uninten-
tionally released (or protected) data for a user by using a
query rewriting service with a rule (query) r′i ∈ �

i
Ri at the

VP instead of using a direct query service as rules (queries)
ri ∈ Ri in each serveri, ∀i.

Theorem 1. [Soundness] After a perfect ontology align-
ment and rule integration with FPPC, ∃GPS = (�

i
Oi,�

i
Ri)

at the VP, Under a particular feasible parameter input set
FSi, if λj ∈ Oi is protected by a FPPi at each serveri, ∀i,
i.e., ∀i, ri ∈ Ri 2 λj, then r′i ∈ �

i
Ri 2 λj for the same

FSi, where λj is a protective data set in Oi.

Proof. (Sketch) If q(x) is a query over �
i
Oi at the VP

and qvi(x) is a query over Oi in a serveri, then we need to
prove the statement ∀x q(x) −→

⊔
i

qvi(x). This statement

is equivalent to the original argument: If ri ∈ Ri 2 λj , then
r′i ∈ �

i
Ri 2 λj . The CQ q(x) is a query containment of

datalog rule r′i and the CQ qvi(x) is a query containment of
datalog rule ri ∈ Ri. The statement ∀x q(x) −→

⊔
i

qvi(x)

is true because the local as view (LAV) schema mapping
only allow the protected concept λj in each serveri to be
connected to the global schema. After using a perfect ontol-
ogy alignment and a perfect rule integration with a perfect
mapping language ML, we avoid the following condition:
∃ri 2 λj ⇒ ∃r′i |= λj .

6.2 [Completeness]
As for the completeness criterion, we do not allow any eligi-
ble shared data being missed for a query by a query rewriting
service with a rule (query) r′i ∈ �

i
Ri at the VP instead of

using a direct query service as rules (queries) ri ∈ Ri in
each serveri, ∀i.



Theorem 2. [Completeness] After a perfect ontology
alignment and rule integration with FPPC, ∃GPS = (�

i
Oi,�

i
Ri)

at the VP, Under a particular feasible parameter input set
FSi, if λj ∈ Oi is shareable by a FPPi at each serveri, ∀i,
i.e., ∀i, ri ∈ Ri |= λj, then r′i ∈ �

i
Ri |= λj for the same

FSi, where λj is a shareable data set in Oi.

Proof. (Sketch) If q(x) is a query over �
i
Oi at the VP

and qvi(x) is a query over Oi in a serveri, then we need to
prove the statement ∀x q(x) ←−

⊔
i

qvi(x). This statement

is equivalent to the original argument: If ri ∈ Ri |= λj , then
r′i ∈ �

i
Ri |= λj . The CQ q(x) is a query containment of

datalog rule r′i and the CQ qvi(x) is a query containment of
datalog rule ri ∈ Ri. The statement ∀x q(x) ←−

⊔
i

qvi(x)

is true because the local as view (LAV) schema mapping
only allows all of the shareable concepts λj in each serveri
to be exported to the global schema. After using a perfect
ontology alignment method and a perfect rule integration
method with a perfect mapping languageML, we avoid the
following condition: ∃ri |= λj ⇒ ∃r′i 2 λj .

7. RELATED WORK
Data integration is a pervasive challenge faced in the ap-
plications that need to query across multiple autonomous
and heterogeneous data sources. This problem has been re-
ceived considerable attention from researchers in the fields
of Artificial Intelligence and Database System more than a
decade [18] [27]. A logic of the Description Logic (DL) fam-
ily is used to model the ontology managed by the integration
system, to formulate queries posed to the system, and to per-
form several types of automated reasoning supporting both
the modeling, and the query answering process [11]. The
ontology expresses the domain of interest of the information
system at a high level of abstraction, and the relationship
between data at the sources and instances of concepts and
roles in the ontology is expressed by means of mappings,
such as GLAV, GAV, LAV [7] [33].

Unfortunately, data integration and sharing are hampered
by legitimate and widespread privacy concerns so it is crit-
ical to develop a technique to enable the integration and
sharing of data without losing privacy. We face a chal-
lenge to develop a privacy framework for data integration
that is flexible and clear to the end users [12]. View-based
query answering over DL provides a framework to answer
a query under the assumption that the only accessible in-
formation consists of the precomputed answers to a set of
queries, called views. Privacy-aware access to data, each
user is associated with a set of views, called authorization
views, which specify the information that the user is allowed
to access [9].

We encompass and extend previous ontology-based data in-
tegration system. A semantic privacy-preserving model pro-
vides authorized view-based query answering over a widespread
multiple servers for data sharing and integration. The com-
bined semantics-enabled privacy protection policies are used
to empower the data integration and access control services
at the virtual platform.

The role-based access control (RBAC) model is used to en-
force the access control policies with a static role assign-
ment for a stand-alone system. It is therefore not useful for
solving the privacy protection problem. In fact, the RBAC
model did not consider the prime elements of the FIPs, so
it is not intended for a privacy protection problem. In [32],
the UCONABC might be useful for the privacy protection
problem, but it did not explicitly allow the data sharing and
protection in multiple sites.

The EFAF access control model is an extension of the FAF
that provided the solution for privacy protection [22] [24].
This is the closest method to our solution, but its privacy
protection control is more on the logic program and less on
the ontology schema for the structure data modelling. This
also prevents the data sharing and protection in multiple
sites. The other similar models for enforcing the enterprise
privacy protection go to the following EPAL [25] [35]. OA-
SIS XACML is a policy language for privacy and digital
rights protection. But it is an XML-based policy language
so the policies based on XACML possibly might have am-
biguous semantics that prevent using a flexible policy com-
bination in multiple servers [1].

8. CONCLUSION AND FURTHER STUDY
We propose a semantic privacy protection model which en-
compasses and extends the existing works on data sharing
and integration. We intend to solve the privacy protection
problem to provide data sharing and integration in multiple
servers by using one of ontology and rule language combi-
nations, e.g. SWRL. Another OWL2 combination will be
considered for the future [17]. This can be extended to a
modular reuse of ontologies for data sharing and protection
in the cross-domain cloud computing environment [16].

The perfect ontology alignment through ontology mapping
and merging creates a global ontology schema at the VP by
integrating multiple local ontology schemas from different
data sources. In addition, the perfect rule integration by
the perfect mapping language avoids any possible data usage
conflicts between datalog rules from different data sources at
the VP. In fact, a datalog rule is considered as a conjunctive
query, which provides data query and protection services in
each server.

However this perfect ontology alignment is impossible with-
out the requirements of using same ontology schema for the
root layers for multiple servers with the LAV schema map-
ping. We face another policy hidden conflict challenge if
background default policy assumptions are vary between dif-
ferent servers. All of these need further study.

Finally semantics-enabled policies are combined together at
the VP, so we simplify the data sharing and protection ser-
vices. But the soundness and completeness criteria are still
preserved for data sharing and integration purposes. This
supports the trustworthiness of a policy combination for
multiple servers.
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