
 CARATS: A Computer-Aided Reliability
Assessment Tool for Software Based on

Object-Oriented Design

Chien-Chia Chen1, Chu-Ti Lin1, Hen-Hsen Huang2, Shih-Wei Huang1, and Chin-Yu Huang1

1 Department of Computer Science
 National Tsing Hua University

Hsinchu, Taiwan

2 Institute of Computer Science and Engineering
 National Chiao Tung University

Hsinchu, Taiwan

Abstract-With the growth of complexity in the software
system, to deliver reliable software products on time
becomes a critical issue. Many software reliability growth
models (SRGMs) have been proposed in the past three
decades. However, most software reliability assessment
processes and parameter estimations of models depend on
the computations of the general-purposed numerical
software. In this paper, we will present a powerful
computer-aided reliability assessment tool for software
based on object-oriented analysis and design–CARATS.
CARATS can use both traditional SRGMs and neural-
network methods to assess software reliability. This would
greatly help project managers to make decisions during
software development life cycle. Due to the characteristics
of the special-purposed and object-oriented design,
CARATS can analyze the software reliability easily, and is
also more flexible to adopt different SRGMs than other
existing software reliability analysis tools.

I. INTRODUCTION

Over the past decade, the deployment of computer
systems has grown more dramatically. Software is
everywhere, but we need reliable software. The
techniques of software reliability analysis developed
based on hardware reliability incipiently. As the
significance of software grows rapidly, software
reliability gets more and more attentions. According to
the ANSI definition: Software reliability is defined as
the probability of failure-free software operation for a
specified period of time in a specified environment [1].
Since 1970, many software reliability growth models
(SRGMs) [2-4] have been proposed for estimation of
reliability growth of products during software
development processes. In general, SRGMs are
applicable to the late stages of testing in software
development. They can provide very useful information
about how to improve the reliability of software
products.

From our studies [1, 5-7], there are several tools
developed for the estimation of software reliability,
such as ROBUST (Reliability of Basic and Ultra-
reliable Software sysTem), FRestimate, TERSE,

SREPT (Software Reliability Estimation and Prediction
Tool), SRETOOLS (AT&T Software Reliability
Engineering Toolkit), SRMP (Statistical Modeling and
Reliability Program), SoRel (Software Reliability
Program), CASRE (Computer-Aided Software
Reliability Estimation Tool), ESTM (Economic Stop
Testing Model Tool), SMERFS (Statistical Modeling
and Estimation of Software Reliability Functions),
RGA(Software for Repairable System and Reliability
Growth Analysis), DACS’s GOEL (An automated
version of the Goel-Okumoto NHPP Software
Reliability Growth Model), etc.

In this paper, we will present a powerful computer-
aided reliability assessment tool for software based on
object-oriented analysis and design – CARATS. It can
run in the Microsoft Windows™ environment and
integrates some existing famous SRGMs, such as the
Goel-Okumoto model, the Yamada delay S-shaped
model, the Rayleigh model, the power model, the
inflection S-shaped model, the Musa-Okumoto model,
and so on. Actually, SRGMs are mathematical models
that represent software failures as a random process and
can be used to evaluate development status during
testing. Most of SRGMs depend on some assumptions
or distributions. Thus, we also offer an artificial neural-
networks-based approach for software reliability growth
estimation and prediction in CARATS.

The rest of this paper is organized in the following
way: Section 2 gives a brief introduction to the selected
software reliability models. Section 3 presents the high-
level design of CARATS and describes the main
functions of CARATS in estimating software reliability.
Besides, we also present some screenshots of several
working views of CARATS. Finally, the conclusions
are drawn in Section 4.

II. SOFTWARE RELIABILITY GROWTH MODELING

A. Software reliability models
In the following, some selected SRGMs are included

in CARATS. CARATS allows selection of one or more

software reliability models to be run, using the failure
data shown in the main window.
 Goel-Okumoto Model. The Goel-Okumoto model was

proposed by Goel and Okumoto in 1979 [2]. This model
is characterized by the following mean value function:

)}(exp1{)(trNtm −−= , (1)
where N is the number of initial faults in the software
and r is the fault detection rate.
 Yamada Delayed S-Shaped Model. The yamada

delayed S-shaped model was proposed by Yamada in
1984 and is characterized by the following mean value
function [2]:

)}(exp)1(1{)(ttNtm ρρ −+−= , (2)
where ρ is the fault removal (failure detection and
fault isolation) rate parameter.
 Rayleigh Model. The Rayleigh model is a member of

the family of the Weibull distribution [8] and is
characterized by the following mean value function:

)}(exp1{)(2tNtm φ−−= , (3)
where φ is the failure rate parameter.
 Power Model. The power model was proposed by

Crow in 1974 [2, 8]. This model is characterized by the
following mean value function:

ωtNtm ⋅=)(, (4)
where ω is the shape parameter.
 Inflection S-Shaped Model. The inflection S-shaped

model was proposed by Ohba in 1984 [2]. This model is
characterized by the following mean value function:

)exp(1
)exp(1)(
t

tNtm
ϕψ

ϕ
−⋅+

−−
= , (5)

where ϕ is the failure detection rate, and ψ is the
inflection parameter.
 Musa-Okumoto Model. This model is a logarithmic

Poisson execution time model based on NHPP with an
intensity function decreasing exponentially with
expected failures experienced [3].

)(exp)(0 θμλμλ −= , (6)
where λ

0
 is the initial failure intensity and θ is the rate

of reduction in the normalized failure intensity per
failure. This model incorporates the claim that the repair
of early failures reduces the failure intensity more than
later ones. The expected number of failures is a
logarithmic function of (execution) time:

)1 (ln1)(0 += tt θλ
θ

μ . (7)

B. Parameters estimation
Two most popular estimation techniques are

Maximum Likelihood Estimation (MLE) and Least
Squares Estimation (LSE). The maximum likelihood
technique estimates parameters by solving a set of
simultaneous equations and is better in deriving
confidence intervals. The method of least squares

minimizes the sum of squares of the deviations between
what we actually observe and what we expect [1-4].
However, MLE may not always produce parameter
estimates, and takes more computation time than LSE.
LSE usually requires less computation time to estimate
parameters, and always finds a parameter estimate.
CARATS provides MLE and LSE techniques to
estimate the parameters. For example, we can evaluate
the parameters of selected SRGMs by minimizing the
least square sum as the following:

∑
=

−=
n

k
kk tmmS

1

2)]([, (8)

where mk is the cumulative number of failures
consumed in time (0, tk], and m(tk) is the cumulative
number of failures estimated by the given model.
Differentiating S with respect to the parameters of
SRGM, setting the partial derivatives to zero and
rearranging these terms, we can solve this type of
nonlinear least square problems. On the other hand, the
likelihood function is defined as the following:

))]()((exp[
!)(

)]()([
1

1 1

)(
1

1

−
= −

−
− −−⋅

−
−

=∏
−

kk

n

k kk

mm
kk tmtm
mm
tmtmL

kk
. (9)

Taking the natural logarithm of the above equation, we
can obtain lnL. The maximum likelihood estimates of
the unknown parameters of SRGMs can be obtained by
differentiating lnL with respect to each of the unknown
parameters and solving the equations simultaneously.

C. Prediction of software reliability using neural networks
Neural networks are constructed by variable number

of neurons, and each one has its bias and weight. In the
training process, neurons adjust their biases and weights
to reach a given goal, and the final outputs are evaluated
by a specific activation function, which is to limit the
amplitude of output of a neuron [9]. After training with
representative historical data, neural networks can
predict the software reliability growth model. Note that
although most researchers think that the neural
networks approach is a black-box method, we still can
explain the neural networks from the mathematical
viewpoints of software reliability modeling and
implement it in CARATS.

III. DESIGN AND ARCHITECTURE OF CARATS

The architecture of CARATS is shown in Fig. 1 and
can be divided into three sub-modules. The format of
failure data files used by CARATS can be time between
failures (TBF) or failure counts (FC). Note that some of
the selected models built into CARATS accept only
TBF data, while the others accept only FC data. Simply
speaking, the data analyzer will analyze the failure data
and this work can be step-by-step done by project
creation wizard. The numerical analyzer will proceed
with the estimation of models' parameters. Finally, the
results analyzer will transform the result of analytic data
into visual output. In fact, we can select all models from

a list of the built-in SRGMs that were run. The results
of these models will then be plotted in the graphic
display window. In this version, the optimal software
release time based on reliability and cost criteria can
also be computed by CARATS and visually presented
to the user. Fig. 2 depicts the related UML class
diagram of CARATS.

Fig. 1 The architecture of CARATS.

Fig. 2 CARATS UML class diagram.

A. Project creation
CARATS supports multiple data sets in a project and

each can have different analysis strategies, such as
predicting by different models or evaluating model
parameters by different estimation methods. Beginners
can easily perform this tool by following the project
creation wizard of CARATS.

B. Viewing and adjusting data set settings
After creating a failure data set and finishing the

necessary initial estimation, users can adjust settings by
means of the estimation results and read the brief report
from the settings dialog as shown in Fig. 3. The
“Iterations” in the Fig. 3 is the number of iterations that
CARATS spent before models being converged. And
the rest five are some criteria to evaluate the model
performance [10-12]. Besides, users can also compute
and obtain the optimal software release time based on
the desired release criteria. The main purpose is to
minimize the cost of software development when a
desired reliability objective is given.

Fig. 3 Brief reports for the selected data set.

C. Software reliability estimation results
Figures 4(a)-4(c) depict the results of performance

comparisons. Note that each simulation result has its
own diagram independently. We can also see that Fig.
4(c) is a Reliability Demonstration Chart (RDC)
analyzing failure incident data, choosing an operational
reliability target against all in-scope errors. The chart
can be created using the parameters of Discrimination
ratio, Supplier risk, and Consumer risk. These
parameters can be set in advance.

(a) Mean Value Functions.

(b) U plots.

(c) Reliability Demonstration Chart.

Fig. 4 Estimation results.

D. Report generator
CARATS also can generate a very detailed reliability

analysis report, which contains all of the estimation
results and figures. In practice, weekly evaluation report
can be used to verify the reliability growth of software
product during testing. All of these report items can be
customized in CARATS.

IV. CONCLUSIONS

In this paper, we present a user-friendly software
reliability assessment tool–CARATS, which can be
used to measure and predict the reliability of software
product. CARATS allows selection of one or more
software reliability models to be run, using the failure
data shown in the CARATS main window. Furthermore,
CARATS can also compute and suggest the optimal
release time based on the desired release criteria, such
as cost and reliability. In fact, CARATS can indeed
provide a total solution for systematic software
reliability prediction.

ACKNOWLEDGMENT

This research was supported by the National Science
Council, Taiwan, under Grant NSC 94-2213-E-007-087
and also substantially supported by a grant from the
Ministry of Economic Affairs (MOEA) of Taiwan
(Project No. 95-EC- 17-A-01-S1-038).

REFERENCES

[1] M. R. Lyu (Editor), Handbook of Software Reliability
Engineering, McGraw-Hill, New York, NY, 1996.

[2] M. Xie, Software Reliability Modeling, World Scientific
Publishing Company, 1991.

[3] J. D. Musa, Software Reliability Engineering: More Reliable
Software, Faster Development and Testing, McGraw Hill,
1999.

[4] Pham, Software Reliability: Springer-Verlag, 2000.
[5] P. Hudepohl, S. J. Aud, T. M. Khoshgoftaar, E. B. Allen, and J.

Mayrand, “Emerald: Software Metrics and Models on the
Desktop", IEEE Software, September 1996, pp. 56-60.

[6] N. Li and Y. K. Malaiya “ROBUST: A Next Generation
Software Reliability Engineering Tool” Proceedings of IEEE
Int. Symp. on Software Reliability Engineering (ISSRE’95), pp.
375-380, Oct. 1995

[7] S. Ramani, S. Gokhale and KS Trivedi, "SREPT: Software
Reliability Estimation and Prediction Tool", Proceedings of
the 10th Intl. Conference on Modelling Techniques and Tools
(Tools '98), Palma de Mallorca, Spain, September 1998.

[8] S. H. Kan, Metrics and Models in Software Quality
Engineering, Addison-Wesley, 1994.

[9] S. Haykin, Neural Networks A Comprehensive Foundation, 2nd
Edition, Prentice Hall, 1999.

[10] M. R. Lyu and A. Nikora, “Applying Software Reliability
Models More Effectively,” IEEE Software, pp. 43-52, Jul.
1992.

[11] C. Y. Huang, M. R. Lyu, and S. Y. Kuo, “A Unified Scheme of
Some Non-Homogenous Poisson Process Models for Software
Reliability Estimation,” IEEE Transactions on Software
Engineering, Vol. 29, No. 3, pp. 261-269, March 2003.

[12] S. Yamada and M. Kimura, “Software Reliability Assessment
Tool Based on Object-Oriented Analysis and Its Application,”
Annals of Software Engineering, Vol. 8, Numbers 1-4, pp.
223-238, 1999.

