
* 本研究接受國科會編號：NSC94-2815-C-007-028-E 研究計

畫經費補助

物件導向軟體可靠度評估工具：CARATS*
Object-Oriented Software Reliability Assessment Tool: CARATS

陳建嘉，黃瀚萱，黃士維，林楚迪，黃慶育

國立清華大學資訊工程學系
Chien-Chia Chen, Hen-Hsen Huang, Shih-Wei Huang, Chu-Ti Lin, and Chin-Yu Huang

Department of Computer Science
National Tsing Hua University

Hsinchu, Taiwan

Abstract

With the growth of software project scale, how
to deliver reliable software products on time becomes
a critical issue. Although many related software
reliability theories have been proposed in the past few
decades, most of software reliability analysis
processes still depend on the powerful computations
of the general-purposed numerical software. Hence,
to develop a user-friendly special-purposed software
reliability assessment tool is extremely meaningful
for both research and business application. For these
reasons, this paper presents the design and implement
of Computer-Aided Reliability Assessment Tool for
Software (CARATS). CARATS is an object-oriented
software reliability assessment tool using software
reliability growth models (SRGMs) with period
failure count data and neural networks to assessment
the software reliability. Due to the characteristics of
the special-purposed and object-oriented design,
CARATS can analyze the software reliability easily.
Besides, it is more flexible to adopt different SRGMs
than traditional tools.

1. Introduction

The techniques of software reliability analysis
developed based on hardware reliability incipiently.
As the significance of software grows rapidly,
software reliability gets more and more attentions. In
the past few decades, many software reliability
modeling theories have been proposed, which can be
classified into two main types: the deterministic
model and the probabilistic model [1].

The deterministic model assesses software
reliability by analyzing the program texture, such as
the number of distinct operators and operands and the
number of assembly instructions in a program. This
type of model does not involve any random event. On
the other hand, the probabilistic model treats the
failure occurrences and removals as probabilistic
event. This type of model can be classified into
different groups [1]:

 error seeding
 failure rate
 curve fitting

 reliability growth
 nonhomogeneous Poisson process(NHPP)
 Markov structure

In this paper, we focus on NHPP probabilistic
model only. The software reliability growth theory is
based on the different characteristics between
hardware and software since software will become
more reliable after appropriate testing and debugging
phase. Hence, we can describe the historical failure
data gathered from the testing phase by NHPP
models, and these models can represent the software
reliability growth pattern.

Modern methods used to estimate the cumulative
number of failures occurred up to a specific time
must rely on numerical analysis software mostly.
However, either operation or execution of general-
purposed numerical analysis software is very
inconvenient to analyze software reliability
systematically since those software tools must be
compatible with general numerical problems.

In this research, we implement a special-
purposed assessment tool, Computer-Aided
Reliability Assessment Tool for Software (CARATS),
based on SRGM. CARATS integrates several most
popular SRGMs, such as GO model, delay S-shaped
model, Rayleigh model, power model, inflection
S-shaped model, and so on [1-8]. By inputting failure
data in plain text format to this tool, CARATS will
systematically estimate parameters of selected
SRGMs automatically. Both software reliability
diagrams and numerical data will be shown based on
the estimates.

In addition to the use of SRGMs, we show
another novel prediction method—prediction of
software reliability by using neural networks, which
has been widely used in many fields, such as machine
learning, stock prediction, and adaptive filters.
Actually, neural networks can be treated as a black
box, that is, neural networks can learn to fit almost
any periodical curves by giving enough training data.
The concept of predicting software reliability by
using neural networks has been proposed many years
ago, but no advanced applications were presented yet.
Hence, we integrate neural networks into this
assessment tool.

In the rest of this paper, five SRGMs and two
parameter evaluation methods are briefly outlined in

Section 2. In addition, Section 2 also shows how to
predict software reliability by using neural networks.
The implementation details of CARATS are shown in
Section 3. Besides, Section 4 presents a set of real
software reliability assessment results. Finally, some
conclusions are given in Section 5.

2. Background

In this section, we briefly go through the
technical backgrounds of CARATS. We only mention
the fundamental theories of our implementations very
shortly.

2.1 Software Reliability Growth Model

We have mentioned that the concept of software
reliability comes from the concept of hardware
reliability. Compared with software, the physical
characteristics make the reliability of hardware
decrease gradually with time. Eventually, it is
economically impractical or too unreliable to
continue in service. However, software cannot be
treated as hardware because software does not wear
out as time goes by. In other words, software
reliability grows with the proceeding of testing and
debugging.

The process of estimating the reliability of
specific software through SRGMs consists of: (i)
gathering historical failure data in the testing phase,
and (ii) evaluating suitable value of selected SRGMs
parameters based on the given failure data.

Traditionally, there are two common types of
failure data: time-domain and interval-domain data.
The time-domain data involve the individual times
for each occurred failure or the times between two
succeeded failures, so we also call this kind of failure
data “time between failure (TBF)” data format. The
interval-domain data count the cumulative number of
failures occurred in a fixed period. Hence, we call
this kind of failure data “period failure count (PFC)”
data format.

2.1.1 Goel-Okumoto NHPP Model

The Goel-Okumoto NHPP model is known as
GO model, which was proposed by Goel and
Okumoto in 1979 [1-5]. The GO model is
characterized by the following mean value function:

)}(exp1{)(tNtm ϕ−−= ,
where N is the number of initial faults in the software,
and ϕ is the fault detection rate.

2.1.2 Delayed S-Shaped Model

The delayed S-shaped model was proposed by
Yamada in 1984 [1, 3-6]. This model is characterized
by the following mean value function:

)}(exp)1(1{)(ttNtm ρρ −+−= ,
where N is the number of initial faults in the software,
and ρ is the fault removal (failure detection and fault
isolation) rate parameter.

2.1.3 Rayleigh Model
The Rayleigh model is a member of the family of

the Weibull distribution [7] and is characterized by
the following mean value function:

)}(exp1{)(2tNtm λ−−= ,
where N is the number of initial faults in the software,
and λ is the failure rate parameter.

2.1.4 Power Model

The power model was proposed by Crow in 1974
[8]. This model is characterized by the following
mean value function:

λtNtm ⋅=)(,
where N is the scale parameter that can be treated as
the number of failures in the software, and λ is the
shape parameter.

2.1.5 Inflection S-Shaped Model

The inflection S-shaped model was proposed by
Ohba in 1984 [1, 3-6]. This model is characterized by
the following mean value function:

)exp(1
)exp(1

)(
t

t
Ntm

ϕψ
ϕ
−⋅+

−−
= ,

where N is the number of initial faults in the software,
ϕ is the failure detection rate, and ψ is the inflection

parameter.

2.2 Parameters Evaluation
In Section 2.1, we introduced several popular

SRGMs used in CARATS. After formulating these
mathematical models, we still have to determine the
parameters of each model. There are two famous
methods to determine parameters: least squares
estimation (LSE) and maximum likelihood estimation
(MLE) [1, 4-5, 9-12].

We can evaluate suitable parameters of selected
SRGM by minimizing the least square sum as the
following:

∑
=

−=
n

k
kk tmmS

1

2)]([,

where mk is the cumulative number of failures
consumed in time (0, tk], and m(tk) is the cumulative
number of failures estimated by the given model.

Compared with LSE method, MLE method is
much more complex. The likelihood function is
defined as the following:

))]()((exp[
!)(

)]()([
1

1 1

)(
1

1

−
= −

−
− −−⋅

−
−

=∏
−

kk

n

k kk

mm
kk tmtm
mm

tmtm
L

kk

where mk is the cumulative number of failures
observed in (0, tk], and m(tk) is the cumulative
number of failures estimated by the given model.
Taking the logarithm of the likelihood function in (7),
we have

(6)

(7)

(1)

(2)

(3)

(4)

(5)

log(L) =)]()(log[)(1
1

1 −
=

− −⋅−∑ kk

n

k
kk tmtmmm

∑ ∑
= =

−− −−−−
n

k

n

k
kkkk mmtmtm

1 1
11])!log[()]()([.

By replacing m(tk) with the selected model
formula and solving the partial differential equations,
we can determine the value of each parameter.

However, these two methods discussed above are
not suitable for our object-oriented design due to the
lack of scalability, so we can also use a model
independent alternative, which will be shown in
Section 2.3.

2.3 Prediction of Software Reliability Using NN

In this section, we present a parameter-free way
to predict software reliability. Hence, we do not have
to spend extra computing cost on determining the
value of parameters.

Neural networks are constructed by variable
number of neurons, and each one has its bias and
weight. In the training process, neurons adjust their
biases and weights to reach a given goal, and the final
outputs are evaluated by a specific activation function,
which is to limit the amplitude of output of a neuron
[13]. After training with representative historical data,
neural networks can predict the software reliability
growth model.

3. System Description

The UML class diagram of CARATS is shown in
Fig. 1, which consists of five sub-diagrams.

Fig. 1 CARATS UML class diagram.

3.1 Model Abstraction Module

This module abstracts software reliability growth
models. By extending this module, CARATS can
adopt different SRGMs easily, which shows its

flexibility. The related UML class diagram of this
module is shown in Fig. 2.

Fig. 2 UML diagram for model abstraction module.

3.2 Parameters Estimation Module

This module is responsible for the parameters
estimation. In order to adopt newly extended SRGMs,
we use numerical method to find out the answer
instead of calculating and solving the equations case
by case. Fig. 3 shows the related UML class diagram
of this module

Fig. 3 UML diagram for parameters estimation

module.

3.3 Neural Networks Prediction Module

In CARATS, we treat neural networks as a kind
of model. First, we create and train the neural
networks based on given PFC data, and then neural
networks return the estimated number of failures by
time t after training. Fig. 4 illustrates the related UML
class diagram of this module.

Fig. 4 UML diagram for NN prediction module.

3.4 Graph Abstraction Module

This module is the data visualizing routine, i.e.,
after fitting curves, this module will translate the
numerical data into graphical data to enhance
readability. The related UML class diagram of this
module is given in Fig. 5.

Fig. 5 UML diagram for graph abstraction module.

(8)

3.5 User Interface and Internal Data Structure
A well-designed interface improves usability.

These graphical user interfaces help user to
communicate with the internal data structure easier.
Besides, internal data structure includes some
routines that relay the requests to lower layer in order
to execute real calculations. Fig. 6 shows the related
UML class diagram of this module.

Fig. 6 UML diagram for user interface and internal

data structure.

4. Function Description and Results
Figures 7-12 show some execution screenshots

and simulation results of CARATS.

4.1 New Project Creation
CARATS supports multiple data sets in a project

and each can have different analysis strategies, such
as predicting by different models or evaluating model
parameters by different estimation methods.
Beginners can perform this tool by following the
project creation wizard of CARATS. Fig. 7 shows
three of seven steps in the project creation wizard.

4.2 Overall Picture

Users can select the desired diagram from the
treeview in the left side as shown in Fig. 8.

4.3 Viewing and Adjusting Data Set Settings

After loading data sets and finishing the initial
estimation, users can adjust settings by means of the
estimation results and read the brief report from the
settings dialog as shown in Fig. 9. The “Iterations” in
the Fig. 9(c) is the number of iterations that CARATS
spent before models being converged. And the rest
five are some criteria to evaluate the model
performance [1, 9, 10, 12, 14]. Besides, users can
also get the optimal release time based on the desired
release criteria [9-12, 15].

4.4 Simulation Results

Fig. 10 shows the cumulative number of failures
of Ohba’s data set. Fig. 11 shows the performance
comparisons based on the parameters estimated by
LSE. Each simulation result has its own diagram
independently. However, we only consider figures for
LSE as illustrations due to the limitation of space.

4.5 Report Generator

CARATS can generate a very detailed reliability
analysis report as shown in Fig. 12, which contains
all of the estimation results and figures. Weekly
estimations report can be used to verify the reliability
growth. All of these report items can be customized.

5. Conclusions
In this paper, we present a user-friendly software

reliability assessment tool, CARATS, which can be
used to measure a software product through its
development process. CARATS is expected to have
widely impact due to its abundant functionality. It
supports several famous SRGMs and introduces a
rarely implemented predicting technology, neural
networks. Furthermore, CARATS can also suggest
optimal release time based on the desired release
criteria. In early days, to analyze and predict software
reliability is difficult since integrated assessment
tools are very rare. Nowadays, CARATS provides a
much more elegant solution for systematic software
reliability prediction.

(a)

(b)

(c)

Fig. 7 Project Creation Wizard

Fig. 8 Execution screenshot.

(a) Detail settings for selected data set.

 (b) Detail settings for selected data set.

(c) Brief reports for selected data set.
Fig. 9 Viewing and adjusting settings.

Fig. 10 Cumulative number of failures for Ohba’s

data set.

(a) Mean Value Function (LSE/All Models).

(b) Relative Error (LSE/All Models).

(c) Failure Rate (LSE/All Models).

 (d) U plot (LSE/All Models).

(e) Y plot (LSE/All Models).

Fig. 11 Simulation results for Ohba’s data set.

References
[1] H. Pham, Software Reliability: Springer-Verlag,

2000.
[2] A. L. Goel and K. Okumoto, “Time-Dependent

Error Detection Rate Model for Software
Reliability and Other Performance Measures,”
IEEE Trans. Reliability R-28, 206-211 (1979).

[3] P. N. Misra, “Software Reliability Analysis,”
IBM Systems Journal, Vol. 22, No. 3, pp.
262-270, 1983.

[4] M. Xie, Software Reliability Modeling: World
Scientific Publishing Company, 1991.

[5] C. Y. Huang, M. R. Lyu, and S. Y. Kuo, “A
Unified Scheme of Some Non-Homogenous
Poisson Process Models for Software
Reliability Estimation,” IEEE Trans. on
Software Engineering, Vol. 29, No. 3, pp.
261-269, Mar. 2003.

[6] M. Ohba, “Software Reliability Analysis
Models,” IBM J. Research & Development, Vol.
28, No. 4, pp. 428-443, Jul. 1984.

[7] S. H. Kan, Metrics and Models in Software
Quality Engineering: Addison-Wesley, 1994.

[8] L. H. Crow: “Reliability Analysis for Complex,
Repairable Systems,” Reliability and Biometry
Statistical Analysis of Lifelength pp. 379-410:
SIAM, Philadelphia, 1974.

[9] M. R. Lyu, Handbook of Software Reliability
Engineering: McGraw Hill, 1996.

[10] J. D. Musa, A. Iannino, and K. Okumoto,
Software Reliability, Measurement, Prediction
and Application: McGraw Hill, 1987.

[11] J. D. Musa, Software Reliability Engineering:
More Reliable Software, Faster Development
and Testing: McGraw Hill, 1999.

[12] C. Y. Huang, and S.Y. Kuo, “Analysis of
Incorporating Logistic Testing-Effort Function
Into Software Reliability Modeling”, IEEE
Transactions on Reliability, Vol. 51, No. 3, pp.
261-270, Sep. 2002.

[13] S. Haykin, Neural Networks A Comprehensive
Foundation 2nd Edition: Prentice Hall, 1999.

[14] M. R. Lyu and A. Nikora, “Applying Software
Reliability Models More Effectively,” IEEE
Software, pp. 43-52, Jul. 1992.

[15] C. Y. Huang and M. R. Lyu, “Optimal Release
Time for Software Systems Considering Cost,
Testing-Effort, and Test Efficiency,” IEEE
Trans. on Reliability, Vol. 54, No. 4, pp.
583-591, Dec. 2005.

Fig. 12 Weekly estimations report.

