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ABSTRACT
This paper introduces visual story ordering, a challenging task in

which images and text are ordered in a visual story jointly. We pro-

pose a neural network model based on the reader-processor-writer

architecture with a self-attention mechanism. A novel bidirectional

decoder is further proposed with bidirectional beam search. Ex-

perimental results show the effectiveness of the approach. The

information gained from multimodal learning is presented and dis-

cussed. We also find that the proposed embedding narrows the

distance between images and their corresponding story sentences,

even though we do not align the two modalities explicitly. As it

addresses a general issue in generative models, the proposed bidi-

rectional inference mechanism applies to a variety of applications.
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1 INTRODUCTION
On social media sites such as Instagram and Flickr, and blogging

platforms such as Medium, stories are recorded and created as a

hybrid of text and images, since text and images play different

roles in organizing and comprehending these stories. This work

investigates machine comprehension by leveraging multimodal

information from both text and images. We propose visual story

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICMR ’20, June 8–11, 2020, Dublin, Ireland
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7087-5/20/06. . . $15.00

https://doi.org/10.1145/3372278.3390735

ordering, a multimodal task involving sentence ordering and tem-

poral image ordering. Here, we define a visual story as a significant

ordered sequence of plot points, each of which can be a few sen-

tences, a clause, or an image. Given a story whose plot points are

disrupted to a random order, the aim of visual story ordering is to

reconstruct it in the correct order. Figure 1 shows a visual story

consisting of five plot points. The first plot point is a complete sen-

tence, the second contains two sentences, the third one is a clause

only, and the last two are images.

Temporal ordering is a high-level cognitive task for humans [6,

14]. One task that measures ability in verbal comprehension is the

temporal ordering of text, such as sentence ordering; this is often

found in language tests to assess reading ability. This evaluates

a person’s knowledge of grammar and rhetoric in a specific lan-

guage. Temporal ordering of visual information—such as picture

arrangement—is a subtest of some intelligence tests. The picture

arrangement score indicates the subject’s ability to understand

nonverbal behavior [5].

New challenging issues arise along the novelty of the visual story

ordering problem. Previous studies on sentence ordering conducted

experiments on corpora extracted from academic research papers

or news [2, 4, 13, 17]. In contrast to the rigorous writing style of

Order Content

1.

One day while [male] was walking his dog, he

had an idea.

2.

He should make his wife dinner and have a

movie night with her! They wouldn’t even have

to leave their little shack of a house, and it would

be very romantic.

3.

So [male] started right away on cooking a fan-

tastic dinner,

4.

5.

Figure 1: A visual story extracted from the VIST dataset
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research papers and news, a visual story can be randomly generated

by anyone in any circumstances without strict constraints, leading

to a more casual textual form. Stories are looser in structure and

less coherent, compared to corpora collected from research papers;

however, since ordering methods rely on the coherence and linkage

between sentences, this characteristic of stories only makes the

problem more difficult.

From a visual point of view, temporal ordering is more com-

plicated. To pair with the textual ordering task, the image order

we describe here refers to the temporal order in which the pho-

tos were taken. When the temporal distances between the story

images are small, for instance seconds apart, for humans the task

becomes somewhat instinctive. To order image sequences such as

the neighboring frames of a video, image forecasting and dynamic

object detection strategies can be used. Meta-cognitive knowledge

of ordering strategies, such as deduction from object position inter-

polation or extrapolation, can be acquired and even described; for

instance, do water drops generally descend, or do they ascend?—

this is a clue that can be used to order images. However, when

photos are taken over a longer time interval, the problem becomes

more difficult. The coherence of the image sequence drops as the

time interval increases. When a human tries to order this kind of

image sequence, a story is imagined depending on the person’s past

experience and knowledge.

This work presents a model for visual story ordering based on

an architecture consisting of a reader, a processor, and a writer with

a self-attention mechanism. Both textual and visual plot points are

represented within a single multimodal embedding. Furthermore,

we also propose a novel bidirectional beam-search algorithm for

decoding. We construct an evaluation dataset based on the VIST

dataset [10]. Experimental results show the effectiveness of our

approach. In addition, our multimodal embedding narrows the

distance between an image and its corresponding sentence even

though we do not explicitly align the two modalities.

The contributions of this work are threefold.

(1) We introduce visual story ordering, a novel task by which to

explore machine comprehension of multimodal information.

(2) We propose a novel model with a bidirectional beam-search

decoder for sequence ordering, and confirm the information

that is captured in the multimodal representation.

(3) As the proposed bidirectional decoder addresses a general is-

sue of generation tasks, the approach can be applied to other

tasks such as machine translation and caption generation.

2 RELATEDWORK
2.1 Sentence Ordering
Sentence ordering is an essential and challenging problem. Hand-

crafted features and traditional statistical approaches are not useful

for the task due to the highly abstractive nature of paragraphs [13].

A primary application of sentence ordering is found inmulti-document

summarization systems [2, 4].

Lapata [13] learns the probability of sentence pair adjacencies

to order sentences. Barzilay and Lapata [3] represent each text

by an entity grid to build a coherence model, which is then used

to measure the possibilities of each order for a sentence set. Lo-

geswaran et al. [17] compare several neural network models for

sentence ordering in academic paper abstracts, finding the pointer

network [20] to be the best.

Agrawal et al. [1] introduces the “Sort Story” task to rank a set

of images. The textual information from the caption of each image

is extracted as features. Different from their work, our task is to

rank among images and captions, intertwinedly. Each element in

the input of our task is only either an image or a sentence, but not

both. Zhou et al. [24] explore story ending selection.

2.2 Temporal Image Modeling
The model architecture for learning unsupervised video represen-

tations can be similar to that for learning sentence embeddings.

Srivastava et al. [18] use an encoder-decoder architecture, which

predicts the future sequence of frames and reconstructs the input

frames to learn video representations.

Zeng et al. [23] explore the task of visual forecasting that is aimed

at predicting the next image given a number of previous ones. Ledig

et al. [15] learn video representations from future frame prediction

with more diversified models. They adapt generative adversarial

networks (GANs) [8] for the frame prediction problem with a new

gradient difference loss to sharpen image prediction.

2.3 Visual-Semantic Embeddings
Many different methods are proposed to learn the visual-semantic

embedding models by forcing each image-word pair sharing similar

semantic information to align in a single vector space. Weston et al.

[22] employ an online learning-to-rank algorithm to train a model

which maps image features to the joint embedding space. Frome

et al. [7] instead propose a semi-supervised method. Some explore

visual-semantic embeddings beyond one-on-one alignments be-

tween an image and a single word. Kiros et al. [12] implement an

encoder-decoder pipeline learning a multimodal embedding space

with image-description pairs. Karpathy and Li [11] align images,

their object regions, and words enriched with the context in their

captions to a multimodal embedding.

3 DATASET
We constructed the visual story ordering dataset based on the Vi-

sual Storytelling (VIST) dataset, which was designed for sequential

vision-to-language modeling [10]. Note that we use the term story
to represent an entry of the dataset and the term visual story to

represent our definition. With photos extracted from Flickr albums,

Huang et al. [10] used crowdsourcing in the construction of VIST

to collect stories with text aligned to images and descriptions of

the images. Triples composed of an image, a story sentence, and a

description sentence constitute each story in the dataset; each story

consists of five triples. The sequential image-text triples provided

by VIST could be transformed into visual stories easily by selecting

a modality in each triple of the story as a plot point in the resulting

visual story. A total of 40,155, 4,990, and 5,055 stories are created

for training, validation, and testing, respectively.

4 METHOD
The input of our model is a sequence of plots x = {x1,x2,x3, ...,xn },
where each plot xi is either a sentence or an image. The output is

a sequence of indices y = {y1,y2,y3, ...,yn }, denoting the order of
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the input sequence. We attempt to learn a model to compute the

conditional probability p(y|x) with the chain rule as follows.

p(y|x) =
n∏
i=1

p(yi |y1,y2,y3, ..,yi−1, x)

, where p(yi |y1,y2,y3, ...,yi−1, x), the conditional probability at

each time step i , is usually modeled by RNN. Pointer networks [20,

21] addresses the task of set to sequence. Plot points are fed to

an encoder to calculate the plot point representation and generate

story vectors, which are then fed to the decoder, which calculates an

output vector, which is supplied to the pointer attention unit along

with the sentence vectors to determine the probabilistic distribu-

tion of the next sentence. Compared to the vanilla pointer network,

our model introduces an one-step self-attention mechanism for

modeling the data at both the plot level and the story level. The

details are shown in Section 4.1. In addition, we propose a bidirec-

tional beam-search algorithm to mitigate multi-head inference, as

explained in Section 4.2.

4.1 Multimodal Set to Sequence Model
Since the pointer network encodes each randomly ordered sequence

using the recurrent network, the encoded sequence vector varies

with the input order, which should not contain any information. A

reader-processor-writer architecture excludes random noise from

the input order, making the architecture more robust [20]. Our

model is also free from random input order noise. Although the

proposed approach is different from previous ones, we still borrow

the terminology to describe our model.

4.1.1 Reader. The reader encodes the input plot points respec-

tively, and can be split into the image reader and text reader in the

experiments with visual plot points. The reader first encodes the

input plot point xi to a number of context vectors and then uses

self-attention [16] to combine these context vectors into a single

plot vector ®ei .
For the textual data, we use the bidirectional LSTM (BiLSTM)

with a hidden size of h to transform word vectors to context vectors

®ci,1, ®ci,2, ..., ®ci,m as follows.

®ci, j = LSTM(xi, j , ®ci, j−1) (1)

where xi, j is the jth token in xi , andm is the length of the longest

sentence in a training batch. Padding is applied to other sentences in

the same batch. The dimension of each context vector is 2h since the

context vector consists of hidden states in both directions. Let the

context matrix Ci = (®ci,1, ®ci,2, ®ci,3, ..., ®ci,m ). The attention weights

of Ci at the plot level is computed as a matrix Ai :

Ai = softmax(W
p
1
tanh (W

p
2
CT

i )) (2)

, where the matricesW
p
1

∈ Rr×d andW
p
2

∈ Rd×2h are parameters

to be optimized during training, andh,d , and r are hyperparameters.

Finally, the plot vector ®ei ∈ R
r
is computed as follows.

®ei = AiCi (3)

As a result, the representation of the whole plot is a vector with

a constant dimension of r . We did attempt to pre-train the word

vectors using word2vec with our corpus, but there was no obvious

difference in comparison to the random initialization case.

For visual data, the plot representation is a sequential visual

semantic embedding. To align with texts, we define image context

vectors as well. The image context vectors are derived from a CNN

containing a pre-trained ResNet [9] and additional convolution lay-

ers. We tried several different settings and found the concatenation

of the first three blocks of ResNet and three layers of convolution,

each of which is followed by a batch normalization and a ReLU acti-

vation, is more suitable. The output channels of the last convolution

layer are then mapped to context vectors using a fully-connected

layer. For textual plots in pairwise neural network approach, we

also tried to adopt InferSent (Conneau et al., 2017) as a reader, but

it was unable to perform better than the self-attentive reader.

4.1.2 Processor. In the original reader-processor-writer architec-

ture, the processor also uses the attention mechanism to combine

the plot vectors ®e1, ®e2, ®e3, ..., ®en into a single story vector ®e , repre-
senting the information of the whole x. In contrast to the processor

proposed in previous work [20], we feed the context vectors (i.e.

®c1,1, ..., ®c1,m , ®c2,1, ...®c2,m , ..., ®cn,1, ..., ®cn,m )—rather than the output

of the reader (i.e. ®e1, ..., ®en )—directly into the processor. The ar-

chitecture of the proposed self-attentive processor is similar to

the self-attentive reader, but the processor takes into account all

context vectors in a story. We define the context matrix at the

story level C = (®c1,1, ..., ®c1,m , ®c2,1, ...®c2,m , ..., ®cn,1, ..., ®cn,m ). The at-

tention weights at the story level and the resulting story vector ®e
are computed as follows.

B = softmax (W s
1
tanh (W s

2
CT)) (4)

®e = BC (5)

In our architecture, the four matricesW
p
1
,W

p
2
,W s

1
, andW s

2
are

parameters to train. The flexibility of this model lies in this passing

the context vectors through the reader and feeding them directly to

the processor. Each of our stories contains five plot points, and the

self-attention merely involves calculating the weighted sum from

the five plot vectors to generate a story vector without the context

vectors passing. With the passing presenting, each context vector

provides the top one outcome of our model.

4.1.3 Writer. In the decoding step, we propose a novel bidirec-

tional pointer writer. Noting that the validation accuracy of the

first and last plot points in unidirectional pointer writer is higher

than the others, we believe that decoding the output jointly from

the two directions could contribute to better performance. The bidi-

rectional pointer writer requires as input two story representations;

we generate multiple story representations using the self-attention

mechanism. Apart from the inputs extension and replacing the

LSTM in the unidirectional writer with a BiLSTM, the training

process of the bidirectional writer remains the same as that for the

unidirectional one.

4.2 Bidirectional Beam Search
The biggest problem with the bidirectional decoder lies in the pro-

cess of inference, as we do not know what should be fed to the next

step before the model decides an output for current step. Therefore,

we must resort to greedy algorithms such as beam search to find

the next possible output, and a jumping of prediction may not be

acceptable in this configuration. However, after using two sets of
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Figure 2: Bidirectional beam search

beams—forward and backward—in each step of the beam search,

the situation is improved [19].

Figure 2 shows part of the bidirectional beam search process,

in which the bottom line shows the decoded numbers and their

positions. At each expansion, the model generates two sets of new

nodes—forward and backward—from the candidate list of the ex-

panded node. That is, each of the generated node contains the

information about its selection of the next output and the decoding

direction; the selected output is deleted from the candidate list of

the node for the next expansion step. For example, in Figure 2,

as Forward 2 is selected in the first step, in the second step, the

possible selections are Forward 1, Backward 1, Forward 3 to

Forward 5, and Backward 3 to Backward 5.

5 EXPERIMENTS
We conduct two evaluations are described below.

• Text Only: Contains only the text in the story. The goal is

to test if any of the applied strategies affect the sentence

ordering results. Models trained with and without images

are evaluated using this subset.

• Text-Image Intertwined: Each story contains two visual

plot points and three textual plot points, and the interval

between the two images varies from 0 to 3.

We used two evaluation metrics from previous work [13] to

assess our ordering, including perfect match accuracy (Accp ) and
the mean of Kendall’s τ . Accp is the ratio of the number of perfect

match orders, i.e., the generated order totally agrees with the story

order in the dataset. For random guessing, Accp is 0.0008 on our

dataset. The mean of Kendall’s τ is a common evaluation metric for

ordering problems, assessing an order by the number of inversions.

The value of τ ranges from -1 to 1. τ = 0 is the expectation value

of random guessing. Hyper-parameters are optimized as follows.

The input image size is [224, 224]. Adam with a learning rate of

0.0001 and β of (0.9, 0.99) is used. The batch size is 32. The beam

size is 120. the dimension of the word vectors is 300, the size of the

self-attentive hidden layer was 100, the number of hops was 1, and

the size of the LSTM unit for the writer was 600.

Table 1 reports the performance of our model on the Text Only

evaluation, compared with three baseline models. The Coreference

Model Accp τ

Pairwise Pointer Network 0.1217 0.5006

Unidirectional Pointer Network 0.1306 0.5206

Our Model 0.1501 0.5245

Table 1: Results for text only evaluation without visual in-
formation given in the training data

Unidirectional Bidirectional

k Forward Forward Backward

0 0.7395 0.7266 0.6898

1 0.4651 0.4805 0.4144

2 0.5019 0.5201 0.5183

3 0.7490 0.7282 0.8150

4 0.9642 0.9600 0.9439

Table 2: Accuracy of predicting next plot point given k pre-
vious plot points

model is a text-only model that ranks the textual plot points by

calculating the directions of coreference linkings. The pairwise

pointer network model is a slightly modified pointer network that

learns to rank the visual story ordering in a pairwise fashion. The

unidirectional pointer network is another pointer network that

learns to rank in a listwise fashion with unidirectional decoding.

The results show that the proposed model outperforms all base-

line models; they also confirm the effectiveness of the proposed

bidirectional approach.

To exam the effectiveness of the bidirectional beam search, Ta-

ble 2 compares the accuracy scores of next plot point prediction

at each time step with different numbers of previous plots given.

We observe that the accuracy of the last plot point always is the

highest. This may be because the model chooses to strengthen the

feature of the last plot point in the story representation to ensure

a higher accuracy. We would expect that in models dealing with

longer temporal sequences, the improvements would be more obvi-

ous when replacing the unidirectional decoder with the proposed

bidirectional decoder.

6 CONCLUSION
We introduce visual story ordering, a new task for modeling human

cognition on multimodal information, and propose a novel model

for the task. Our bidirectional inference mechanism is not limited

to visual story ordering; it is general and can be applied to other

sequence decoders such as those for machine translation and image-

caption generation.
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