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Abstract

Most recent works in the field of grammatical error correction (GEC) rely on neural machine
translation-based models. Although these models boast impressive performance, they require a
massive amount of data to properly train. Furthermore, NMT-based systems treat GEC purely as
a translation task and overlook the editing aspect of it. In this work we propose a heterogeneous
approach to Chinese GEC, composed of a NMT-based model, a sequence editing model, and a
spell checker. Our methodology not only achieves a new state-of-the-art performance for Chi-
nese GEC, but also does so without relying on data augmentation or GEC-specific architecture
changes. We further experiment with all possible configurations of our system with respect to
model composition order and number of rounds of correction. A detailed analysis of each model
and their contributions to the correction process is performed by adapting the ERRANT scorer
to be able to score Chinese sentences.

1 Introduction

Grammatical error correction (GEC) is the task of correcting grammatical and spelling errors that appear
in a sentence. An example of Chinese GEC is correcting the word-choice error in the following sentence:

本人是在貴公司的一名實習。 (I am an internship at your company.)

by changing the word實習 (internship) to實習生 (intern), resulting in the corrected sentence:

本人是在貴公司的一名實習生。 (I am an intern at your company.)

In recent years, there has been a great deal of GEC related research for English, most notably with the
CoNLL 2014 shared task (Ng et al., 2014) and the BEA-2019 shared task (Bryant et al., 2019). Chinese
GEC has a much shorter history, with the NLPCC 2018 shared task (Zhao et al., 2018) being the first to
focus on this research topic. Most work prior to the NLPCC 2018 shared task focused on correcting only
one type of error, such as preposition errors (Huang et al., 2016) or Chinese spelling error correction
(Wu et al., 2013).

Most recent work in GEC formulate correction as a translation task, and use neural machine translation
(NMT) based models. That is, models are trained to translate an erroneous source sentence into a
corrected target sentence. A considerable disadvantage of this approach is that NMT-based systems
require an enormous amount of training data to achieve good results, while the availability of parallel
correction data is limited in many languages. The current leading methods for English GEC both rely on
pre-training models with a large amount of artificially generated data (Grundkiewicz et al., 2019; Kiyono
et al., 2019). In this work, we aim to avoid this issue by combining several different models that perform
corrections in different ways.

Another challenge of GEC is that sentences can have multiple errors. Sometimes a model is not able to
correct all of the errors present in a sentence in one pass, resulting in only a partial correction. One of the
methods used to resolve this issue is recycle generation, also known as iterative decoding (Lichtarge et
al., 2018). In this method, a system performs multiple iterations of correction on an erroneous sentence.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
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The current state-of-the-art method for Chinese GEC (Qiu and Qu, 2019) also employs recycle generation
to solve this issue. A drawback of current recycle generation methods is that for each round of correction
the same model is re-applied, resulting in a limited coverage of error corrections. We postulate that larger
performance gains can be had if different kinds of models perform each round of correction. In this
work, we propose applying recycle generation to Chinese GEC using a heterogeneous system composed
of different kinds of models, covering more diverse error types.

Our idea is to leverage the advantages of both machine translation models and sequence editing editing
models. Machine translation models are capable of rewriting the entire sentence, making large scale
corrections such as re-ordering or performing multi-word substitutions possible. In contrast, sequence
editing models focus on smaller scale corrections, such as removing a word or adding in a missing
punctuation mark. Each family of model is adept at correcting different kinds of errors. By integrating
these two kinds of models using recycle generation, a wider range of errors can be effectively corrected
for each round of correction.

In this work, we also discuss the performance metrics of Chinese GEC. The Maxmatch (M2)
scorer (Dahlmeier and Ng, 2012) that has been extensively used for English GEC, and also for the
NLPCC 2018 Chinese GEC task can only report overall model performance. This problem has been
solved in English GEC, with the introduction of the ERRANT scorer (Bryant et al., 2017). The ER-
RANT scorer can provide model performance in terms of edit-level operation as well as specific English
grammatical error types. We extend the idea of the ERRANT scorer to deal with Chinese sentences. This
will allow Chinese GEC researchers to be able to get more detailed analysis of model performance. In
summary, our contributions are threefold as follows.

1. We use a heterogeneous system composed of multiple kinds of models for Chinese GEC, beating
the previous state-of-the-art results on the NLPCC 2018 task dataset. Combining multiple models
that are designed to correct different kinds of errors enables this method to achieve good results
without a vast amount of training data.

2. We experiment with recycle generation to find the optimal model composition order and number of
correction iterations for our system.

3. We adapt the ERRANT scorer to be able to annotate and score Chinese sentences, allowing us and
future researchers for Chinese GEC to be able to get more detailed model performance results.

2 Related Work

2.1 NMT-based Methods

Current state-of-the-art results for English GEC use sequence to sequence Transformers (Vaswani et al.,
2017), and rely on pre-training with large amounts of artificial data. Grundkiewicz et al. (2019) use
a rule based method, leveraging confusion sets to generate 100 million sentence pairs to use as pre-
training data. Kiyono et al. (2019) experiment with several variants of backtranslation (Sennrich et al.,
2015) using different monolingual seed corpora to generate 70 million artificial sentence pairs.

Systems for Chinese GEC also rely on sequence to sequence models. The NLPCC 2018 shared task
winner uses five different models in tandem, and chooses the best output with a 5-gram language model
(Fu et al., 2018). Ren et al. (2018) use an ensemble of Convolutional sequence to sequence models with
pre-trained word embeddings. The current state-of-the-art system proposed by Qiu and Qu (2019) uses
a Transformer sequence to sequence model with heterogeneous recycle generation and a spellchecker.

2.2 Sequence Editing Models

Sequence editing models, also known as a text-editing model, learn to edit a sequence through applying a
fixed set of operations to the input. This can be formulated in the following way: given a fixed vocabulary
of edit operations E and an input sequence x1:n = (x1, · · · , xn), a model learns to predict an edit
operation ei ∈ E for each xi in our input sequence. A set of rules can then be applied to the output
sequence e1:n to obtain the target output sequence y.
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Several sequence editing models have been proposed for text simplification tasks. The Levenshtein
Transformer (Gu et al., 2019) performs text simplification by using a sequence of insertion and deletion
operations. Dong et al. (2019) perform sequence editing through three primary edit operations, KEEP,
ADD, and DELETE.

Currently, the only sequence editing model to be applied to GEC is LaserTagger (Malmi et al., 2019).
Similarly to the two previously cited works, LaserTagger learns to edit sentences by two different edit
operations: KEEP and DELETE, along with pairing these operations with a limited phrase vocabu-
lary consisting of tokens that are frequently changed between the source and target sequences. While
LaserTagger performed well for English GEC considering the small number of training samples that it
used, it was still very far from reaching state-of-the-art performance. In this work, we apply LaserTagger
to Chinese GEC, and also explore combining it with NMT-based models.

2.3 Recycle Generation
Recycle generation refers to the method of performing multiple rounds of correction on an input sentence.
Recycle generation is also known as iterative decoding or multi-pass decoding. This has been attempted
in English GEC in which one NMT-based model is used repeatedly (Lichtarge et al., 2018), or with a
combination of a SMT-based and NMT-based model (Grundkiewicz and Junczys-Dowmunt, 2018). In
Chinese GEC, only NMT-based recycle generation has been used (Qiu and Qu, 2019). In previous works,
recycle generation has always been performed with models trained to do translation. In this work, we
attempt to perform recycle generation with one model trained to do translation and another model trained
to do sequence editing.

3 Methodology

Our GEC system is composed of three separate components: a neural machine translation system, a
sequence editing system, and a spell-checker. Each model performs one or several rounds of correction
on the input sentence to produce the final corrected output. Each component has separate strengths and
weaknesses in terms of the errors it can correct. Composing the different models in this way allows
(1) one model to correct any errors that another model has missed and (2) a model can fix any errors
accidentally introduced by another model earlier in the pipeline. An example of the entire correction
process applied to a sentence can be seen in Table 1.

Model Input Output Change

NMT 我在家哩一个人学习中文。 我在家哩自学习中文。 一个人→自

SE 我在家哩自学习中文。 [K][K][K][K][K][K][D][K][K][K] Delete习

SC 我在家哩自学中文。 我在家里自学中文。 哩→里

Table 1: Example of full correction pipeline. The input to each model is a Chinese sentence. For the
sequence editing model [K] stands for KEEP and [D] stands for delete.

3.1 Datasets and preprocessing
We use the NLPCC 2018 shared task dataset (Zhao et al., 2018) for our experiments. The training set
consists of 717,241 sentences from lang8,1 and the test set consists of 2,000 sentences from the PKU
Chinese Learner Corpus. Each sentence in the test set is corrected by two annotators, and also labeled
with error type information. Each error is categorized into one of four types: redundant (R), missing
(M), word selection errors (S), and word ordering errors (W). Many samples from the lang8 training
set have multiple alternative corrections. We expand each alternative correction into a separate sample.
This process results in a training set of 1,222,906 correction pairs. Since an official validation set is not
provided, we randomly select 5,000 pairs from the training set to serve as a validation set. In addition to

1https://lang-8.com/
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samples from lang8, we also use monolingual WMT News data (Barrault et al., 2019) to form a training
set for the language model that we use in our spell checker.

All three models that we use require different preprocessing steps, due to several different reasons.
The NMT-based model uses standard preprocessing steps: word-level tokenization followed by subword
segmentation of rare words using byte pair encoding (Sennrich et al., 2016) to handle out of vocabulary
words. Word-level segmentation is performed using Jieba.2 BPE is performed using subword-nmt,3

with the number of merge operations set to 35k and the vocabulary threshold set to 50. The language
model cannot use subword units because the spelling check algorithm that we use requires looking up
words in a dictionary. The sequence editing model has better results with character-level segmentation
because the algorithm it uses to build its vocabulary is sensitive to any noise introduced by incorrect
segmentation that often occurs in the erroneous source sentences. For all models, we use OpenCC4 to
convert traditional Chinese characters in the training and validation sets to simplified Chinese characters.
An overview of the dataset splits and preprocessing steps required for each model can be seen in Table 2.
Table 3 shows an example of the different preprocessing steps applied to a sentence.

Corpus Sentences Split Models

lang8 1,215,906 train S2S, LT, LM
lang8 5,000 valid S2S, LT, LM
PKU 2,000 test S2S, LT, LM

WMT News 4,724,008 train LM

(a) Datasets and splits

Model Preprocessing

S2S OpenCC + Jieba + BPE
LT OpenCC
LM OpenCC + Jieba

(b) Preprocessing steps per model

Table 2: Overview of datasets and preprocessing steps for each model. S2S stands for Neural Machine
Translation model, LT stands for LaserTagger, and LM stands for language model.

Sentence 他們有兩個孩子，一男一女

English They have two children, one boy one girl.

OpenCC 他們有兩個孩子，一男一女

Jieba 他們 有 兩個 孩子 ， 一男一女

BPE 他們 有 兩個 孩子 ， 一@@ 男@@ 一@@ 女

Table 3: Example of preprocessing steps.

3.2 Neural Machine Translation Model
Our NMT model, based on the Transformer architecture (Vaswani et al., 2017), is an encoder-decoder
sequence to sequence model, where both the encoder and decoder are composed of six layers of self-
attention modules. We use the “Transformer (big)” settings described in Vaswani et al. (2017). In
general, we follow similar training steps as described in English state-of-the-art models (Kiyono et al.,
2019; Grundkiewicz et al., 2019).

Training Settings Our model is implemented using the Fairseq5 toolkit (Ott et al., 2019). Optimization
is performed using the Adam (Kingma and Ba, 2014) optimizer, with criterion set to label-smoothed
cross entropy (Szegedy et al., 2016). We use beta values of 0.9 and 0.98 for Adam, and a smoothing
value of 0.1 for the criterion. We first set the learning rate to 10−7 and perform 4,000 warm-up updates.
After the warm-up period, the learning rate is increased to 0.001. Thereafter we use an inverse square

2https://github.com/fxsjy/jieba
3https://github.com/rsennrich/subword-nmt
4https://github.com/BYVoid/OpenCC
5https://github.com/pytorch/fairseq
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Figure 1: An example of LaserTagger applied to a Chinese sentence

root scheduler to decay the learning rate in proportion to the number of updates. Dropout between
Transformer layers is set to 0.3, and attention layers is set to 0.1. We share weights between input and
output embeddings. The batch size is set to a maximum of 8,484 tokens per batch. The model is trained
for 40 epochs, with a checkpoint being saved at every epoch. Weights of the last 7 checkpoints are
averaged together to create our final model.

3.3 Sequence Editing Model
For sequence editing, we adapt LaserTagger (Malmi et al., 2019) to be used for Chinese sentences.
As described in Malmi et al. (2019), a sequence editing model learns to generate a target sentence by
applying a small set of edit operations to the source sentence. It works in three steps: (1) the input
sentence is encoded into a hidden representation, (2) each token in the input sentence is assigned an edit
tag, and (3) rules are applied to convert the output tags into tokens. An example of this process applied
to a Chinese sentence can be see in Figure 1.

Our implementation is based on the source code of LaserTagger.6 We change the vocabulary optimiza-
tion code to be able to handle Chinese sentences, in which words are not separated with spaces. We use
character-level segmentation, as we find that the phrase vocabulary optimization algorithm achieves bet-
ter results using character-level segmentation. This because segmentation errors are often present in the
source sentences when using word-level segmentation, due to the sentences containing errors. Follow-
ing the original paper, we use a phrase vocabulary of 500 phrases. A limitation of the sequence editing
model is the small added phrase vocabulary, which consists only of the most frequently changed phrases
between source and target sentence. Fortunately, our machine translation model is able to make up for
this deficiency, as it is able to generate all of the words in the target vocabulary.

Training Settings When training our model, we use a batch size of 32 and train for three epochs. We
use Adam (Kingma and Ba, 2014) as the optimizer with an initial learning rate of 3× 10−5. We perform
a linear warm-up for 10% of the total training samples. Model checkpoints are saved every 1000 update
steps. We use the model that performs best on our validation set as our final model.

3.4 Spell Checker
Spell checkers for Chinese work greatly differ from spell checkers for English because the sources of
spelling errors in Chinese are entirely different from those in English. In general, spelling errors in
Chinese are caused by (1) incorrectly selecting a character that looks similar to the correct character or
(2) incorrectly selecting a character with similar pronunciation to the correct character.

Implementation We follow the steps outlined in the previous state-of-the-art work for Chinese GEC
(Qiu and Qu, 2019) to create our spell-checker. The primary difference in our implementation is instead
of a 5-gram language model, we use a Transformer (Vaswani et al., 2017) language model. This spelling
checker works by iterating through a sentence one word at a time and checking if the word appears in a
dictionary. If not, each character that makes up the word is replaced with each word in its confusion set
to form a replacement candidate. After a list of candidate sentences are made, the Transformer language
model picks the sentence with the highest probability.

6https://github.com/google-research/lasertagger
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Figure 2: Configurations of recycle generation

LM Training We implement our language model using the Fairseq7 toolkit (Ott et al., 2019). Op-
timization is performed using the Adam (Kingma and Ba, 2014) optimizer, with criterion set to cross
entropy. We use beta values of 0.9 and 0.98 for Adam. We first set the learning rate to 10−7 and perform
4,000 warm-up updates. After the warm-up period, the learning rate is increased to 0.0005. Thereafter
we use an inverse square root scheduler to decay the learning rate in proportion to the number of updates.
Dropout between Transformer layers and attention layers is set to 0.1. We share weights between input
and output embeddings. The batch size is set to a maximum of 2,048 tokens per batch, with one sample
being a single sentence. The model is trained for a total of 50,000 updates, and achieves a perplexity of
66.47 on the validation set.

3.5 Recycle Generation
Recycle generation comes in two different varieties: homogeneous and heterogeneous. Homogeneous
recycle generation is when a model performs several rounds of generation, where the output of the previ-
ous round of generation serves as input for the next round. Heterogeneous recycle generation integrates
two or more different models that are trained to target different kinds of errors. Formally, homogeneous
recycle generation can be described in the following way: given a family of models F , a trained model
fθ ∈ F with parameters θ and an input sequence x ∈ X ,

fnθ (x) = (fθ ◦ · · ·
n−2
◦ fθ)(x) = fθ(fθ( · · ·

n−2
(x)))

where n is the number of iterations.
In a heterogeneous system, we would have k ≥ 2 different families of models F1, · · · , Fk, and trained

models f1,θ1 ∈ F1, · · · , fk,θk ∈ Fk with parameters θ1, · · · θk respectively. The composition order can
be described with a sequence S of n model indices where 1 ≤ j ≤ k for each j ∈ S.

(fjn,θjn ◦ · · ·n−2
◦ fj1,θj1 )(x) = fjn,θjn (fjn−1,θjn−1

( · · ·
n−2

(x)))

In this work, both the LaserTagger sequence editing model and Transformer NMT model are used for
recycle generation. We examine this system in regards to three factors: (1) homogeneous vs heteroge-
neous, (2) the number of iterations of generation, and (3) the order of composition. All configurations
that we experiment with are summarized in Figure 2.

4 Experiments

The results of our recycle generation experiments are summarized in Table 4. The left column is homo-
geneous generation, the right column is heterogeneous generation, and each consecutive row is another
iteration of generation.

7https://github.com/pytorch/fairseq
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Homogeneous generation For homogeneous recycle generation, F0.5 score improves for three consec-
utive iterations, and decreases after 4 iterations for both our SE and NMT models. Precision decreases
slightly with iteration count, but recall increases significantly, leading to an overall increase in F0.5 score.
The sequence editing model LaserTagger performs better than our Transformer NMT model, achieving
a highest F0.5 score of 32.27 on iteration 3, beating the best NMT score of 30.87 by a full 1.40 points.

Heterogeneous generation We find that applying our Transformer NMT model followed by our
LaserTagger sequence editing model has the best performance. NMT followed by SE beats SE followed
by NMT by 0.27 points. Furthermore, for SE followed by NMT the F0.5 score consistently decreases
after the second iteration. However, for NMT followed by SE, the F0.5 score achieves a maximum on
the fourth iteration, following a brief dip in performance on the third iteration.

Summary Overall, we can see that an increase in iteration count leads to a decrease in precision, but
an increase in recall. Heterogeneous systems have much higher recall than homogeneous systems, with
only slightly less precision, leading to much better overall performance. Finally, using our sequence
editing model after our NMT model results in a higher F0.5 score.

Homogeneous Generation Heterogeneous Generation

MaxMatch MaxMatch
Order P R F0.5 Order P R F0.5
NMT 37.54 17.38 30.47
NMT2 37.11 18.37 30.82 SE ◦ NMT 36.77 25.00 33.61
NMT3 37.11 18.45 30.87 NMT ◦ SE ◦ NMT 36.14 25.88 33.49
NMT4 37.09 18.45 30.85 (SE ◦ NMT)2 36.04 26.77 33.70

SE 39.80 17.21 31.53
SE2 38.13 19.34 31.93 NMT ◦ SE 36.87 24.10 33.34
SE3 38.20 19.90 32.27 SE ◦ NMT ◦ SE 36.01 26.68 33.33
SE4 37.98 19.88 32.13 (NMT ◦ SE)2 35.73 26.00 33.25

Table 4: Recycle generation experiments. NMT stands for neural machine translation system. SE stands
for sequence editing system.

Comparison with state-of-the-art Following the results of our recycle generation experiments, we
choose our best system (SE ◦ NMT)2 and apply our spell checker to the output of this system to serve
as our final system output to compare with the previous state-of-the-art results. This comparison is
presented in Table 5.

System MaxMatch
P R F0.5

CS2S+Emb. (x4) (Ren et al., 2018) 47.63 12.56 30.57

Base+Emb. (i=2) + SC (Qiu and Qu, 2019) 36.88 18.94 31.01

*SC ◦ (SE ◦ NMT)2 36.79 27.82 34.56

Table 5: Comparison of our results to previous state-of-the-art results. * denotes our proposed system

The system denoted as CS2S+Emb. (x4) is an ensemble of 4 convolutional sequence to sequence
models with pre-trained word embeddings. This system has very high precision, but suffers from low
recall, resulting in the lowest overall F0.5 score. The system denoted as Base+Emb. (i=2) + SC is the
previous state of the art results on the NLPCC2018 dataset. It uses a sequence to sequence Transformer
model with pre-trained word embeddings. Two iterations of recycle generation are applied, followed by
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a spell checker. This system has much higher recall but lower precision than the previous approach. Our
multi-model composition approach with recycle generation and spell checking beats the previous best
results by over 3.5 F0.5 score. Although our approach does not have the highest precision, it benefits
from significantly improved recall in comparison to other approaches. This supports our hypothesis that
our NMT model and sequence editing models correct different errors.

5 ERRANT for Chinese GEC

In the previous section, we saw that heterogeneous recycle generation was superior to homogeneous re-
cycle generation. This was because heterogeneous recycle generation can significantly increase the recall
of the GEC system, while only slightly sacrificing precision. This increase in recall leads us to believe
that each of our models are attempting to correct different errors that are present in the sentences. Our
precision not significantly decreasing, while simultaneously increasing recall means that our heteroge-
neous recycle generation system has vastly reduces false negatives while only slightly increasing false
positives.

To verify our hypothesis that each model is more adept at correcting certain error types, we have to be
able to calculate model performance specific to each of our four error types: redundant (R), missing (M),
word selection (S), and word ordering (W). Unfortunately, the official Maxmatch (M2) scorer (Dahlmeier
and Ng, 2012) does not have this capability. It can only provide the overall score of the system. In order
to rectify this situation, we develop a scorer that can report the precision, recall, and F0.5 score of our
models with respect to our four error types. Another issue with the MaxMatch scorer worth mentioning
is that it is known to overestimate model performance (Felice and Briscoe, 2015; Napoles et al., 2015).

The problem of error-type specific performance evaluation has already been solved for English GEC.
The ERRANT scorer (Bryant et al., 2017) provides very detailed performance results for English GEC
systems, by reporting the precision, recall, and F0.5 scores with respect to over twenty-five different error
categories.

The ERRANT scorer works in two main steps, (1) edit extraction (annotation) and (2) scoring. The
edit extraction step works in the following way. First, the source and target sentences are tokenized
and the part-of-speech for each token is computed. Next, the resulting tokenized sentences are aligned
and labeled with edit-level operations: (M)atch, (D)elete, (I)nsert, and (S)ubstitute. After this, adjacent
edit operations are merged using a rule-based approach. Finally, the resulting edits are classified into a
specific error type, using the part of speech and edit-level operation information computed in steps (1)
and (2). After annotation is performed, the system edits are compared with ground-truth edits, and the
precision, recall, and F0.5 score is computed.

5.1 Adapting ERRANT for Chinese Sentences
We adapt ERRANT to be able to annotate and score Chinese sentences. There are several challenges
to do this. (1) Sentence alignment for Chinese is much different than English, because you cannot
use Levenshtein distance as a heuristic. (2) In general, tokenizers for Chinese perform much worse
than tokenizers for English. This is primarily because there are no spaces separating words in Chinese
sentences, unlike English. In particular, we found that tokenization of the original (incorrect) sentence to
give much worse results compared to the corrected sentence. This also leads to the part-of-speech tagger
to often give incorrect results.

With these challenges in mind, we chose to implement our Chinese annotator in the following manner:
we skip word-level tokenization and part-of-speech tagging in favor of character level tokenization. This
means our scorer only gives results in terms of edit-level operations, which is the same as the original
ground truth edits. We then adapt the original sentence alignment code from ERRANT 8 to be able to
align Chinese sentences.

Edit Extraction The per-sentence edits (annotations) are extracted in three steps: tokenization, align-
ment, and merging. For tokenization, we use character-level tokenization. Alignment works by comput-
ing an alignment score for each pair of characters in the source and target sentence. Matching characters

8https://github.com/chrisjbryant/errant
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give a score of zero. Insertion and deletion is each given a score of one. Substitution score is computed
using a method similar to (Che et al., 2005), in which the Cilin (Mei et al., 1996) thesaurus is leveraged
to give a similarity score between characters. Once the alignment score matrix is computed, the se-
quence with the lowest total score is returned. We use a simple merging strategy that merges consecutive
sequences of edits of the same type.

5.2 Error-type Specific Performance
The results of re-scoring our systems with our scorer is presented in Table 6. We can see some clear
differences in the strengths and weaknesses of our models. The NMT-based Transformer is best at
correcting general substitution and word-ordering errors. The sequence editing LaserTagger model is
better at correcting insertions and deletions. Finally, our spell checker is able to correct spelling errors
(with are a special case of substitution errors) at high precision.

NMT SE SC

Error Type P R F0.5 P R F0.5 P R F0.5
(R)emove 32.94 20.00 29.17 40.78 26.10 36.66 100. 0.0 0.0
(M)issing 29.49 14.85 24.64 34.23 17.00 28.46 100. 0.0 0.0
(S)ubstitute 32.03 11.54 23.64 34.53 7.79 20.47 80.85 4.12 17.1
(W)ord-order 49.18 27.78 42.61 56.76 18.75 40.38 100. 0.0 0.0

Table 6: System evaluations using the adapted ERRANT metric.

Comparison of SE and NMT Models The advantage that NMT models have over LaserTagger is
that they have a much larger vocabulary, so they are not restricted to the amount of errors that they can
correct. Any phrase that occurs in an error that is not in LaserTagger’s small phrase vocabulary will not
be able to be corrected by it. Currently, most word-order errors (W) are also not able to be corrected by
LaserTagger. This is because LaserTagger lacks a method to re-arrange arbitrary subsequences of tokens
inside of a sequence.

The main advantage LaserTagger has over NMT models is that it is very easy for LaserTagger to copy
or delete a token from the source sentence to the output sentence. This is very useful in GEC, as errors
are usually limited to just a few words in the source sentence, so most words can be copied directly to
the target sentence (Zhao et al., 2019).

6 Conclusion

In this work, we propose a system for Chinese GEC that uses three different models: a NMT-based
model, a sequence editing model, and a spell checker. We showed how these models can be composed
using heterogeneous recycle generation into a system that achieves state of the art performance for Chi-
nese GEC. Furthermore, we extended an automatic annotator and scorer for parallel error corpora to be
able to handle Chinese sentences. We use this scorer to evaluate each models performance in terms of
the four error types, and show how each model is adept at correcting different types of errors.

In the future, there is potential to combine the NMT-based model and the sequence editing model into
a single model with both capabilities. Our first attempt at adapting ERRANT for Chinese GEC can also
be improved upon by switching to word-level tokenization and adding POS tagging. This would allow
for error classification to be performed, allowing each error to be classified into more distinct error types
instead of just the four edit-level types that we currently use.
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