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Who am I?
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• Experience:
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• Arcadyan Technologies
• Institute for Information Industry

• Interests:
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• Next Generation Network
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Don’t Worry.
This is not a mathematic course.

Everything will be described in plain Chinese.

3



Introduction to Deniable Encryption



Deniable Encryption

Deniable Encryption!!
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Deniable Encryption!!
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This is a Stupid Scenario!!

Actually, this is a real story.
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Email Service Provider

The U.S. government commanded Snowden’s email provider,
Lavabit, to release the private key. Will you release or not? Why?

On January 20, 2017, Lavabit owner Ladar Levison relaunched the
service.
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Deniable Encryption

• An encryption scheme is deniable if the entities can generate
plausible keys or random coins that will satisfy the authority.

• Usage: Protect people from subpoenas or legal coercion.
• Ex: E-Voter, Journalist, Whistle-blowers.

• Theoretical Properties:
• Non-committing.
• Against selective-opening attacks.
• Incoercible multi-party computation.
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Selective Opening Attack

• Given a public key encryption scheme:
• c = (c[1], c[2], c[3], . . . , c[n]).
• c[i] = E(pk,m[i], r[i]), 1 ≤ i ≤ n.
• All coins r[i] are random and independent.

• The adversary is allowed to corrupt some subset I :
• r[i], i ∈ I.
• m[i], i ∈ I.

• The security requirement is that the privacy of the unopened
messages is preserved.
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Some Definitions

Definition
Computational Indistinguishable:
Let A = {An}n∈N and B = {Bn}n∈N be two probability
distributions and δ : N→ [0, 1]. A and B are δ(n)-close if for
every polytime distinguisher D and for all large enough n,

|Prob(D(An) = 1)− Prob(D(Bn) = 1)| < δ(n).

If δ(n) is negligible, A and B are computational indistinguishable
and write A ≈c B.

Definition
Correctness:
The probability that R’s output is different than S’s input is
negligible (as a function of n).
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Some Definitions

Definition
Plan-Ahead:
A somewhat weaker deniability property allows the encryption
algorithm to have the fake messages as part of its input.

Definition
Sender Deniable:

1. Correctness.
2. Security: E[m1] ≈c E[m2].
3. Deniability:

• c = E[m1, rS].
• A faking algorithm ϕ that r′S = ϕ(m1, rS, c,m2).
• (m2, r′S, c) ≈c (m2, r′′S ,E[m2, r′′S ]).
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Some Definitions

Definition
Receiver Deniable:

1. Correctness.
2. Security: E[m1] ≈c E[m2].
3. Deniability:

• c = E[m1, rR].
• A faking algorithm ϕ that r′R = ϕ(m1, rR, c,m2).
• (m2, r′R, c) ≈c (m2, r′′R,E[m2, r′′R]).
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Shared-Key Deniable Encryption



Shared-Key Deniable Encryption

• The most trivial solution is: One Time Pad, Vernam Cipher.
• c← m⊕ k.
• k′ ← c⊕m′.

• m′ can be chosen as late as at time of coercion.
• This scheme is not practical for most cases.
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Shared-Key Deniable Encryption based on Pseudorandom Gen-
erators

• The message will be encrypted:
• m1 = m(1)

1 ,m(2)
1 ,m(3)

1 , . . ..
• Each block m(j)

1 is n-bit.
• The fake messages:

• m2 = m(1)
2 ,m(2)

2 ,m(3)
2 , . . ..

• . . .

• ml = m(1)
l ,m(2)

l ,m(3)
l , . . ..

• The shared key:
• k1: n-bit random key.
• k2, . . . , kl: l− 1 independent n-bit fake keys.

• A pseudorandom number generator G:
• Expand n-bit input to 3n-bit output.
• Using G iteratively: G(k(j−1)

i ) = k(j)i |a
(j)
i |b

(j)
i .
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Shared-Key Deniable Encryption based on Pseudorandom Gen-
erators

• Encryption:
• c = c(1), c(2), c(3), . . ..
• The sender finds the polynomial Q(j) of degree l− 1 such that

Q(j)(a(j)i ) = m(j)
i + b(j)

i , i = 1 . . . l.
• c(j) = ⟨j,Q(j)⟩.

• Decryption:
• m(j)

1 = Q(j)(a(j)1 )− b(j)
1 .

• Deniability:
• Just select one of fake keys when coercion.
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Public-Key Deniable Encryption



Translucent Set

• This scheme is based on the trapdoor SPARSE sets.
1. A small set S ⊂ {0, 1}t, |S| ≤ 2t−k for some k.
2. It is easy to generate random element x ∈ S.
3. Without the trapdoor d, it is infeasible to decide whether

x ∈ {0, 1}t was chosen from S or uniformly from {0, 1}t.
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How to Construct Sparse Sets

• A trapdoor permutation f : {0, 1}s → {0, 1}s.
• A hard-core bit function B : {0, 1}s → {0, 1}.
• Construction I:

• t = sk.
• Represent x ∈ {0, 1}t as a vector x = x1x2 . . . xk, where

xi ∈ {0, 1}s.
• S = {x ∈ {0, 1}sk|∀i = 1 . . . k,B(f−1(xi)) = 0}.
• |S| = 2(s−1)k = 2t−k.

• Construction II:
• t = s + k.
• Represent x ∈ {0, 1}t as a vector x = x0, b1b2 . . . bk, where

x0 ∈ {0, 1}s and bi ∈ {0, 1}.
• S = {x ∈ {0, 1}s+k|∀i = 1 . . . k,B(f−i(x0)) = bi}.
• |S| = 2s = 2t−k.
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Public-Key Sender-Deniable Encryption Scheme 01

• The Basic Scheme:
• Bitwise encryption.
• Public key: S ⊂ {0, 1}t; Private key: the trapdoor d.
• Encryption:

• To encrypt 1, send a random element from S.
• To encrypt 0, send a random element from {0, 1}t.

• Decryption: Check if the cipher c is in S.
• Dinability: If the encrypted bit is 1, claim that the cipher is

chosen from {0, 1}t instead from S.
• Only half deniablity.
• The probability of decryption error is 2t−k

2t = 2−k.
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Public-Key Sender-Deniable Encryption Scheme 02

• The Parity Scheme:
• Public key: S ⊂ {0, 1}t, R = {0, 1}t; Private key: the trapdoor

d.
• Use V ∈ {S,R}n to denote a length n vector.
• Encryption:

• To encrypt 1, send a V ∈R {S,R}n where V randomly contains
odd S-elements.

• To encrypt 0, send a V ∈R {S,R}n where V randomly contains
even S-elements.

• Decryption: Reveal the number of elements in V that belongs
to S.

• Deniability: The sender can claim V has i− 1 S-elements
rather than i.

• The probability of decryption error is at most n2−k.
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Receiver-Deniability and Bi-Deniability

• Receiver-Deniability from Sender-Deniability:
• If there is a Sender-Deniable scheme, the receiver first sends a

deniable message r to the sender.
• The sender sends m⊕ r to the receiver.

• Bi-Deniability:
• Sender-and-Receiver-Deniability.
• ⊕ibi = b.
• As long as one intermediary node is uncoerced, the sender and

the receiver can deny their messages.
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What is the Problem?

• We do not like bitwise encryption.
• We do not like interactive encryption.
• We do not like third-party.
• We do not like decryption error.
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Bi-Deniable Public-Key Deniable
Encryption



Multi-Distributional Bi-Deniable Scheme

• A. O’Neil, C. Peikert and B. Waters proposed
Multi-Distributional Bi-Deniable Scheme based on Simulatable
Public-Key Encryption.

Definition
Multi-Distributional:

• Multi-Distributional means the parties run alternative
key-generation and encryption algorithms for equivocable
communication, but claim under coercion to have run the
prescribed algorithms.

• Multi-Distributional means the scheme contains normal and
deniable encryption at the same time.
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A Philosophical Question

• Why would anyone ever choose to send a message according
to the non-deniable encryption algorithm?

• It is impossible to eliminate this option because the coercer
would know that the sender is lying.

• The purpose of deniability is not at all to convince the
coercer, but to preempt coercion in the first place.
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Bi-Deniable Scheme

Sender-Deniable Receiver-Deniable
pk← Gen(1n, rR) (pk, fk)← DenGen(1n)

c← DenEnc(pk,m, rS) c← Enc(pk,m, rS)

r∗R ← RecFake(pk, fk, c,m′)

r∗S ← SendFake(pk, rS,m,m′)

Return (pk, c, r∗S) (pk, c, r∗R)

Bi-Deniable
(pk, fk)← DenGen(1n)

c← DenEnc(pk,m, rS)

r∗R ← RecFake(pk, fk, c, b)
r∗S ← SendFake(pk, rS,m,m′)

Return (pk, c, r∗S, r∗R)
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Simulatable Public-Key System

Definition
Given a public-key system (K,E,D,M), where

• K: key generation algorithm; E: encryption algorithm;
• D: decryption algorithm; M: message space generator.

(K,E,D,M) is a simulatable public key system if (K̃, K̃−1,C,C−1)

exists:

• Oblivious public key generation:

r← R, (P,S)← K(r), r′ ← K̃−1(P).

r′′ ← R, (P′′,S′′)← K̃(r′′).

(r′,P) and (r′′,P′′) are computationally indistinguishable.
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Simulatable Public-Key System

Definition

• Oblivious ciphertext generation:

(P,S)← K, r1 ← R,C1 ← C(P, r1).

r2 ← R,C2 ← EP(M, r2), r′2 ← C−1(C2,P).

(P, r1,C1) and (P, r′2,C2) are computationally
indistinguishable.
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Simulatable Public-Key System

Definition

• Semantic security:

r← R, (P,S)← K(r).

r0 ← R,C0 ← EP(M0, r0);

r1 ← R,C1 ← EP(M1, r1).

(P,M0,M1,C0) and (P,M0,M1,C1) are computationally
indistinguishable.

26



ElGamal is Simulatable under DDH Assumption

• ElGamal Encryption:
• Public key: h = gx, p, g.
• Private key: x.
• Encryption: (gy,mhy).

• Oblivious:
• K̃ = h.
• K̃−1(p, g, h) = (p, g, h).
• C = (y1, y2), where y1 ← R, y2 ← R.
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Bideniable Encryption from Simulatable System (1/3)

BI-DEN.Gen(1n) BI-DEN.Enc(pk, b)
R← Pn([5n]) S← Pn([5n])
For i = 1 to 5n do: For i = 1 to 5n do:

If i ∈ R then If i ∈ S then
pki ← Gen(1n, rR,i) ci ← Enc(pki, b, rS,i)

Else Else
pki ← OGen(1n, rR,i) ci ← OEnc(pki, rS,i)

pk← pk1∥pk2∥ . . . ∥pk5n c← c1∥c2∥ . . . ∥c5n
Return pk Return c

BI-DEN.Dec((R, rR), c)
For i ∈ R do:

di ← Dec(rR,i, ci)

If most di’s are 1 then Return 1
Else Return 0 28



Voting

Encryption.
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Voting

Encryption.
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Voting

Decryption.
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Proof of Correctness

• BI-DEN.Enc should be correct.
• The tail of the hypergeometric distribution:

Pr[X ≤ E[X]− ty = y(M
N − t)] ≤ e−2t2y

Pr[X ≤ E[X] + ty = y(M
N + t)] ≤ e−2t2y

• BI-DEN.Enc:
• Let I be |S ∩ R| and D be R \ S and di = b.
• Decryption error: D + I < n

2 .
• If n

10 < I ≤ n
2 ,

Pr[D ≤ n− I
2 − I

2 ] ≤ Pr[D ≤ (1− 1
9 )E[D]] ≤ e− n−I

324 ≤ e− n
648
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Bideniable Encryption from Simulatable System (2/3)

BI-DEN.DenGen(1n) BI-DEN.DenEnc(pk, b)
R← Pn([5n]) S0 ← Pn([5n])
For i = 1 to 5n do: S1 ← Pn([5n] \ S0)

pki ← Gen(1n, rR,i) Y← Pn([5n] \ (S0 ∪ S1))

pk← pk1∥pk2∥ . . . ∥pk5n For i = 1 to 5n do:
r← rR,1∥rR,2∥ . . . ∥rR,5n If i ∈ S0 then ci ← Enc(pki, 0, rS,i)

If i ∈ S1 then ci ← Enc(pki, 1, rS,i)

If i ∈ Y then ci ← Enc(pki, b, rS,i)

Return (pk, (R, r)) Else ci ← OEnc(pki, rS,i)

c← c1∥c2∥ . . . ∥c5n
Return c
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Bideniable Encryption from Simulatable System (3/3)

BI-DEN.FakeCoins(pk, fk, rS, b, b′)
c← BI-DEN.Enc(pk, b, rS)

z← HGD(5n, n, n)
Z← Pz(Sb′)

Z′ ← Pn−z([5n] \ (S0 ∪ S1 ∪ Y)
R∗ ← Z ∪ Z′

S∗ ← Sb′

For i = 1 to 5n do:
If i ∈ S∗, then r∗S,i ← rS,i
Else r∗S,i ← IOEnc(pki, ci)

If i ∈ R∗, then r∗R,i ← rR,i
Else r∗R,i ← IOGen(pki)

r∗S ← r∗S,1∥r∗S,2∥ . . . ∥r∗S,5n
r∗R ← r∗R,1∥r∗R,2∥ . . . ∥r∗R,5n
Return (r∗S, r∗R)

• Hypergeometric
Distribution:

•
PHGD(x,N,M, y) =
CM

x CN−M
y−x

CN
y

.
• HGD(N,M, y) is

the expectation.
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Cheating

Claim.
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Cheating

In fact.
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Proof of Deniability (1/3)

Experiment G0 Experiment G1
Sb ← Pn([5n]) Sb ← Pn([5n])
R← Pn([5n]) z← HGD(5n, n, n)
S1−b ← Pn([5n] \ (Sb ∪ R)) Z← Pz(Sb)

Y← Pn([5n] \ (Sb ∪ S1−b ∪ R)) Z′ ← Pn−z([5n] \ Sb)

R← Z ∪ Z′

S1−b ← Pn([5n] \ (Sb ∪ R))
Y← Pn([5n] \ (Sb ∪ S1−b ∪ R))

For i = 1 to 5n do: For i = 1 to 5n do:
If i ∈ R, pki ← Gen(1n, rR,i) If i ∈ R, pki ← Gen(1n, rR,i)

Else pki ← OGen(1n, rR,i) Else pki ← OGen(1n, rR,i)

If i ∈ Sb, ci ← Enc(pki, b, rS,i) If i ∈ Sb, ci ← Enc(pki, b, rS,i)

Else ci ← OEnc(pki, rS,i) Else ci ← OEnc(pki, rS,i)

Return (pk, c, (R, rR), (Sb, rS)) Return (pk, c, (R, rR), (Sb, rS))
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Proof of Deniability (2/3)

Experiment G1 Experiment G2
Sb ← Pn([5n]) Sb ← Pn([5n])
z← HGD(5n, n, n) S1−b ← Pn([5n] \ Sb)

Z← Pz(Sb) Y← Pn([5n] \ (Sb ∪ S1−b))

Z′ ← Pn−z([5n] \ Sb) z← HGD(5n, n, n)
R← Z ∪ Z′ Z← Pz(Sb)

S1−b ← Pn([5n] \ (Sb ∪ R)) Z′ ← Pn−z([5n] \ (Sb ∪ S1−b ∪ Y)
Y← Pn([5n] \ (Sb ∪ S1−b ∪ R)) R← Z ∪ Z′

For i = 1 to 5n do: For i = 1 to 5n do:
If i ∈ R, pki ← Gen(1n, rR,i) If i ∈ R, pki ← Gen(1n, rR,i)

Else pki ← OGen(1n, rR,i) Else pki ← OGen(1n, rR,i)

If i ∈ Sb, ci ← Enc(pki, b, rS,i) If i ∈ Sb, ci ← Enc(pki, b, rS,i)

Else ci ← OEnc(pki, rS,i) Else ci ← OEnc(pki, rS,i)

Return (pk, c, (R, rR), (Sb, rS)) Return (pk, c, (R, rR), (Sb, rS))
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Experiment G2 Experiment G3
For i = 1 to 5n do: For i = 1 to 5n do:

pki ← Gen(1n, rR,i)

If i ∈ R, pki ← Gen(1n, rR,i) If i ∈ R, r∗R,i ← rR,i

Else pki ← OGen(1n, rR,i) Else r∗R,i ← IOGen(pki)

If i ∈ Sb, ci ← Enc(pki, b, rS,i) If i ∈ Sb
Else ci ← OEnc(pki, rS,i) ci ← Enc(pki, b, rS,i), r∗S,i ← rS,i

Else if i ∈ S1−b
ci ← Enc(pki, 1− b, rS,i)

r∗S,i ← IOEnc(pki, ci)

Else if i ∈ Y
ci ← Enc(pki, b′, rS,i)

r∗S,i ← IOEnc(pki, ci)

Else
ci ← OEnc(pki, rS,i), r∗S ← rS,i

Return (pk, c, (R, rR), (Sb, rS)) Return (pk, c, (R, r∗R), (Sb, r∗S))
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Question

How does the receiver know S0,S1,Y ?
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Block-wise Deniable Encryption



Problems

• The proposed schemes are bitwise.
• Cost too much.
• Consistency issue.
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Plan-Ahead Bi-Deniable Encryption (1/3)

Gen(1n): Enc(pk,m):

(pk, sk)← Gen′(1n) K0 ← {0, 1}n, b← {0, 1}
Return (pk, sk) casym ← Enc′(pk,K0 ∥ 0n ∥ b)

c0 ← E(K0,m)

c1 ← {0, 1}|cb|

Return casym ∥ cb ∥ c1−b
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Plan-Ahead Bi-Deniable Encryption (2/3)

DenGen(1n): PADenEnc(pk,m0,m1):

(pk, sk, fk)← Gen′(1n) K0,K1 ← {0, 1}n, b← {0, 1}
Return (pk, sk, fk) casym ← DenEnc′(pk,K0 ∥ K1 ∥ b)

c0 ← E(K0,m0)

c1 ← E(K1,m1)

Return casym ∥ cb ∥ c1−b
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Plan-Ahead Bi-Deniable Encryption (3/3)

PARecFake(fk, c,K0 ∥ K1 ∥ b, b′): PASendFake(pk, c, rS, b′):

c← casym ∥ c0 ∥ c1 c← casym ∥ c0 ∥ c1
K0 ∥ K1 ∥ b ∥ r← rS

x← K0 ∥ K1 ∥ b x← K0 ∥ K1 ∥ b
y← Kb′ ∥ 0n ∥ b′ y← Kb′ ∥ 0n ∥ b′
r∗R ← RecFake′(fk, casym, x, y) r∗S ← SendFake′(pk, casym, r, x, y)
Return r∗R Return r∗S
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Chameleon Hash

Chameleon Hash is a trapdoor one-way function with three
requirements:

1. Semantic Security.
2. Collision Resistance.
3. Collision Forgery with the trapdoor.

Most trapdoor pseudo random permutation functions can be used
as chameleon hash functions.
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Ciphertext Pattern

• Normal Ciphertext: V = CH(tb,M).
• Deniable Ciphertext: V = CH(tb,M) = CH(t1−b,M∗).

Note: b can be used as a sender proof.
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Q and A
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