政大在職碩班「專題研討」

Deniable Encryption

Speaker：Po－Wen Chi
Department of Computer Science and Information Engineering，
National Taiwan Normal University
2020／11／16

Who am I？

－紀博文 Po－Wen Chi
－email：neokent＠gapps．ntnu．edu．tw
－Experience：
－National Taiwan Normal University
－Arcadyan Technologies
－Institute for Information Industry
－Interests：
－Applied Cryptography
－Network Security
－Next Generation Network

Outline

- Introduction to Deniable Encryption.
- Shared-Key Deniable Encryption.
- Public-Key Deniable Encryption.
- Bi-Deniable Public-Key Deniable Encryption.
- Block-wise Deniable Encryption.
- Reference.

Don't Worry.

This is not a mathematic course.
Everything will be described in plain Chinese.

Introduction to Deniable Encryption

Deniable Encryption

Deniable Encryption

Deniable Encryption!!

This is a Stupid Scenario!!

Actually, this is a real story.

This is a Stupid Scenario!!

Actually, this is a real story.

Email Service Provider

The U.S. government commanded Snowden's email provider, Lavabit, to release the private key. Will you release or not? Why?

Email Service Provider

The U.S. government commanded Snowden's email provider, Lavabit, to release the private key. Will you release or not? Why?

Lavabit

Email Service Provider

The U.S. government commanded Snowden's email provider, Lavabit, to release the private key. Will you release or not? Why?

Lavabit

On January 20, 2017, Lavabit owner Ladar Levison relaunched the service.

Deniable Encryption

- An encryption scheme is deniable if the entities can generate plausible keys or random coins that will satisfy the authority.
- Usage: Protect people from subpoenas or legal coercion.
- Ex: E-Voter, Journalist, Whistle-blowers.
- Theoretical Properties:
- Non-committing.
- Against selective-opening attacks.
- Incoercible multi-party computation.

Selective Opening Attack

- Given a public key encryption scheme:
- $c=(c[1], c[2], c[3], \ldots, c[n])$.
- $c[i]=E(p k, m[i], r[i]), 1 \leq i \leq n$.
- All coins $r[i]$ are random and independent.
- The adversary is allowed to corrupt some subset I :
- $r[i], i \in I$.
- $m[i], i \in I$.
- The security requirement is that the privacy of the unopened messages is preserved.

Some Definitions

Definition

Computational Indistinguishable:

Let $A=\left\{A_{n}\right\}_{n \in N}$ and $B=\left\{B_{n}\right\}_{n \in N}$ be two probability distributions and $\delta: N \rightarrow[0,1]$. A and B are $\delta(n)$-close if for every polytime distinguisher D and for all large enough n,

$$
\left|\operatorname{Prob}\left(D\left(A_{n}\right)=1\right)-\operatorname{Prob}\left(D\left(B_{n}\right)=1\right)\right|<\delta(n)
$$

If $\delta(n)$ is negligible, A and B are computational indistinguishable and write $A \approx^{c} B$.

Definition

Correctness:

The probability that R 's output is different than $S^{\prime} s$ input is negligible (as a function of n).

Some Definitions

Definition

Plan-Ahead:

A somewhat weaker deniability property allows the encryption algorithm to have the fake messages as part of its input.

Definition

Sender Deniable:

1. Correctness.
2. Security: $E\left[m_{1}\right] \approx^{c} E\left[m_{2}\right]$.
3. Deniability:

- $c=E\left[m_{1}, r_{S}\right]$.
- A faking algorithm ϕ that $r_{s}^{\prime}=\phi\left(m_{1}, r_{s}, c, m_{2}\right)$.
- $\left(m_{2}, r_{s}^{\prime}, c\right) \approx^{c}\left(m_{2}, r_{s}^{\prime \prime}, E\left[m_{2}, r_{s}^{\prime \prime}\right]\right)$.

Some Definitions

Definition

Receiver Deniable:

1. Correctness.
2. Security: $E\left[m_{1}\right] \approx^{c} E\left[m_{2}\right]$.
3. Deniability:

- $c=E\left[m_{1}, r_{R}\right]$.
- A faking algorithm ϕ that $r_{R}^{\prime}=\phi\left(m_{1}, r_{R}, c, m_{2}\right)$.
- $\left(m_{2}, r_{R}^{\prime}, c\right) \approx^{c}\left(m_{2}, r_{R}^{\prime \prime}, E\left[m_{2}, r_{R}^{\prime \prime}\right]\right)$.

Shared-Key Deniable Encryption

Shared-Key Deniable Encryption

- The most trivial solution is: One Time Pad, Vernam Cipher.
- $c \leftarrow m \oplus k$.
- $k^{\prime} \leftarrow c \oplus m^{\prime}$.
- m^{\prime} can be chosen as late as at time of coercion.
- This scheme is not practical for most cases.

Shared-Key Deniable Encryption based on Pseudorandom Generators

- The message will be encrypted:
- $m_{1}=m_{1}^{(1)}, m_{1}^{(2)}, m_{1}^{(3)}, \ldots$.
- Each block $m_{1}^{(j)}$ is n-bit.
- The fake messages:
- $m_{2}=m_{2}^{(1)}, m_{2}^{(2)}, m_{2}^{(3)}, \ldots$.
- $m_{l}=m_{l}^{(1)}, m_{l}^{(2)}, m_{l}^{(3)}, \ldots$
- The shared key:
- k_{1} : n-bit random key.
- k_{2}, \ldots, k_{l} : l-1 independent n-bit fake keys.
- A pseudorandom number generator G :
- Expand n-bit input to $3 n$-bit output.
- Using G iteratively: $G\left(k_{i}^{(j-1)}\right)=k_{i}^{(j)}\left|a_{i}^{(j)}\right| b_{i}^{(j)}$.

Shared-Key Deniable Encryption based on Pseudorandom Gen-

 erators- Encryption:
- $c=c^{(1)}, c^{(2)}, c^{(3)}, \ldots$
- The sender finds the polynomial $Q^{(j)}$ of degree $/-1$ such that $Q^{(j)}\left(a_{i}^{(j)}\right)=m_{i}^{(j)}+b_{i}^{(j)}, i=1 \ldots l$.
- $c^{(j)}=\left\langle j, Q^{(j)}\right\rangle$.
- Decryption:
- $m_{1}^{(j)}=Q^{(j)}\left(a_{1}^{(j)}\right)-b_{1}^{(j)}$.
- Deniability:
- Just select one of fake keys when coercion.

Public-Key Deniable Encryption

Translucent Set

- This scheme is based on the trapdoor SPARSE sets.

1. A small set $S \subset\{0,1\}^{t},|S| \leq 2^{t-k}$ for some k.
2. It is easy to generate random element $x \in S$.
3. Without the trapdoor d, it is infeasible to decide whether $x \in\{0,1\}^{t}$ was chosen from S or uniformly from $\{0,1\}^{t}$.

How to Construct Sparse Sets

- A trapdoor permutation $f:\{0,1\}^{s} \rightarrow\{0,1\}^{s}$.
- A hard-core bit function $B:\{0,1\}^{s} \rightarrow\{0,1\}$.
- Construction I:
- $t=s k$.
- Represent $x \in\{0,1\}^{t}$ as a vector $x=x_{1} x_{2} \ldots x_{k}$, where $x_{i} \in\{0,1\}^{s}$.
- $S=\left\{x \in\{0,1\}^{s k} \mid \forall i=1 \ldots k, B\left(f^{-1}\left(x_{i}\right)\right)=0\right\}$.
- $|S|=2^{(s-1) k}=2^{t-k}$.

How to Construct Sparse Sets

- A trapdoor permutation $f:\{0,1\}^{s} \rightarrow\{0,1\}^{s}$.
- A hard-core bit function $B:\{0,1\}^{s} \rightarrow\{0,1\}$.
- Construction I:
- $t=s k$.
- Represent $x \in\{0,1\}^{t}$ as a vector $x=x_{1} x_{2} \ldots x_{k}$, where $x_{i} \in\{0,1\}^{s}$.
- $S=\left\{x \in\{0,1\}^{s k} \mid \forall i=1 \ldots k, B\left(f^{-1}\left(x_{i}\right)\right)=0\right\}$.
- $|S|=2^{(s-1) k}=2^{t-k}$.
- Construction II:
- $t=s+k$.
- Represent $x \in\{0,1\}^{t}$ as a vector $x=x_{0}, b_{1} b_{2} \ldots b_{k}$, where $x_{0} \in\{0,1\}^{s}$ and $b_{i} \in\{0,1\}$.
- $S=\left\{x \in\{0,1\}^{s+k} \mid \forall i=1 \ldots k, B\left(f^{-i}\left(x_{0}\right)\right)=b_{i}\right\}$.
- $|S|=2^{s}=2^{t-k}$.

Public-Key Sender-Deniable Encryption Scheme 01

- The Basic Scheme:
- Bitwise encryption.
- Public key: $S \subset\{0,1\}^{\text {t }}$; Private key: the trapdoor d.
- Encryption:
- To encrypt 1 , send a random element from S.
- To encrypt 0 , send a random element from $\{0,1\}^{t}$.
- Decryption: Check if the cipher c is in S.
- Dinability: If the encrypted bit is 1 , claim that the cipher is chosen from $\{0,1\}^{t}$ instead from S.
- Only half deniablity.
- The probability of decryption error is $\frac{2^{t-k}}{2^{t}}=2^{-k}$.

Public-Key Sender-Deniable Encryption Scheme 02

- The Parity Scheme:
- Public key: $S \subset\{0,1\}^{t}, R=\{0,1\}^{\text {t }}$; Private key: the trapdoor d.
- Use $V \in\{S, R\}^{n}$ to denote a length n vector.
- Encryption:
- To encrypt 1 , send a $V \in_{R}\{S, R\}^{n}$ where V randomly contains odd S-elements.
- To encrypt 0 , send a $V \in_{R}\{S, R\}^{n}$ where V randomly contains even S-elements.
- Decryption: Reveal the number of elements in V that belongs to S.
- Deniability: The sender can claim V has $i-1 S$-elements rather than i.
- The probability of decryption error is at most $n 2^{-k}$.

Receiver-Deniability and Bi-Deniability

- Receiver-Deniability from Sender-Deniability:
- If there is a Sender-Deniable scheme, the receiver first sends a deniable message r to the sender.
- The sender sends $m \oplus r$ to the receiver.
- Bi-Deniability:
- Sender-and-Receiver-Deniability.
- $\oplus_{i} b_{i}=b$.
- As long as one intermediary node is uncoerced, the sender and the receiver can deny their messages.

What is the Problem?

- We do not like bitwise encryption.
- We do not like interactive encryption.
- We do not like third-party.
- We do not like decryption error.

Bi-Deniable Public-Key Deniable Encryption

Multi-Distributional Bi-Deniable Scheme

- A. O'Neil, C. Peikert and B. Waters proposed Multi-Distributional Bi-Deniable Scheme based on Simulatable Public-Key Encryption.

Definition

Multi-Distributional:

- Multi-Distributional means the parties run alternative key-generation and encryption algorithms for equivocable communication, but claim under coercion to have run the prescribed algorithms.
- Multi-Distributional means the scheme contains normal and deniable encryption at the same time.

A Philosophical Question

- Why would anyone ever choose to send a message according to the non-deniable encryption algorithm?
- It is impossible to eliminate this option because the coercer would know that the sender is lying.
- The purpose of deniability is not at all to convince the coercer, but to preempt coercion in the first place.

Bi-Deniable Scheme

Sender-Deniable	Receiver-Deniable
$p k \leftarrow \operatorname{Gen}\left(1^{n}, r_{R}\right)$	$(p k, f k) \leftarrow \operatorname{DenGen}\left(1^{n}\right)$
$c \leftarrow \operatorname{DenEnc}\left(p k, m, r_{S}\right)$	$c \leftarrow \operatorname{Enc}\left(p k, m, r_{S}\right)$
	$r_{R}^{*} \leftarrow \operatorname{RecFake}\left(p k, f k, c, m^{\prime}\right)$
$r_{S}^{*} \leftarrow \operatorname{SendFake}\left(p k, r_{S}, m, m^{\prime}\right)$	$\left(p k, c, r_{R}^{*}\right)$
Return $\left(p k, c, r_{S}^{*}\right)$	

Bi-Deniable
$(p k, f k) \leftarrow \operatorname{DenGen}\left(1^{n}\right)$
$c \leftarrow \operatorname{DenEnc}\left(p k, m, r_{s}\right)$
$r_{R}^{*} \leftarrow \operatorname{RecFake}(p k, f k, c, b)$
$r_{S}^{*} \leftarrow \operatorname{SendFake}\left(p k, r_{S}, m, m^{\prime}\right)$
Return ($p k, c, r_{S}^{*}, r_{R}^{*}$)

Simulatable Public-Key System

Definition

Given a public-key system (K, E, D, M), where

- K: key generation algorithm; E: encryption algorithm;
- D: decryption algorithm; M : message space generator.
(K, E, D, M) is a simulatable public key system if $\left(\tilde{K}, \tilde{K}^{-1}, C, C^{-1}\right)$ exists:
- Oblivious public key generation:

$$
\begin{gathered}
r \leftarrow R,(P, S) \leftarrow K(r), r^{\prime} \leftarrow \tilde{K}^{-1}(P) \\
r^{\prime \prime} \leftarrow R,\left(P^{\prime \prime}, S^{\prime \prime}\right) \leftarrow \tilde{K}\left(r^{\prime \prime}\right)
\end{gathered}
$$

$\left(r^{\prime}, P\right)$ and $\left(r^{\prime \prime}, P^{\prime \prime}\right)$ are computationally indistinguishable.

Simulatable Public-Key System

Definition

- Oblivious ciphertext generation:

$$
\begin{aligned}
& \qquad \qquad(P, S) \leftarrow K, r_{1} \leftarrow R, C_{1} \leftarrow C\left(P, r_{1}\right) \\
& r_{2} \leftarrow R, C_{2} \leftarrow E_{P}\left(M, r_{2}\right), r_{2}^{\prime} \leftarrow C^{-1}\left(C_{2}, P\right) . \\
& \left(P, r_{1}, C_{1}\right) \text { and }\left(P, r_{2}^{\prime}, C_{2}\right) \text { are computationally } \\
& \text { indistinguishable. }
\end{aligned}
$$

Simulatable Public-Key System

Definition

- Semantic security:

$$
\begin{aligned}
& \qquad \begin{array}{l}
r \leftarrow R,(P, S) \leftarrow K(r) \\
r_{0} \leftarrow R, C_{0} \leftarrow E_{P}\left(M_{0}, r_{0}\right) \\
r_{1} \leftarrow R, C_{1} \leftarrow E_{P}\left(M_{1}, r_{1}\right) \\
\left(P, M_{0}, M_{1}, C_{0}\right) \text { and }\left(P, M_{0}, M_{1}, C_{1}\right) \text { are computationally } \\
\text { indistinguishable. }
\end{array} \text { }
\end{aligned}
$$

ElGamal is Simulatable under DDH Assumption

- ElGamal Encryption:
- Public key: $h=g^{x}, p, g$.
- Private key: x.
- Encryption: $\left(g^{y}, m h^{y}\right)$.
- Oblivious:
- $\tilde{K}=h$.
- $\tilde{K}^{-1}(p, g, h)=(p, g, h)$.
- $C=\left(y_{1}, y_{2}\right)$, where $y_{1} \leftarrow R, y_{2} \leftarrow R$.

Bideniable Encryption from Simulatable System (1/3)

BI-DEN.Gen $\left(1^{n}\right)$	BI-DEN.Enc $(p k, b)$						
$R \leftarrow P_{n}([5 n])$	$S \leftarrow P_{n}([5 n])$						
For $i=1$ to $5 n$ do:	For $i=1$ to $5 n$ do:						
If $i \in R$ then	If $i \in S$ then						
$\quad p k_{i} \leftarrow \operatorname{Gen}\left(1^{n}, r_{R, i}\right)$	$c_{i} \leftarrow \operatorname{Enc}\left(p k_{i}, b, r_{s, i}\right)$						
Else	Else						
$p k_{i} \leftarrow \operatorname{OGen}\left(1^{n}, r_{R, i}\right)$	$c_{i} \leftarrow \operatorname{OEnc}\left(p k_{i}, r_{S, i}\right)$						
$p k \leftarrow p k_{1}\left\\|p k_{2}\right\\| \ldots \\| p k_{5 n}$	$c \leftarrow c_{1}\left\\|c_{2}\right\\| \ldots \\| c_{5 n}$						
Return $p k$	Return c						

$$
\begin{aligned}
& \text { BI-DEN. } \operatorname{Dec}\left(\left(R, r_{R}\right), c\right) \\
& \hline \text { For } i \in R \text { do: } \\
& \quad d_{i} \leftarrow \operatorname{Dec}\left(r_{R, i}, c_{i}\right) \\
& \text { If most } d_{i}^{\prime} \text { 's are } 1 \text { then Return } 1 \\
& \text { Else Return } 0
\end{aligned}
$$

Voting

Encryption.

Voting

Encryption.

Voting

Decryption.

Proof of Correctness

- BI-DEN.Enc should be correct.
- The tail of the hypergeometric distribution:

$$
\begin{aligned}
& \operatorname{Pr}\left[X \leq E[X]-t y=y\left(\frac{M}{N}-t\right)\right] \leq e^{-2 t^{2} y} \\
& \operatorname{Pr}\left[X \leq E[X]+t y=y\left(\frac{M}{N}+t\right)\right] \leq e^{-2 t^{2} y}
\end{aligned}
$$

- BI-DEN.Enc:
- Let $/$ be $|S \cap R|$ and D be $R \backslash S$ and $d_{i}=b$.
- Decryption error: $D+I<\frac{n}{2}$.
- If $\frac{n}{10}<I \leq \frac{n}{2}$,

$$
\operatorname{Pr}\left[D \leq \frac{n-1}{2}-\frac{l}{2}\right] \leq \operatorname{Pr}\left[D \leq\left(1-\frac{1}{9}\right) E[D]\right] \leq e^{-\frac{n-1}{324}} \leq e^{-\frac{n}{648}}
$$

Bideniable Encryption from Simulatable System (2/3)

BI-DEN.DenGen $\left(1^{n}\right)$	BI-DEN.DenEnc $(p k, b)$			
$R \leftarrow P_{n}([5 n])$	$S_{0} \leftarrow P_{n}([5 n])$			
For $i=1$ to $5 n$ do:	$S_{1} \leftarrow P_{n}\left([5 n] \backslash S_{0}\right)$			
$p k_{i} \leftarrow \operatorname{Gen}\left(1^{n}, r_{R, i}\right)$	$Y \leftarrow P_{n}\left([5 n] \backslash\left(S_{0} \cup S_{1}\right)\right)$			
$p k \leftarrow p k_{1}\left\\|p k_{2}\right\\| \ldots \\| p k_{5 n}$	For $i=1$ to $5 n$ do:			
$r \leftarrow r_{R, 1}\left\\|r_{R, 2}\right\\| \ldots \\| r_{R, 5 n}$	If $i \in S_{0}$ then $c_{i} \leftarrow \operatorname{Enc}\left(p k_{i}, 0, r_{S, i}\right)$			
	If $i \in S_{1}$ then $c_{i} \leftarrow \operatorname{Enc}\left(p k_{i}, 1, r_{S, i}\right)$			
	If $i \in Y$ then $c_{i} \leftarrow \operatorname{Enc}\left(p k_{i}, b, r_{S, i}\right)$			
Return $(p k,(R, r))$	Else $c_{i} \leftarrow \operatorname{OEnc}\left(p k_{i}, r_{S, i}\right)$			
	$c \leftarrow c_{1}\left\\|c_{2}\right\\| \ldots \\| c_{5 n}$			
	Return c			

Bideniable Encryption from Simulatable System (3/3)

BI-DEN.FakeCoins($p k, f k, r_{s}, b, b^{\prime}$)
$c \leftarrow \operatorname{BI}-D E N . E n c\left(p k, b, r_{S}\right)$
$z \leftarrow \operatorname{HGD}(5 n, n, n)$
$Z \leftarrow P_{z}\left(S_{b^{\prime}}\right)$
$Z^{\prime} \leftarrow P_{n-z}\left([5 n] \backslash\left(S_{0} \cup S_{1} \cup Y\right)\right.$
$R^{*} \leftarrow Z \cup Z^{\prime}$
$S^{*} \leftarrow S_{b^{\prime}}$
For $i=1$ to $5 n$ do:
If $i \in S^{*}$, then $r_{S, i}^{*} \leftarrow r_{S, i}$
Else $r_{S, i}^{*} \leftarrow l_{\text {OEnc }}\left(p k_{i}, c_{i}\right)$
If $i \in R^{*}$, then $r_{R, i}^{*} \leftarrow r_{R, i}$
Else $r_{R, i}^{*} \leftarrow l_{\text {OGen }}\left(p k_{i}\right)$
$r_{S}^{*} \leftarrow r_{S, 1}^{*}\left\|r_{S, 2}^{*}\right\| \ldots \| r_{S, 5 n}^{*}$
$r_{R}^{*} \leftarrow r_{R, 1}^{*}\left\|r_{R, 2}^{*}\right\| \ldots \| r_{R, 5 n}^{*}$
Return $\left(r_{\varsigma}^{*}, r_{R}^{*}\right)$

- Hypergeometric

Distribution:

$$
\begin{aligned}
& P_{\text {HGD }}(x, N, M, y)= \\
& \frac{C_{x}^{N} C_{y-M}^{N-x}}{C_{y}^{N}} .
\end{aligned}
$$

- $\operatorname{HGD}(N, M, y)$ is the expectation.

Cheating

Claim.

Cheating

In fact.

Proof of Deniability (1/3)

Experiment G_{0}
$S_{b} \leftarrow P_{n}([5 n])$
$R \leftarrow P_{n}([5 n])$
$S_{1-b} \leftarrow P_{n}\left([5 n] \backslash\left(S_{b} \cup R\right)\right)$
$Y \leftarrow P_{n}\left([5 n] \backslash\left(S_{b} \cup S_{1-b} \cup R\right)\right)$

For $i=1$ to $5 n$ do:
If $i \in R, p k_{i} \leftarrow \operatorname{Gen}\left(1^{n}, r_{R, i}\right)$
Else $p k_{i} \leftarrow \operatorname{OGen}\left(1^{n}, r_{R, i}\right)$
If $i \in S_{b}, c_{i} \leftarrow \operatorname{Enc}\left(p k_{i}, b, r_{S, i}\right)$
Else $c_{i} \leftarrow \operatorname{OEnc}\left(p k_{i}, r_{S, i}\right)$
Return (nk $\left.\left(R r_{0}\right)\left(S, r_{0}\right)\right)$

$$
\begin{aligned}
& \text { Experiment } G_{1} \\
& S_{b} \leftarrow P_{n}([5 n]) \\
& z \leftarrow H G D(5 n, n, n) \\
& Z \leftarrow P_{z}\left(S_{b}\right) \\
& Z^{\prime} \leftarrow P_{n-z}\left([5 n] \backslash S_{b}\right) \\
& R \leftarrow Z \cup Z^{\prime} \\
& S_{1-b} \leftarrow P_{n}\left([5 n] \backslash\left(S_{b} \cup R\right)\right) \\
& Y \leftarrow P_{n}\left([5 n] \backslash\left(S_{b} \cup S_{1-b} \cup R\right)\right)
\end{aligned}
$$

For $i=1$ to $5 n$ do:
If $i \in R, p k_{i} \leftarrow \operatorname{Gen}\left(1^{n}, r_{R, i}\right)$
Else $p k_{i} \leftarrow \operatorname{OGen}\left(1^{n}, r_{R, i}\right)$
If $i \in S_{b}, c_{i} \leftarrow \operatorname{Enc}\left(p k_{i}, b, r_{S, i}\right)$
Else $c_{i} \leftarrow \operatorname{OEnc}\left(p k_{i}, r_{S, i}\right)$
Return (nk $\left.\left(R r_{0}\right)\left(S, r_{0}\right)\right)$

Proof of Deniability (2/3)

Experiment G_{1}
$S_{b} \leftarrow P_{n}([5 n])$
$z \leftarrow H G D(5 n, n, n)$
$Z \leftarrow P_{z}\left(S_{b}\right)$
$Z^{\prime} \leftarrow P_{n-z}\left([5 n] \backslash S_{b}\right)$
$R \leftarrow Z \cup Z^{\prime}$
$S_{1-b} \leftarrow P_{n}\left([5 n] \backslash\left(S_{b} \cup R\right)\right)$
$Y \leftarrow P_{n}\left([5 n] \backslash\left(S_{b} \cup S_{1-b} \cup R\right)\right)$
For $i=1$ to $5 n$ do:
If $i \in R, p k_{i} \leftarrow \operatorname{Gen}\left(1^{n}, r_{R, i}\right)$
Else $p k_{i} \leftarrow \operatorname{OGen}\left(1^{n}, r_{R, i}\right)$
If $i \in S_{b}, c_{i} \leftarrow \operatorname{Enc}\left(p k_{i}, b, r_{S, i}\right)$
Else $c_{i} \leftarrow \operatorname{OEnc}\left(p k_{i}, r_{S, i}\right)$

Experiment G_{2}

$$
\begin{aligned}
& S_{b} \leftarrow P_{n}([5 n]) \\
& S_{1-b} \leftarrow P_{n}\left([5 n] \backslash S_{b}\right) \\
& Y \leftarrow P_{n}\left([5 n] \backslash\left(S_{b} \cup S_{1-b}\right)\right) \\
& z \leftarrow H G D(5 n, n, n) \\
& Z \leftarrow P_{z}\left(S_{b}\right) \\
& Z^{\prime} \leftarrow P_{n-z}\left([5 n] \backslash\left(S_{b} \cup S_{1-b} \cup Y\right)\right. \\
& R \leftarrow Z \cup Z^{\prime}
\end{aligned}
$$

For $i=1$ to $5 n$ do:
If $i \in R, p k_{i} \leftarrow \operatorname{Gen}\left(1^{n}, r_{R, i}\right)$
Else $p k_{i} \leftarrow \operatorname{OGen}\left(1^{n}, r_{R, i}\right)$
If $i \in S_{b}, c_{i} \leftarrow \operatorname{Enc}\left(p k_{i}, b, r_{s, i}\right)$
Else $c_{i} \leftarrow \operatorname{OEnc}\left(p k_{i}, r_{s, i}\right)$

Experiment G_{2}
For $i=1$ to $5 n$ do:
If $i \in R, p k_{i} \leftarrow \operatorname{Gen}\left(1^{n}, r_{R, i}\right)$
Else $p k_{i} \leftarrow \operatorname{OGen}\left(1^{n}, r_{R, i}\right)$
If $i \in S_{b}, c_{i} \leftarrow \operatorname{Enc}\left(p k_{i}, b, r_{S, i}\right)$
Else $c_{i} \leftarrow \operatorname{OEnc}\left(p k_{i}, r_{S, i}\right)$

Experiment G_{3}

For $i=1$ to $5 n$ do:

$$
\begin{aligned}
& p k_{i} \leftarrow \operatorname{Gen}\left(1^{n}, r_{R, i}\right) \\
& \text { If } i \in R, r_{R, i}^{*} \leftarrow r_{R, i}
\end{aligned}
$$

Else $r_{R, i}^{*} \leftarrow \mathrm{I}_{\mathrm{OGen}}\left(p k_{i}\right)$
If $i \in S_{b}$

$$
c_{i} \leftarrow \operatorname{Enc}\left(p k_{i}, b, r_{S, i}\right), r_{S, i}^{*} \leftarrow r_{S, i}
$$

Else if $i \in S_{1-b}$

$$
\begin{aligned}
& c_{i} \leftarrow \operatorname{Enc}\left(p k_{i}, 1-b, r_{S, i}\right) \\
& r_{S, i}^{*} \leftarrow \operatorname{IOEnc}\left(p k_{i}, c_{i}\right)
\end{aligned}
$$

Else if $i \in Y$

$$
\begin{aligned}
& c_{i} \leftarrow \operatorname{Enc}\left(p k_{i}, b^{\prime}, r_{S, i}\right) \\
& r_{S, i}^{*} \leftarrow \operatorname{IOEnc}\left(p k_{i}, c_{i}\right)
\end{aligned}
$$

Else
$c_{i} \leftarrow$ OEnc $\left(p k_{i}, r_{s}\right), r_{c}^{*} \leftarrow r_{\mathrm{s}}$

Question

How does the receiver know S_{0}, S_{1}, Y ?

Block-wise Deniable Encryption

Problems

- The proposed schemes are bitwise.
- Cost too much.
- Consistency issue.

Plan-Ahead Bi-Deniable Encryption (1/3)

$\operatorname{Gen}\left(1^{n}\right):$	$\operatorname{Enc}(p k, m):$		
$(p k, s k) \leftarrow \operatorname{Gen}^{\prime}\left(1^{n}\right)$	$K_{0} \leftarrow\{0,1\}^{n}, b \leftarrow\{0,1\}$		
Return $(p k, s k)$	$c_{\text {asym }} \leftarrow \operatorname{Enc}^{\prime}\left(p k, K_{0}\left\\|0^{n}\right\\| b\right)$		
	$c_{0} \leftarrow E\left(K_{0}, m\right)$		
	$c_{1} \leftarrow\{0,1\}\left\|c_{b}\right\|$		
	Return $c_{\text {asym }}\left\\|c_{b}\right\\| c_{1-b}$		

Plan-Ahead Bi-Deniable Encryption (2/3)

DenGen $\left(1^{n}\right):$	PADenEnc $\left(p k, m_{0}, m_{1}\right):$		
$(p k, s k, f k) \leftarrow \operatorname{Gen}^{\prime}\left(1^{n}\right)$	$K_{0}, K_{1} \leftarrow\{0,1\}^{n}, b \leftarrow\{0,1\}$		
Return $(p k, s k, f k)$	$c_{\text {asym }} \leftarrow \operatorname{DenEnc} c^{\prime}\left(p k, K_{0}\left\\|K_{1}\right\\| b\right)$		
	$c_{0} \leftarrow E\left(K_{0}, m_{0}\right)$		
	$c_{1} \leftarrow E\left(K_{1}, m_{1}\right)$		
	$\operatorname{Return} c_{\text {asym }}\left\\|c_{b}\right\\| c_{1-b}$		

Plan-Ahead Bi-Deniable Encryption (3/3)

| PARecFake $\left(f k, c, K_{0}\left\\|K_{1}\right\\| b, b^{\prime}\right):$ | PASendFake $\left(p k, c, r_{S}, b^{\prime}\right):$ | | | |
|---|---|---|---|---|---|---|
| | |
| $c \leftarrow c_{\text {asym }}\left\\|c_{0}\right\\| c_{1}$ | $c \leftarrow c_{\text {asym }}\left\\|c_{0}\right\\| c_{1}$ |
| $x \leftarrow K_{0}\left\\|K_{1}\right\\| b$ | $K_{0}\left\\|K_{1}\right\\| b \\| r \leftarrow r_{S}$ |
| $y \leftarrow K_{b^{\prime}}\left\\|0^{n}\right\\| b^{\prime}$ | $x \leftarrow K_{0}\left\\|K_{1}\right\\| b$ |
| $r_{R}^{*} \leftarrow \operatorname{RecFake}^{\prime}\left(f k, c_{a s y m}, x, y\right)$ | $y \leftarrow K_{b^{\prime}}\left\\|0^{n}\right\\| b^{\prime}$ |
| $\operatorname{Return} r_{R}^{*}$ | $r_{S}^{*} \leftarrow \operatorname{SendFake}^{\prime}\left(p k, c_{a s y m}, r, x, y\right)$ |

Chameleon Hash

Chameleon Hash is a trapdoor one-way function with three requirements:

1. Semantic Security.
2. Collision Resistance.
3. Collision Forgery with the trapdoor.

Most trapdoor pseudo random permutation functions can be used as chameleon hash functions.

Ciphertext Pattern

C1
 C2
 Ciphertext Arguments

- Normal Ciphertext: $V=C H\left(t_{b}, M\right)$.
- Deniable Ciphertext: $V=C H\left(t_{b}, M\right)=C H\left(t_{1-b}, M^{*}\right)$.

Note: b can be used as a sender proof.

Reference

Reference

1. R. Canetti, C. Dwork, M. Naor and R. Ostrovsky. Deniable Encryption. Crypto 1997.
2. A. O'Neil, C. Peikert and B. Waters. Bi-Deniable Public-Key Encryption. Crypto 2011.
3. P. Chi and C. Lei. Audit-Free Cloud Storage via Deniable Attribute-Based Encryption. IEEE TCC 2018.
Q and A

