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Today in PR

Review of Bayes theorem
Bayes Decision Theory

Bayes rule
Loss function & expected loss
Minimum error rate classification

Classification using discriminant functions
Error bounds & probabilities
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Bayes Rule

Suppose, we know P(ω1), P(ω2), P(x|ω1) and P(x|ω2), and that we have observed 
the value of the feature (a random variable) x

How would you decide on the “state of nature” – type of fish, based on this info?
Bayes theory allows us to compute the posterior probabilities from prior and class-
conditional probabilities
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Prior Probability: The total 
probability of correct class being 
class ωj determined based on prior 
experience

Likelihood: The (class-conditional) probability of observing a feature value of 
x, given that the correct class is ωj. All things being equal, the category with 
higher class conditional probability is more “likely” to be the correct class.

Posterior Probability: The 
(conditional) probability of correct 
class being ωj, given that feature 
value x has been observed

Evidence: The total probability of 
observing the feature value as x
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Bayes Decision Rule

Choose ωi if P(ωi | x) > P(ωj | x) for all i≠j, i,j=1,2,…,c

If there are multiple features, x={x1, x2,…, xd} 
Choose ωi if P(ωi | x) > P(ωj | x) for all i≠j i,j=1,2,…,c
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The Loss Function 

Mathematical description of how costly each action (making a class decision) is. Are 
certain mistakes costlier than others?

{ω1, ω2,…, ωc}: Set of states of nature (classes)

{α1, α2,… αa}: Set of possible actions. Note that a need not be same as c. Because we 
may make more (or less) number of actions than the number of classes. 
For example, not making a decision (rejection) is also an action.

{λ1, λ2,… λa}: Losses associated with each action

λ(αi| ωj}: The loss function: Loss incurred by taking action i when the true state of nature 
is in fact j.

R(αi| x): Conditional risk - Expected loss for taking action i
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Bayes decision takes the action that minimizes the conditional risk !
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Bayes Decision Rule
Using Conditional Risk

1. Compute conditional risk for each action taken

2. Select the action that has the minimum conditional risk. Let this be action k

3. The overall risk is then 

4. This is the Bayes Risk, the minimum possible risk that can be taken by any classifier !
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Conditional risk associated with taking action 
α(x) based on the observation x.

Probability that x
will be observed

Integrated over all 
possible values of x
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Two-Class
Special Case

Definitions:
α1: Decide on ω1, 

α2: Decide on ω2, 
λij: λ(αi| ωj) Loss for deciding on ωi when the SON is ωj

Conditional risk: 
R(α1| x) = λ11P(ω1| x)+ λ12P(ω2| x)
R(α2| x) = λ21P(ω1| x)+ λ22P(ω2| x)
Note that λ11 and λ22 need not be zero, though we expect λ11 < λ12, λ22< λ21

Decide on ω1 if R(α1| x) < R(α2| x), decide on ω2, otherwise 

The Likelihood Ratio Test (LRT): Pick ω1 if the 
LRT is greater then a threshold that is independent of x. 
This rule, which minimizes the Bayes risk, is also called 
the Bayes Criterion.
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Example

From R. Gutierrez @ TAMU
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Example
(to be Fully solved on Request on Friday)
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Minimum Error-Rate Classification: 
Multiclass Case

If we associate taking action i as selecting class i, and if all errors are equally likely, we 
obtain the zero-one loss (symmetrical cost function)

This loss function assigns no loss to correct classification, and assigns 1 to misclassification. 
The risk corresponding to this loss function is then 

What does this tell us…?
To minimize this risk (average probability of error), we need to choose the class that 
maximizes the posterior probability P(ωi|x)

( )




≠
=

=
ji
ji

ji  if           ,1
 if          ,0

|ωαλ

∑
=
≠

−==

cj
ij

iji PPR
,...,1

)|(1)|()|( xxx ωωα

( ) ( )
( )

( )
( )

( )
( ) 1

|
|

|
|

x
x

x
xx

j

i

i

j

j

i

P
P

P
P

p
p

ω
ω

ω
ω

ω
ω

⇔=Λ ><
ωi

ωj

><
ωi

ωj

Maximum a posteriori (MAP) criterion
Maximum likelihood criterion for equal priors
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Error Probabilities
(Bayes Rule Rules!)

P(error) = +
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xB: Optimal Bayes solution
x*: Non-optimal solution
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In a two class case, there are two sources of error: x is in R1, yet SON is ω2, or vice versa
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Probability of Error

In multi-class case, there are more ways to be wrong then to be right, so we exploit the fact 
that P(error)=1-P(correct), where

Of course, in order to minimize the P(error), we need to maximize P(correct) for which we 
need to maximize each and every one of the integrals. Note that P(x) is common to all 
integrals, therefore the expression will be maximized by choosing the decision regions Ri
where the posterior probabilities P(ωi|x) are maximum:
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Discriminant Based 
Classification

A discriminant is a function g(x), that discriminates between classes. This function 
assigns the input vector to a class according to its definition: Choose class i if

Bayes rule can be implemented in terms of discriminant functions
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Each discriminant function generates 
c decision regions, R1,…,Rc, which are 
separated by decision boundaries. Decision 
regions need NOT be contiguous.
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Discriminant Functions

We may view the classifier as an automated machine that computes c discriminants 
and selects the category corresponding to the largest discriminant
A neural network is one such classifier

for Bayes classifier with non-uniform risks, R(αi|x): 

for MAP classifier (of uniform risks): 

for maximum likelihood classifier (of equal priors): 
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Discriminant Functions

In fact, multiplying every DF with the same constant, or adding/subtracting a 
constant to all DFs does not change the decision boundary

In general every gi(x) can be replaced by f (gi(x) ), where f(.) is any monotonically 
increasing function without affecting the actual decision boundary
Some linear or non-linear transformations of the previously stated DFs may greatly 
simplify the design of the classifier

What examples can you think of…?
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Normal Densities

If likelihood probabilities are normally distributed, then a number of simplifications can be made. 
In particular, the discriminant function can be written as in this greatly simplified form (!)

There are three distinct cases that can occur:
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Case 1: _________  Ii
2σ=Σ

Features are statistically independent, and all features have the same variance: Dist. are 
spherical in d dimensions, the boundary is a generalized hyperplane (linear discriminant) of 
d-1 dimensions, and features create equal sized hyperspherical clusters. Examples of such 
hyperspherical clusters are:
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If priors are the same:  

Minimum Distance Classifier
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Case 1:________Ii
2σ=Σ

This case results in linear discriminants that can be written in the form

1-D case

2-D case3-D case
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of the ith category

Note how priors shift the discriminant function away from the more likely mean !!!
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Case 2:_______Σ=Σi

Covariance matrices are arbitrary, but equal to each other for all classes. Features then form hyper-
ellipsoidal clusters of equal size and shape. This also results in linear discriminant functions 
whose decision boundaries are again hyperplanes: ( ) ( ) ( )[ ] ( )i
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Case 3:____________Arbitraryi =Σ

All bets are off !In two class case, the decision boundaries form hyperquadratics. 
The discriminant functions are now, in general, quadratic (nor linear) and non-contiguous
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Case 3:____________Arbitraryi =Σ

For the multi class case, the boundaries will look even more complicated. As an example

Decision
Boundaries
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Case 3:____________Arbitraryi =Σ

In 3-D
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Conclusions

The Bayes classifier for normally distributed classes is in general a quadratic 
classifier and can be computed
The Bayes classifier for normally distributed classes with equal covariance matrices 
is a linear classifier

For normally distributed classes with equal covariance matrices and equal priors is 
a minimum – Mahalanobis distance classifier
For normally distributed classes with equal covariance matrices proportional to the 
identity matrix and with equal priors is a minimum Euclidean distance classifier

Note that using a minimum Euclidean or Mahalanobis distance classifier implicitly 
makes certain assumptions regarding statistical properties of the data, which may or 
may not – and in general are not – true.

However, in many cases, certain simplifications and approximations can be made 
that warrant making such assumptions even if they are not true. The bottom line in 
practice in deciding whether the assumptions are warranted is does the damn thing 
solve my classification problem…?
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Error Bounds

It is difficult, at best if possible, to analytically compute the error probabilities, 
Particularly when the decision regions are not contiguous. However, upper bounds for
this error can be obtained:

The Chernoff bound and its approximation Bhattacharya bound are two such bounds 
that are often used. If the distributions are Gaussian, these expressions are relatively
easier to compute Often times even non-Gaussian cases are considered as Gaussian.
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