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INTRODUCTION

Two accomplices in a crime have been arrested and are about
to be locked in widely separated cells. Their only means of com-
munication after they are locked up will he by way of messages con-—
veyed for them by trustees — who are known to be agents of the
warden. The warden is willing to allow the prisomers to exchange
messages in the hope that he can deceive at least one of them into
accepting as a genuine communication from the other either a fraud-
ulent message created by the warden himself or else a modification
by him of a genuine message. However, since he has every reason to
suspect that the prisoners want to coordinate an escape plan, the
warden will only permit the exchanges to occur if the information
contained in the messages is completely open to him -— and presum-
ably innocuous. The prisoners, on the other hand, are willing to
accept these conditions, i.e., to accept some risk of deception in
order to be able to communicate at all, since they need to coordin-
ate their plans. To do this they will have to deceive the warden by
finding a way of communicating secretly in the exchanges, 1.e., of
establishing a “subliminal channel™ between them in full view of
the warden, even though the messages themselves contain no secret
(to the warden) information¥. Since they anticipate that the
warden will try to deceive them by introducing fraudulent messages,

TThis work performed at 3andia National Laboratories supported by the
U. S. Department of Energy under contract number DE-AC04-76DP00789.

*This description is strictly true, i.e., the secret communication
is not by way of a coded selection of messages or of prearranged
code words appearing in a message, etc.

51

Copyright (c) 1998, Springer-Verlag



32 Gustavus J. Simmons

they will only exchange messages if they are permitted to authenti-
cate them.

Even though the problem description appears paradoxical, it
has a surprisingly simple solution. 1In this paper we describe one
way to realize such a subliminal channel, i.e., a solution to the
prisoners' problem.

AUTHENTICATION WITHOUT SECRECY

Superficially, the problem resembles the "authentication
without secrecy" problem discussed by the author in a series of
earlier papers [1,2,3]. While it is true that the prisoners
(transmitter/receiver) insist on authentication and the warden
(opponent) demands access to the message content so that commun-—
ication takes place over an authentication without secrecy channel,
the subliminal channel is actually a subversion (by the transmit-~
ter/receiver), of the authentication channel. In order to appre-
ciate how the subversion is accomplished, we must briefly describe
the authentication without secrecy channel. The chapter entitled
Message Authentication Without Secrecy [1] in Secure Communica-
tions and Asymmetric Cryptosystems is recommended for a more com—
plete discussion.

Authentication depends on the transmitter introducing pre-
arranged redundant information into the messages, the presence of
which in a decrypted cipher will be interpreted by the receiver as
indicating that the communication is genuine. For example, authen-—
tic messages may be required to end in a specified (minimum) num-—
ber of zeroes [4] or in a particular suffix as is the common prac—
tice in military authentication systems. Conversely, the absence
of the prearranged redundant information is interpreted to mean that
the communication is not genuine. Since the opponent must be preven-
ted from simply “"stripping off” the authenticating information from
one message and appending it to another, the authentication is gen—
erally secured by encryption. In many instances the message along
with the authenticating information is block encrypted into a cipher
using either a single key or a two key cryptoalgorithm. In either
case, if the cryptoalgorithm is adequately secure, the probability,
Pp, of an opponent successfully choosing a cipher that will be
accepted by the receiver as a genuine message is simply related to
the information content, Hy., of the redundant authenticating
information: optimally Py =277,

The host to the communication channel (the warden) satisfies
himself that nothing has been concealed in the message by decrypt-
ing the cipher -- either with an encryption/decryption key given
to him after the exchange has taken place if a single key crypto-
algorithm was used or with a decryption key given to him in advance
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The Prisoners’ Problem and the Subliminal Channel 53

of the exchange in a two key system. For single key cryptographic
systems, the host must "trust” the transmitter/receiver until he
receives the decryption key corresponding to the last cipher
exchange —— which if the message is very long may involve an unac-
ceptable level of risk (to him) of covert communication. There

is no way of avoiding this problem for single key systems however,
since if the host has the key in advance so that he can decrypt the
cipher, he could also encrypt and hence create an undetectable for-
gery. The essential -- and vital —- difference for two key crypto-—

' gystems is the absence of this need for even a temporary "trust” by
;either party or the other since the host can have the decryption

" key in his possession prior to any exchange of messages, and hence
“have the ability to verify the message content prior to forwarding

the cipher. On the other hand, since the host cannot infer the
unknown encryption key, the transmitter/receiver are confident

that he cannot better his guessing odds of choosing an acceptable
cipher. Actual authentication without secrecy channels are fre-
quently much more complex than this simplified description suggests.
For example, in an early single key version of a system to authenti-
cate data from unmanned seismic stations designed to monitor Russian
compliance with a commprehensive test ban treaty, the messages,
which were extremely long data streams, were to be transaitted in
the clear along with an appended —- much shorter -- function of the
entire message.

The essential points to an authentication without secrecy chan-—
nel are that;

a) the receiver authenticates a message through the presence
of Hy bits of redundant -- expected —— information in
the decrypted cipher,

b) the host to the communication channel verifies that noth-
ing has been concealed by decrypting the ciphers and veri-
fying that the resulting message is precisely what he
expected based on a foreknowledge of the message.

As mentioned before, the system is operationally different for
the host depending on whether the cryptoalgorithm is single or two
key, since this determines whether he can check for concealed infor-
mation before or after the exchange occurs. However, this does not
alter the way in which he satisfies himself that nothing is con-
cealed —— namely, that the cipher decrypts to the expected message.

THE SUBLIMINAL CHANNEL

In order to communicate Hy bits of information with H, bits of
authentication, Hy + Hy bits in total must be exchanged. The notion
of a subliminal channel in such a situation is extremely simple.
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54 Gustavus J. Simmons

Conceivably the transmitter/receiver could give up some of their
ability to authenticate -- without the host being aware of this —-
and use the resulting information capacity, say Hg bits, to communi-
cate secretly. Admittedly, in such a case, if the host tried to
deceive the receiver sufficiently many times, and if he was told in
each case whether he succeeded or not, he would eventually find that
his probability of success was 2= (Hr=Hs) rather than 279r as would
be the case for the authentication channel agreed to in advance by
the host and the transmitter/receiver. We first illustrate these
notions with the smallest simplified single key example possible.
Hy, = Hg = H, - Hy = 1, in other words, the messages consist of a
single bit of information, the outcome of a fair-coin toss for
example, the subliminal channel will have a capacity of one bit
subverted from a two bit —-- one chance in four of deception —-—

authentication channel to leave a single bit authentication chan-
nel.

We first describe an example of an authentication without
secrecy channel that allows a one bit message to be authenticated
with two bits, i.e., the opponent's probability of deceiving the
receiver is 27Hr = 1/4. oOur encoding rule relating the outcome of
a fair-coin toss to three bit messages is simple; Heads = even par—
ity, Tails = odd parity, Figure 1. In other words, if the outcome
of the coin toss is Heads, the warden would only allow an even
parity exchange to occur. Actually, what the warden and the pri-
soners would have agreed to in advance would be a key list or in
actual practice an equivalent functional description of a parti-

tioning of the message space by keys such as is tabulated in
Figure 2.

110
\‘; =Y
000 011
HeaDs
Figure 1

Copyright (c) 1998, Springer-Verlag



The Prisoners’ Problem and the Subliminal Channel

Heads Tails

1. 000
2. 000
3. 000
4. 000
5. 011
6. 011
7. 011
8. 011
9. 101
10. 101
11. 101
12. 101
13. 110
14. 110
15. 110
16. 110

Figure 2. Xeys for a 1-bit channel and a
2-bit authentication without secrecy

100
010
001
111
100
010
001
111
100
010
001
111
100
010
001
111
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After the prisoners have been locked up, having selected in secret

from the warden one of the sixteen possible keys,
ways the warden might attempt to deceive one of them.

a) before the critical coin toss occurs, he could deliver a

nessage of his own choice,

b) after the coin toss has occurred and the prisoner who is
acting as the transmitter gives to the warden a message
to communicate its outcome, the warden could substitute

another message.

FEven in the most general scheme, the opponent has only these two
types of deceit available as his options; (a) impersomnation or

(b) substitution.

there are two

Clearly, if the sixteen keys are equiprobable, the opponent's

probability of successful impersonation will simply be the proba-

bility that he "guesses" a message that is in the secret key, i.e.,

4/16 = 1/4 in this example. On the other hand, if he waits until

after the coin toss has occurred, whichever message he is given lies
in exactly four keys, corresponding to each of the messages of oppo-
site parity. 1In this case, his probability of successful substitu-
tion is simply the probability that he “"guesses” the unique message

of opposite parity in the secret key, i.e., 1/4 again.
words, in this example the opponent's chances of success are 1/4
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irrespective of whether he tries impersonation or substitution.
Figure 3 shows the key space as a superposition of the message encod-
ing rule and the authentication keys in a way that suggests how the
problem generalizes to the more general case.

In order to set up a one bit subliminal channel, the prisoners
select a secret key, not from the list of sixteen that they osten-
sibly choose from, but rather from among the eight keys shown in
Figure 4.

000 011
Figure 3. Superimposed encoding rules (shaded regions) and
authentication keys (edges).
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Figure 4. Keys for a 1-bit overt channel, a l-bit subliminal
channel and a 1-bit authentication without secrecy channel.
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000
000
000
000
101
101
101
101

011
011
110
110
110
110
011
011

011

111
010
010
111
111
010
010
111

100
001
100
001
100
001
100
001
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Sach of the keys in the list of Figure 4 includes four from the

- in Pigure 2, but what is more important each message is in pre-
~.zz1v four of the keys in Figure 4. For example, the message 000
s 21 keys 1, 2, 3 and 4 as shown in Figure 5. TFigure 6 shows the

== authentication/subliminal channel keys in a schematic way simi-

-5 that shown in Figure 3 for the eight authentication keys.

Since the receiver will now accept (unbeknown to the opponent)
- of four different messages, two of odd parity and two of even

y, the opponent's probability of successful impersonation is

bl

1/2. Similarly, his probability of successful substitution
S/4 = 1/2. As mentioned earlier, if he could make sufficiently
~:=v attempts at deception with this scheme, with feedback on each

Y
:zz21pt as to whether he had succeeded or not, he could quickly

-Zsr that something was amiss when the estimate of his probability
- success converged to 1/2 rather than to 1/4. This is not a prob-

2= in actual applications through since the probability of success
¢ chosen to be very very small so that it is infeasible to estimate
- 5y testing of the channel. Furthermore the simplified model used
2 doesn't provide the essential capability of key changes with

s--cessive messages, an essential property if the opponent is to

-z denied the option of simply substituting a stale message from
-:ze previous exchange.

Figure 7, shows two planes 6 and y(subsets of messages);
Z sn the messages 000, 010, 111, 101 and ¢ on 100, 110, 011, 001.
c::h key in Figure 4 intersects each of these planes, 6 or ¢, in
:xzctly two messages —— one of odd parity and one of even. Hence
© the transmitter receiver have agreed that a message in © say

--—omunicates a subliminal 1 while a message in ¢ communicates a 0,
-~2n no matter which key from Figure 4 they chose, and irrespective
-: whether the outcome of the coin toss in Heads or Tails, they can
::od a subliminal bit. For example, say they choose key 6, then
-zssages 110 and 001 are in ¢ and 010 and 101 are in 6. If Heads

: to be transmitted, either message 110 or 101 will be correctly
—~zerpreted by the receiver (and the host) to mean that Heads was
--= outcome of the coin toss. In addition, the receiver will inter-
--zt 110, which is in ¢, to be a subliminal O or 101, which is in

. to be a subliminal 1. It should be an easy matter for the

-.zder to convince himself, using Figures 6 and 7, that there is
--thing special about this particular choice of key and message bit,
-~4 that the same is true for all possible choices of keys, encoding

—~.les and subliminal bits. In fact, this small -—- eight message ——
:zample was constructed from the (8,4,2,3) orthogonal array: others
-2 arbitrary size —— numbers of messages and keys —— can be con~

szructed similarly.
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000 011

Figure 7

In this section we describe a single bit subliminal channel
that is as cryptosecure as a product of three large primes is
difficult to factor, and whose existence 1s as hard to detect as
the associated factoring problem. In order to explain the sublim-

inal channel, we must first collect a few elementary number theory
results.

Let n = pqr be the product of three primes p, q and r where
p =q =3 (mod 4), r =5 (mod 8) and n is computationally infea-
sible to factor; i.e., the same conditions are observed on the
choices of p, q and r as would be necessary for the choices for
“good” p and ¢ in the RSA cryptosystem [5], however, as will be
apparent in the subsequent discussion we are only using the fac-
toring problem as a means of constructing a one-way function ——
not as a basis for a crgptoalgorithm as in the RSA cryptoscheme.
Any quadratic residue x° in the ring, R, of residues mod n, where
(x*,n) = 1, has eight square roots of the form:

x = (fa)qr + (#B)pr + (*y)pq )
where (+a) denotes 0 < a < p and p-a, etc.

%2

azqzr2 + szzrz + szzqz (mod n) - (2)

As is well known, if one can extract square roots in Ry, one
can also, with probability that goes to one like -27k for k attempts,
factor n. 1In other words, given only a square, x , in R and n, it
will with probability one be computationally infeasible to find any
square root of x2. On the other hand, as we show below, 1f one
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The Prisoners’ Problem and the Subliminal Channel 61
knows p, q and r it is only of order log n computational difficulty
to compute the eight square roots of x2.

(2) can be replaced by three simple quadratic congruences in
terms of p, q and r:

«?(q2r2) = x? (mod p)
B2(p2r2) = x2  (mod q) » - (3)
v2(p2q?) = x? (mod 1)

If one knows p, q and r, i.e., the factorization of n, the residue
of the parenthetic squares of the products of pairs of prime factors
can be calculated with respect to the modulus in advance and by one
application of the Fuclidean algorithm the multiplicative inverse
found. Let (x)p denote the least positive residue of x (mod p)

then (3) can be rewritten in the form;

a2 = ((qzrz);lxz)p = a(x) (mod p)
52 = ((erZ);lXZ)q = b(x) (mod q) . 39
Y2 = ((quz);lxz)r = e(x) (mod r)

Consequently finding the eight square roots of xz, given the fac-
torization of n is only computationally as difficult as solving

the three congruences in (3'). As is well known [6], the quadratic
congruence

X~ = a (mod p) (%)

has the simple solution

i

x = + akfl (mod p) (5
if p = 4k+3. The computational difficulty is therefore propor-—
tional to log p in this case. Less well known, is the fact that
1f the prime is of the form p = B8k+5 congruence (4) can also be
solved by exponentiation at a cost proportional to log p by (5) if

aZk+l = q (mod p) (6)

or else by

X = i(E%l)(éa)k+l (mod p) (7

if
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aZktl = (mod p) . (8)

Combining the results of (1), (3'), (5) and (7) we see that Ehe comp
tational difficulty in computing the eight square roots of x° in R,
given the factorization of n is only proportional to log p; i.e.,

a computationally easy task for values of n sufficiently large that

the computation of the square roots would be completely infeasible
without the factorizationm.

We next explain the conditions imposed earlier on the primes P,
q and r; namely tBat P =q =3 (mod 4) and r = 5 (mod 8). The eight
square roots of x“ in R,, where n = pqr in this case, are grouped so
that precisely two satisfy each $f the four possible pairs of condi-
tions x < n/2 or x > n/2 and (%J = +1 or (%) = -1. To show this
we first note that for a p a prime of form p = 4k+3 x and its comple
ment p-xX have different Jacobi symbols:

(5) 7 (55 = ) = (%)

On the other hand, for a prime p of the form p = 4k+l, x and its
complement p—x have the same Jacobi symbol:

(5) 7 (58 = G0 = 05 -

Therefore the Jacobi symbols for a square root x of %% 1in R, and its
complement n-x are the same:

(pae) ™ ) ™ (el (Phee™) = GHIEI ) ()

-1)2 ~“X\ = -
DR (B - (rx)

Since for each square root x, both x and n—x are square roots of x2
in Ry, the square roots partition into four < n/2 and four > n/2.

For any odd modulus n for which there exists at least one prime
p for which¥

2K+

there are ¢(n)/2 reduced residues x for which (g) = +1 and ¥(n)/2
for which (£) = -1. This result combined with that of the preceding

t (x/n) is the Jacobi symbol.

# p2k*lyn means that p2ktl divides n but p2k*2 does not.
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paragraph implies that the eight square roots of %2 group into pairs

as claimed: figuratively
x <1 x >
2 2
X X
X b:d (%) =1
X X (%) = -1
X x

Table 1 shows this splitting for the forty-eight square roots in
R1gs for example.

Table 1.

square roots

n n

[47 x < 5 X v 5
X}y =0 Xy =1 V=0 Xy =1

squares (n) <n> <“) (n)

1 29 34 1 41 71 76 64 104
4 37 47 2 23 58 68 82 103
16 11 31 4 46 74 94 59 101
46 19 44 16 26 61 86 79 89
64 22 43 8 13 62 83 92 97
79 17 38 32 52 67 88 53 73

Using the properties of quadratic congruences in qur just
established, it is possible to define a subliminal channel -- whose
very existence is computationally infeasible for amn opponent to
establish. Let X be the set of quadratic residues in Ry. The
authentication without secrecy channel that we first define has X
as the set of acceptable (authentic) messages and the square
roots of the x2 ¢ X as the ciphers to be exchanged. At the time
that the channel is agreed to by the host and the transmitter/
receiver, the transmitter/receiver give to the host the modulus n
and declare in advance the Jacobi symbol and magnitude bound they
have agreed to accept as the authentic, square root. They do not
tell the host that the modulus is the product of three primes == a
fact that is as hard for him to verify as it would be for him to
factor n. The host can of course at a cost proportional to log n,
He therefore knows that for every

verify that n is composite.
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x2 ¢ X there is a square root satisfying the preannounced criteria
for authentication. However it ig completely infeasible for him

subliminal channel requires that both the transmitter and the
receiver do 0(log n) computation. Given the message x2 ¢ X, the
transmitter calculates the eight square roots of x » selects the
pair that satisfy the authentication eriteria and then sends the
smaller of these roots to communicate a subliminal 0 or the larger
to communicate a 1. The host, knowing x<¢ and having been given

X by the transmitter squares the cipher (x) to verify that it
corresponds to the already known message and also computes (ﬁ)

to verify that the cipher has the correct Jacobi symbol and magni-
tude. As far as he can determine this is a legitimate authentica-
tion without secrecy channel. The receiver, however, knowing p,
q_.and r upon receiving x* solves for the eight square roots of

X=, etc., just as the transmitter did and decodes the subliminal
bit by checking whether he received the larger or smaller "authen-
tic” square root of x%2.

Example:

p = 103

i

q =107 = 3 nmod 4
r = 101 = mod 8
n =103 x 107 x 101 = 1,113,121

Let the message be x2 = 384,512 s0 that (3') becomes

ot = 66(x2)p =34 (mod 103)
g2 = 47(x2)q =85  (mod 107) .
¥ 247G, 233 (mod 101)

Using (5), we solve for a and B.
@ = £(34)26 =72 or 31 (nod 103)
B = %8527 237 or 70 (mod 107)
Since
3325 100 (mod 101)
we must use (7) to solve for vy

Y = #51(21)13 = 72 or 29 (mod 101) .
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Substituting these values for a«, f and y into (1) we obtain the
square roots of 384 512

x < x > 1
2 2
369,503 843,406
269,715 743,618 E) =+
400,319 1,039,537 Z)=-1
| 73,584 712,802
Thus if the authentication criteria were x < n/2 and (%} = -1

and the message was 384,512, the cipher 400,319 would communi-
cate a subliminal 1 while 73,584 would communicate a O.

There is a serious problem with the subliminal channel
just described. Although the warden can't detect that the pri-
soners are exchanging a secret bit in each message, he can with
probability as close to 1 as he wishes deceive one of them
into accepting a forgery as an authentic message. To do this
he uses forward search [7] in the following way:

a) He selects a random x € Ry, x < n/2 or x > n/2 depending
on the authentication criteria announced by the prisoners.

b) If (x,n) # 1, he has found a factor of n and has broken
the underlying cryptosystem. The probability of this
happening is =~ 1/p + 1/q + 1/r.

c) If (x,n) = 1, he calculates (%J.

d) If (%J satisfies the authentication criteria —— which
will be the case with probability 1/2 —- he calculates
%2 and gives it to the receiver (prisoner) who will
accept it as an authentic message. The associated sub-
liminal bit will randomly be 1 or O with probability 1/2.

To stop the forward search attack by the host, it is necessary
to restrict the set of acceptable messages so that the opponents’
chances of a random "hit" are sufficiently low to be an acceptable
tisk for the transmitter/receiver. For example, if the primes are
all = m bit numbers (binary representation) so that flogz n] = 3m,
and the number of quadratic residues is ¢(n) = (p-1)(g-1)(v-1), the
number of acceptable square roots will be ¢(n)/4 = 3wm-2. The quad-
fatic residues that are in a specified residue class with respect to
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a prime g, with say m bits in itg binary representation, is one g
subclass. In this case the warden's probability of a hit will be
2=(m+1) 4, that it is computationally infeasible for him to searct
out an acceptable x2 by testing random x's, on the other hand, the
aumber of possible messages ig ~ 22(m-1 » 1.e., the information ecq
tent per message can be as much as 2m—2 bits. This is not necessa
ily a good choice for an acceptable message subset, but illustrate
the essent!al point about how forward search can be protected agai
by the transmitter/receiver.

CONCLUSION

Since the discussion of the two examples of subliminal chan-
nels has bheen lengthy and unavoidably detailed, we conclude with a
succinet gtatement of the principal on which subliminal channels a:
based. In an authentication without secrecy channel wherein the
host satisfles himself that nothing is hidden in the exchange by
decrypting the cipher to recover the expected message and the
receiver authenticates messages by verifying that m bits of pre-—
agreed upou redundant information are present, the transmitter/
receiver can exchange —— unbeknown to the host -- part or all of
this ability to authenticate for a corresponding bit-for-bit
capability of subliminal communication. A simplified statement
of this conclusion is that it ig feasible to design cryptoalgor~
ithms in which several ciphers decrypt to the same message, and
hence in whilch it is possible to communicate some side information,
over and above that in the message itself, by way of the identity
of the particular cipher used. In addition, in the second example,
it was shown that such a subliminal channel can be made just as
difficult to detect as the underlying cryptoalgorithm is diffi-
cult to break.
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