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Abstract

We present the first undeniable signatures scheme based on RSA. Since their intro-
duction in 1989 a significant amount of work has been devoted to the investigation of
undeniable signatures. So far, this work has been based on discrete log systems. In
contrast, our scheme uses regular RSA signatures to generate undeniable signatures. In
this new setting, both the signature and verification exponents of RSA are kept secret
by the signer, while the public key consists of a composite modulus and a sample RSA
signature on a single public message.

Our scheme possesses several attractive properties. First of all, provable security, as
forging the undeniable signatures is as hard as forging regular RSA signatures. Second,
both the confirmation and denial protocols are zero-knowledge. In addition, these pro-
tocols are efficient (particularly, the confirmation protocol involves only two rounds of
communication and a small number of exponentiations). Furthermore the RSA-based
structure of our scheme provides with simple and elegant solutions to add several of the
more advanced properties of undeniable signatures found in the literature, including
convertibility of the undeniable signatures (into publicly verifiable ones), the possibility
to delegate the ability to confirm and deny signatures to a third party without giving
up the power to sign, and the existence of distributed (threshold) versions of the signing
and confirmation operations.

Due to the above properties and the fact that our undeniable signatures are identical
in form to standard RSA signatures, the scheme we present becomes a very attractive
candidate for practical implementations.

1 Introduction

The central role of digital signatures in the commercial and legal aspects of the evolving
electronic commerce world is well recognized. Digital signatures bind signers to the con-
tents of the documents they sign. The ability for any third party to verify the validity
of a signature is usually seen as the basis for the “non-repudiation” aspect of digital sig-
natures, and their main source of attractiveness. However, this universal verifiability (or
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self-authenticating) property of digital signatures is not always a desirable property. Such
is the case of a signature binding parties to a confidential agreement, or of a signature on
documents carrying private or personal information. In these cases limiting the ability of
third parties to verify the validity of a signature is an important goal. However, if we limit
the verification to such an extent that it cannot be verified by, say, a judge in case of a
dispute then the whole value of such signatures is seriously questioned. Thus, the question
is how to generate signatures which limit the verification capabilities yet without giving up
on the central property of non-repudiation.

An answer to this problem was provided by Chaum and van Antwerpen [CA89] who
introduced undeniable signatures. Such signatures are characterized by the property that
verification can only be achieved by interacting with the legitimate signer (through a confir-
mation protocol). On the other hand, the signer can prove that a forgery is such by engaging
in a denial protocol. 1t is required that the following property be satisfied: if on a specific
message and signature the confirmation protocol outputs that the pair is a valid signature
then on the same input the denial protocol would not output that it is a forgery. The
combination of these two protocols, confirmation and denial, protects both the recipient of
the signature and the signer, and preserves the non-repudiation property found in tradi-
tional digital signatures. The recipient is protected since the ability of a signer to confirm
a signature means that at no later point will the signer be able to deny the signature. For
example, in the case of an eventual dispute, the recipient of the signature can resort to a
designated authority (e.g., a judge) in order to demonstrate the signature’s validity. In this
case the signer will be required to confirm or deny the signature. If the signer does not
succeed in denying (in particular, if it refuses to cooperate) then the signer remains legally
bound to the signature (such will be the case if the alleged signature was a correct one).
On the other hand the signer is protected by the fact that his signatures cannot be verified
by unauthorized third parties without his own cooperation and the denial protocol protects
him from false claims.

The protection of signatures from universal verifiability is not only justified by confiden-
tiality and privacy concerns but it also opens a wide range of applications where verifying
a signature is a valuable operation by itself. A typical example presented in the undeniable
signatures literature is the case of a software company (or for this matter any other form
of electronic publisher) that uses signature confirmation as a means to provides a proof of
authenticity of their software to authorized (e.g., paying) customers only. This example
illustrates the core observation on which the notion of undeniable signatures stands: veri-
fication of signatures, and not only their generation, is a valuable resource to be protected.

1.1 Components and Security of Undeniable Signatures Schemes

There are three main components to undeniable signature schemes. The signature gener-
ation algorithm (including the details of private and public information), the confirmation
protocol, and the denial protocol. Signature generation is much like a regular signature
generation, namely, an operation performed by the signer on the message which results
in a string that is provided to the requester of the signature. The confirmation protocol
is usually modeled after an interactive proof where the signer acts as the prover and the
holder of the signature as the verifier. The input to the protocol is a message and its alleged



signature (as well as the public key information associated with the signer). In case that
the input pair is formed by a message and its legitimate signature then the prover can
convince the verifier that this is the case, while if the signature does not correspond to the
message then the probability of the prover to convince the verifier is negligible. Similarly,
the denial protocol is an interactive proof designed to prove that a given input pair does
not correspond to a message and its signature. However, if the alleged input signature does
correspond to the input message then the probability of the prover to convince the verifier
of the contrary is negligible. Note, that engaging in the confirmation protocol and having
it fail is not an indication that the signature is invalid, this can only be established through
the denial protocol. That is the confirmation protocol only establishes validity, and the
denial — invalidity.

In addition to the above properties required from the confirmation and denial protocol,
there are two basic security requirements on undeniable signatures. The first is unforgeabil-
ity, namely, without access to the private key of the signer no one should be able to produce
legitimate signatures by himself. This is similar to the unforgeability requirement in the
case of regular digital signatures, but here the modeling of the attacker is somewhat more
complex. In addition to having access to chosen messages signed by the legitimate signer,
the attacker may also get to interact with the signer on different instances of the above
confirmation and denial protocols, possibly on input pairs of his own choice. The second
requirement is non-transferability of the signature, namely, no attacker (under the above
model) should be able to convince any other party, without the cooperation of the legitimate
signer, of the validity or invalidity of a given message and signature. Both of these require-
ments induce necessary properties on the components of an undeniable signature scheme.
In particular, the confirmation and denial protocols should not leak any information that
can be used by an attacker to forge or transfer a signature. As a consequence it is desirable
that these protocols be zero-knowledge!. As for the strings representing signatures, they
should provide no information that could help a party to get convinced of the validity (or
invalidity) of the signature. Somewhat more formally, it is required that the legitimate
signature(s) corresponding to a given message be simulatable, namely, they should be indis-
tinguishable from strings that can be efficiently generated without knowledge of the secret
signing key.

1.2 Advanced Properties of Undeniable Signatures

Much of the work on undeniable signatures has been motivated by the search for schemes
that provide all of the above properties but that, in addition, enjoy some additional at-
tractive properties. These include convertibility (the possibility to transform undeniable
signatures into regular, i.e. self-authenticating, signatures by just publishing a short piece
of information, [BCDP90]), delegation (enabling selected third parties to confirm/deny sig-
natures but not to sign), distribution of power (threshold version of the signature and
confirmation protocols, [Ped91]), designated confirmer schemes (in which the recipient of
the signature is assured that a specific third party will be able to confirm the signature at
a later time, [Cha94]), and designated verifier schemes (in which the prover can make sure

! At the minimum, if not zero-knowledge, these protocols should be proven to provide no “useful” infor-
mation for the attacker to break the security of the scheme.



that only a specified verifier benefits from interacting with the prover on the confirmation
of a signature, [JSI96]). More details on these extensions are provided in Section 5.

1.3 Previous Work on Undeniable Signatures

Since their introduction in 1989, undeniable signatures have received a significant attention
in the cryptographic research community [CA89, Cha90, BCDP90, DY91, FOO91, Ped91,
CvHP91, Cha94, Jak94, Oka94, Mic96, DP96, JSI96, JY96]. These works have provided
a variety of different schemes for undeniable signatures with variable degrees of security,
provability, and additional features. Interestingly, all these works are discrete logarithm
based. In [BCDP90] the problem of constructing schemes based on different assumptions,
in particular RSA, was suggested as a possible research direction.

Most influential are the works of Chaum and van Antwerpen [CA89] and Chaum [Cha90].
The first work introduces the notion of undeniable signatures and provides protocols which
are the basis for many of the subsequent works. The second improves significantly on the
initial solution by providing zero-knowledge versions of these protocols. The formalization
of the basic notions behind undeniable signatures was mainly carried out in the works by
Boyar, Chaum, Damgard and Pedersen [BCDP90] and by Damgard and Pedersen [DP96].
In [BCDPI0] the notion of convertible schemes was introduced. In such schemes the signer
can publish a short string that converts the scheme into a regular signature scheme. However
the scheme presented in [BCDP90] was recently broken in [Mic96]. The repaired solution
presented therein however does not come with a proof of security. [DP96] present the first
convertible schemes with proven security (based on cryptographic assumptions).

1.4 Our Contribution

Our work is the first to present undeniable schemes based on RSA?. Our undeniable signa-
ture scheme produces signatures that are identical in form to RSA signatures. The essential
difference from traditional RSA signatures is that in our case both the signature and veri-
fication exponents of RSA are kept secret by the signer, while the public key consists of a
composite modulus and a sample RSA signature on a single public message.

Not only does our solution expand the list of available number-theoretic assumptions
that suffice to build undeniable signatures, but it achieves and improves, as we show below,
in a simple and elegant way several of the desirable properties of undeniable signatures.

Unforgeability: Our construction allows us to prove in a simple way that security of these
signatures against forging is equivalent to the unforgeability of RSA signatures®. Provable
unforgeability of undeniable signatures was presented for the first time in the recent paper
by [DP96] where forgery of the proposed scheme is proven equivalent to forgery of the
ElGamal scheme.

Simulatability: Non-transferability of an RSA signature is a non-standard requirement in
the context of traditional RSA. We prove this property under the assumption that deciding

2Chaum in [Cha94] uses RSA signatures on top of regular undeniable signatures to provide “designated
confirmer signatures”; however the underlying undeniable signatures are still discrete log-based.

3As with regular RSA, the use of a strong one-way hash function is assumed to provide unforgeability
against chosen message attacks.



on the equality of discrete logarithms under different bases is intractable. A similar assump-
tion is required in previous works as well* although, by itself, it is not always sufficient to
prove simulatability of the undeniable signatures. For example in [DP96] the simulatability
property is only conjectured to follow from such assumptions.

Zero-Knowledge: Our confirmation and denial protocols have the interactive proof prop-
erties as explained above and are also zero-knowledge. Therefore they do not leak any
information that could otherwise be used for forging signatures. The soundness of our pro-
tocols (i.e. the guarantee that the prover/signer cannot cheat) relies on the use of composite
numbers of a special form (specifically, with “safe prime” factors), which are secure moduli
for RSA. A signer who chooses a modulus of a different form may have some way to cheat
in our protocols. To force the signer to choose a “proper” modulus we require that he
prove the correct choice of primes at the time he registers his public key with a certification
authority. A discussion of this issue is presented in Section 4. An interesting question is
whether our solution, or a different one, can work with a different kind of RSA moduli.

Efficiency: Our protocols are efficient (comparable to the most efficient alternatives found
in the undeniable signatures literature). The confirmation protocol takes two rounds of
communication (which is minimal for zero-knowledge protocols [GK96]) and involves a
small number of exponentiations. The denial protocol is somewhat more expensive as it
consists of a basic two-round protocol with small, but not negligible, probability of error
(e.g., 1/1000) which needs to be repeated sequentially in order to further reduce the error
probability. Its performance is still significantly better (by a factor of 10) than alternative
protocols that only achieve probability 1/2 in each execution. We also note that in typical
uses of undeniable signature schemes one expects to apply more frequently confirmation
than denial. The latter is mainly needed to settle legal disputes.

Advanced Properties: In addition to the above security and efficiency properties, our
solution naturally achieves several of the advanced features of undeniable signatures men-
tioned above. Once again it is the structure of RSA, in particular the presence of a secret
verification exponent, that allows to achieve such properties very elegantly. Convertibility
is achieved by publishing the verification exponent, thus converting the signatures into reg-
ular RSA signatures; delegation is achieved by providing the verification exponent to the
delegated party which can then run the confirmation and denial protocols but cannot sign
messages or forge signatures; distribution of the signature operation builds on the existing
threshold solutions for RSA signatures; distribution of confirmation can be also achieved by
an adaptation of the regular threshold RSA solutions. We can also adapt existing techniques
for the construction of designated confirmer and designated verifier undeniable signatures,
thus obtaining these variants also for our scheme. More details are provided in Section 5.

Standard RSA compatibility: An important practical advantage of our RSA-based un-
deniable scheme is that the signatures themselves are identical in form to standard RSA

*In our case the discrete logarithms are computed modulo a composite number while in previous works
they are modulo a prime. In both cases, the problem is related to the problem of computing discrete
logarithms which is considered to be hard (in the case of a composite modulus that difficulty is implied by
the hardness of factoring and also directly by the assumed security of RSA). However, while the feasibility
of computing discrete logarithm implies the feasibility of the above decision problem, the reverse direction
is not known to hold.



signatures. In particular, this means that they fit directly into existing standardized com-
munication protocols that use (regular) RSA signatures.

Technically, our work builds on previous ideas and protocols which we adapt to the RSA
case. These previous solutions are designed to exploit the algebraic properties of cyclic
groups like Z (and its subgroups). This is probably the main reason that subsequent work
concentrated on these structures as well. Here we show that many of these ideas can be used
in the context of RSA, thus answering in the affirmative a question suggested in [BCDP90].
In doing so we use ideas from the work of Gennaro et al. [GJKR96].

The paper is organized as follows: in Section 2 we give notation and some number
theoretical lemmas. In Sections 3 and 4 we describe the new undeniable signature scheme
and prove its properties and security. Section 5 includes extension of the scheme to variations
of undeniable signatures suggested in the literature.

2 Preliminaries

Notation. Throughout the paper we use the following notation:

For a positive integer k we denote [k] % {1,---,k}. Z’ denotes the multiplicative group
of integers modulo n, and ¢(n) = (p — 1)(¢ — 1) the order of this group. For an element
w € Z} we denote by ord(w) the order of w in Z}. The subgroup generated by an element
w € Z) is denoted by <w>.

The following technical lemmas are needed in our proofs in Section 3.

Lemma 1 Let n = pq, wherep < q, p=2p'+1, g =2¢"+ 1, and p,q,p,q" are all prime
numbers. Then,

1. The order of elements in Z} is one of the set {1,2,7',¢',20',2¢',9'¢',20'¢'}.

2. Given an element w € Z} \ {—1,1}, such that ord(w) < p'q’ then either ged(w —1,n)
or ged(w + 1,n) is a prime factor of n.

Proof. 1. To find the order of elements in Z it is enough to note that the maximal order
of such an element is 2p'q’ and that all the other orders must divide this one.

2. From the above property we get thatif 1 < ord(w) < p'¢/, then ord(w) € {2,9',¢',2p',2q¢'}.
If ord(w) =2, w # —1, then n|(w — 1)(w + 1) and then ged(w — 1,n) must be a non-trivial
factor of n. In case that ord(w) = p, w? =1modn = w” =1modgq. If w=1modg
then w — 1 is a multiple of ¢ which is smaller than n, otherwise p'|¢(q) = 2¢’, a contra-
diction. A similar argument holds for ord(w) = ¢’. Finally in the case that ord(w) = 2p/,

w? = 1modn = (w?? = 1modgq. If w? = 1 mod g then either w — 1 or w 4 1 is a
multiple of ¢ which is smaller than n, otherwise p'|¢(g) = 2¢’, a contradiction. Again a
similar argument holds for ord(w) = 2¢’. |

As a consequence of the above lemma we can assume in our protocols that any value found
by a party that does not know (and cannot compute) the factorization of n must be of order
at least p'¢’ in Z; (except for 1,-1).

Lemma 2 Let n be as in Lemma 1. Given an element w such that ord(w) € {p'¢’,2p'q'}
then for every m € Z* it holds that m* e<w>.



Proof. We shall give the proof for the case ord(w) = 2p'q’ and show that m? e<w>. If
m €<w> then clearly the claim holds. Otherwise, Z* =<w> Um <w>. If m? e<w>
then we are done, otherwise it must hold that m? € m <w>. This in return requires that
m €<w>, contradiction. The case of ord(w) = p'q’ is proved similarly. |

3 The New Undeniable Signature Scheme

In this section we present the details of our scheme. We start by defining the following set:

N = {n|ln=pq, p<q, p=2p+1, ¢g=2¢'+1,

and p,q,p’,q¢ are all prime numbers}

The system is set up by the signer in the following manner: chooses a random element
n € N; selects elements e, d € ¢(n) such that ed = 1 mod ¢(n); chooses a pair (w, S,,) with
w € Z w# 1,8, = w? mod n; sets the public key parameters to the tuple (n,w, S, ); sets
the private key to (e, d).

We shall denote by PK the set of all tuples (n,w, S,) generated as above. We refer the
reader to Section 4.3 for a discussion on the form of the public key and how to verify its
correctness. In particular, it is shown there that the value of w can always be set to a fixed
number, e.g. w = 2. This simplifies the public key system and adds to the efficiency of
computing exponentiations with base w.

3.1 Generating a Signature

To generate a signature on a message m the signer carries out a regular RSA signing oper-
ation, i.e. he computes $,, = m? mod n, outputting the pair (m,S,,). More precisely, the
message m is first processed through a suitable encoding (e.g., via one-way hashing) before
applying the exponentiation such that the resultant signature scheme can be assumed to
be unforgeable even against chosen message attacks (plain RSA does not have this prop-
erty). Given a message m we will denote by m the output of such an encoding of m (we
do not specify any encoding in particular)®. Thus, the resultant signature of m will be

Sm ' ¢ mod n. In the case of the pair (w, S, ) we will slightly abuse the notation and
write S, to denote w* mod n (i.e., we directly exponentiate w rather than ).

3.2 Confirmation Protocol

In Figure 1 we present a protocol for confirming a signature. It is carried out by two players
a prover and a verifier. The public input to the protocol are the public key parameters,
namely (n,w,S,) € PK, and a pair (m, S'm) For the case that S, is a valid signature of
m, then P will be able to convince V of this fact, while if the signature is invalid then no
prover (even a computationally unbounded one) will be able to convince V' to the contrary
except for a negligible probability.

®For simplicity we will assume a deterministic encoding; however randomized encodings, e.g. [BR96], can
be used as well but then, in our case, the random bits used for the encoding need to be attached to the
signature.



This protocol is basically the same as the protocol of Gennaro et al. [GJKR96] (based
on [Cha90]) where it is used in a different application, namely, threshold RSA. Our variation
on this protocol uses the verification key e rather than the signature key d as originally used
in [GJKR96] (in their case, the signer knows only d but not e). Still the basic proof given in
that paper applies to our case due to the symmetry that exists between d and e when both
exponents are kept secret. This modification allows us to provide solutions where the ability
to confirm signatures can be delegated to third parties while keeping the ability to sign new
messages only for the original signer (it also allows for a distributed prover solution). See
Section 5 for the details.

The idea of the protocol is for the verifier to test the alleged signature on m by producing
a related element which looks random to the signer and for which the verifier knows the
signature (given that the signature on m is correct). This “blinded” element is created via
the exponentiation of the message m with a random exponent ¢ and its multiplication with
a random exponent j of the value w (for which the correct signature S, is publicly known).
Intuitively, a cheating prover needs to find the values of ¢ and j in order to cheat. However,
there are many pairs of exponents that give the same result and we show that the prover
(even if computationally unbounded) cannot distinguish among them.

An interesting aspect of this protocol is that a prover could succeed in convincing the
verifier to accept a signature on m even when this signature is not m? mod n but am® mod
n where o is an element of order 2 (in Z?). [GJKR96] solve this problem through the
assumption (valid in their case) that the prover cannot factor n and thus cannot find such
an element a. In our case, this assumption does not hold. We deal with this problem by
accepting as valid signatures also these particular multiples of m? On the other hand,
when designing the denial protocol we make sure that the signer cannot deny a signature
of this extended form. That is, we define the set of valid signatures for a message m as

STG(m) ¥ {8, : S, = am?, ord(a) < 2}.

Signature Confirmation Protocol

Input: Prover:  Secret key (d,e) € [¢(n)]?
Common: Public key (n,w, Sy) € PK,
m € Z) and alleged S,

1. V chooses 4,j €g [n] and computes Q def

V—-P:Q

S§%8,,7 modn

2. P computes A def @° modn
P—V:A

3. V verifies that A = m%w’ mod n.
If equality holds then V accepts S,, as the signature on m, other-
wise “undetermined”.

Figure 1: Proving that $,, € STG(m) (ZK steps omitted)




For ease of exposition the protocol in Figure 1 appears in a non zero-knowledge format. How-
ever, there are well-known techniques [GMW91, BCC88, Gol95] to add the zero-knowledge
property to the above protocol using the notion of a commitment function: Instead of P
sending A in Step 2, he sends a commitment commit(A), after which V reveals to P the

values of ¢ and j. After checking that @ et ,SA',%fSwj mod n, P sends A to V . The verifier
checks that A corresponds to the value committed by P and then performs the test of Step
3 above.

The zero-knowledge condition is achieved through the properties of the commitment
function, namely, (i) commit(z) reveals no information on z, and (ii) P cannot find &’
such that commit(z) = commit(z’). Commitment functions can be implemented in many
ways. For example, in the above protocol commit(A) can be implemented as a probabilistic
(semantically secure) RSA encryption of A using a public key for which the private key is
not known to V' (and possibly, not even known to P ). To open the commitment, P reveals
both A and the string » used for the probabilistic encryption. This implementation of a
commitment function is very efficient as it does not involve long exponentiations (and is
secure since we assume our adversary, the verifier in this case, is unable to break RSA).

Theorem 1 Confirmation Theorem. Let (n,w,S,) € PK.

Completeness. Given S, € SIG(m), if P and V follow the Signature Confirmation protocol
then V always accepts S, as a valid signature.

Soundness. A cheating prover P*, even computationally unbounded, cannot convince V to
accept S,, & STG(m) with probability greater than %.

Zero-knowledge. The protocol is zero-knowledge, namely, on input a message and its valid
signature, any (possibly cheating) verifier V* interacting with prover P does not learn
any information aside from the validity of the signature.

Proof.

Completeness. Immediate from inspection of the protocol. Note that raising S to an even
power eliminates any extra factor of order 2, if such exists, from the signature (such factors

are allowed by definition of STG(m)).

Soundness. We adapt the proof from [GJKR96] to our case. The prover’s probability to
cheat, i.e. to convince V to accept S ¢ STG(m), is maximized by choosing A that passes
V’s test (in Step 3) with maximal probability (relative to the values ¢, j chosen by V). As the
prover chooses A after having seen the “challenge” @ from V (and based on its knowledge
of S'm, m,w,d,e and n), the proof of soundness needs to capture that some information on
1,7 (at least from the information theoretic point of view) is available to the prover when
selecting A.

In the actual protocol, V' chooses ¢, j randomly from the set [n]; for simplicity of analysis
we will assume that these values are chosen from [¢(n)], and will account for the event that
either ¢ or j fall outside of this range in the prover’s probability to cheat. The probability
of such event (i.e., that ¢ or 5 ¢ [¢p(n)]), denoted by 7y, is at most 2%2. Thus, in the
sequel, we assume 2,7 €5 [$(n)].



We define I(Q) = {1 € [¢(n)] : 37,Q = 5283 mod n}. Since S, ¢ STG(m) we can
write S,, = am?, for a € Z}, ord(a) > 2. In Step 3 the verifier will check whether

A= m2iwj — a—2ei‘§72rfis’§}j — a—2eiQe (1)

As the value o has been set in advance, then for any A the number of ¢’s which satisfy
Equation (1) is the same as the number of 4’s such that a* = A~%Q which is at most
¢(n)/ord(c). Given @, V’s choice of 4 is uniformly distributed over I(Q), as for each
1 € I(Q) there is the same number of values 7 which satisfy the equation @ = 5'3;5{0 mod n.
Thus, the probability of P to succeed is at most %ﬂ. We denote the later quantity
by 75 and proceed to bound it by bounding |I(Q)|.

Clearly if V follows the protocol then I(Q) is not empty. Now we show that V@ properly
formed, |I(Q)| > ord(w).

If I(Q) is non-empty then for a value i € I(Q) and A such that $22 €<S,>, it holds
that s + A € I(Q) (because there exist j, ;' such that @ = Sf,foﬂ and 5'an = §J’ from which
it follows that Q = $§2(+2) 673"y Therefore, we get that {i + A : §22 €<S§,> and A <
#(n)} C I(Q). Thus, the size of I(Q) is at least the size of the set D = {A < ¢é(n) :
S,Z,LA €<S,>}. We proceed to bound the size of D. Using standard arguments it is easy to
show that if ¢ is the minimal non-zero element of D then the elements of D are exactly the
multiples of § (smaller than ¢(n)). Thus, |D| = ¢(n)/6. We now show that § < 2L Let

ord(w)
17 < 1 < 6. The cosets 5',2,51 <S5,> and 5',2,32 <Sy> are disjoint (a common element would
imply that S,z,fiz_il) €< S, > in contradiction to the minimality of §). Thus, an < Sy >,
S% <8,>, - 520 <8, >, are § disjoint cosets in Z* each of size | <S,> |. The latter size is
exactly ord(w) since <S,>=<w>, as 9, = w? and d is relatively prime to ¢(n). We thus

have § < Orlg(al}) = ofa(z?u);)' In conclusion, |I(Q)| > |D| = ¢(n)/é > ord(w). Combining all
the above we get that 7, < %, and the total failure probability is at most m; + 7.

(We stress that the above holds also for a computationally unbounded cheating prover,
and that the bound is tight for such a prover, up to the term 7; = 2%2)

The above bound on the probability of success of a cheating prover is given in terms
of the order of elements in the group Z!. Recall that we are using n’s of a special form,
i.e. n = pg where p = 2p' + 1 and ¢ = 2¢' + 1, with p,q,p’, ¢ all large primes. Assume
w.lo.g. that p’ < ¢/. Using Lemma 1 we can claim that ord(w) > p'q’ and ord(a) > p/,
thus 7, < ]%. Also, the expression Q%M) is at most 2/p’ in this case. This proves the
soundness statement in the theorem.

Zero-Knowledge. Immediate (see remarks after the description of the protocol). [ |

3.3 Denial Protocol

Figure 2 exhibits the Denial Protocol. The public input to the protocol are the public key
parameters, namely (n,w,S,) € PK, and a pair (m, S'm) In the case that S, ¢ SIG(m),
then P will be able to convince V of this fact, while if 5,, € STG(m) then no prover (even
a computationally unbounded one) will be able to convince V' that the signature is invalid
except with negligible probability.

Our solution is based on a protocol due to Chaum [Cha90], designed to prove in zero-
knowledge the inequality of the discrete logarithms of two elements over a prime field Z,
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Denial Protocol

Input: Prover:  Secret key (d,e) € [¢(n)]?
Common: Public key (n,w, Sy) € PK,
m € Z,; and alleged non-signature S

1. V chooses i = 4b, b €g [k] and j €g [n].
Sets @1 = m'w’ mod n and @z = 5.5, modn
V— P:(Q1,Q2)

2. P computes Q1/Q%5 = (;’: ) and computes i = 4b by testing all
possible values of b € [k]. "
If such a value was found then P sets A = 1, otherwise abort.

P—V:A

3. V verifies that A = 4. If equality holds then V rejects S, as a
signature of m, otherwise, undetermined.

Figure 2: Proving that $,, ¢ STG(m) (ZK steps omitted)

relative to two different bases. The protocol and proof presented in the above paper do not
work over Z? for a composite n as required here, in particular, since they strongly rely on
the existence of a generator for the multiplicative group Z;. However, a careful adaptation
of that protocol and a more involved proof can be shown to solve our problem over Z.

The protocol (see Figure 2) works in the following manner: the verifier gives the prover
in Step 1 two values from which the prover can extract, using the verification exponent e,
the quotient (Sﬁ: )¢, for some value ¢ chosen by V. The verifier accepts the run of the protocol
only if the prover can find the value 5. We will see that if S, is not a valid signature of the
message m, then P exhaustively searches the range for the desired value of <. However, in
case that §,, is a valid signature of m, the above quotient equals 1 regardless of the value
of 2. Then the prover cannot learn any information about 2 and can only try to guess that
value (see the proof below for a formal argument).

In order to allow for an exhaustive search of < by P , one needs to choose the range of ¢
to be relatively small. If the upper bound on ¢ is set to some value k, then the prover needs

to perform k multiplications (of the value S%) to find 7. The protocol has thus probability
2. Notice that by choosing k = O(ﬁ)g n) the cost of the exhaustive search is then
roughly equivalent to a single long exponentiation. On the other hand, the probability of
cheating in this case is 1/k. If we take, for example, k& = 1024 we can repeat the protocol
ten times in order to achieve a security of 21% As stated in the introduction this allows
for a ten fold increase in efficency relative to alternative protocols that need to repeat a
subprotocol that bounds the cheating probability by only 1/2.

The protocol as presented in Figure 2 omits the steps that make it zero-knowledge.
This is similar to the case of the confirmation protocol. Yet, in this protocol special care
needs to be taken in Step 2. If the (honest) prover does not find a value ¢ that satisfies
the equation, which means that V is cheating, P aborts the execution of the protocol.

of error
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Though aborting the protocol does not reveal much information it does reveal some, and
in the zero-knowledge version we do not want even this much information to leak. Thus, P
should continue the execution of the protocol by committing to the value 0, in a “dummy
commitment” this will conceal the information of whether a value ¢ was found or not. Note
that in the case where no ¢ was found, the verifier will be exposed later as a cheater and
the commitment of 0 will never be revealed.

Theorem 2 Denial Protocol Let (n,w, S,) € PK.

Completeness. Assuming that S ¢ SIG(m), and if P and V follow the protocol then V
always accepts that S, is not a valid signature of m.

Soundness. Assuming that S, € SIG(m) then a cheating prover P*, even computationally
unbounded, cannot convince V to reject the signature with probability greater than
1 o(1)
PR

Zero-knowledge. The protocol is zero-knowledge, namely, on input a message and a non-
valid signature, any (possibly cheating) verifier V* interacting with prover P does not
learn any information aside from the fact that S, is in fact not a valid signature for
the message m.

Proof.

Com pIeteness In the following we omit the modn from the notation. We can assume that
S = am? where ord(a) > p/, this holds as §,,, Mm% are in Z* and hence a exists furthermore
Sm & SIG(m) indicating that ord(a) > p/. The prover will not be able to find the value i
only if ord(Z- ) < 4k. The order ord(Z- ) = ord(JZ) = ord(a®). As (e,¢(n)) = 1 we have

that ord(a®) > p'. As we take k < p' we prove our claim.

Soundness. We stress that the following proof holds also for a computationally unbounded
prover. In order for P to convince V that S, is not a valid signature he must send V a
value A such that A = 4. As §,, € STG(m) it holds that S,, = am? where ord(a) < 2.
Thus, Q; = 5551 = a'mPw?d = (Mmwi)® As m* €<w> (Lemma 2), it holds that
3l such that w' = m* Thus, Q; = mw’ = W' and Q, = (M'w!)? = w4 A
computationally unbounded prover, can compute the value » such that Q; = w" = w"*s.
Then to compute 2 the prover still needs to find b, that is he needs to solve the equation
r = lb+ j mod ord(w). Assuming that j €r [¢(n)] then for every possible value of b there
would be 0%8) possible value of 7 indicating that the best P could do is to guess at random
giving a probability of +. Allowing for the fact that j €x [n] (instead of j €g [¢(n)] as
assumed above) we get % + %,ﬂ.

Zero-knowledge. The protocol as presented in Figure 2 is not zero-knowledge. However, as
explained above, using the same techniques described in the confirmation protocol (and a
“dummy commitment” in case of early abortion) we achieve zero-knowledge for this protocol
as well. |
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4 Security Analysis

We do not present here a formal treatment of the security requirements of undeniable
signatures. For such a formal and complete treatment we refer the reader to the paper
by Damgard and Pedersen [DP96]; an outline of these notions can be found above in our
introduction (in particular, in Section 1.1). Here we argue the security properties of our
solution based on this outline, and the zero-knowledge results from previous section.

4.1 Unforgeability of Signatures

In this section we will prove the following theorem.

Theorem 3 Assuming that the underlying RSA signatures are unforgeable (against known
and/or chosen message attacks) then our undeniable signatures are unforgeable (against the
same attacks).

As noted before, RSA is not directly immune against chosen message attacks but we
assume this to be countered by additional means, e.g. by the appropriate encoding of the
message prior to the exponentiation — see Section 3.1.

Assume that there exists a forger F which can forge an undeniable signature in our
scheme after receiving the undeniable public key pair and interacting with the signer in
confirmation and denial protocols. That is the forger outputs a pair (m, S,,) where S, =
am?, ord(a) < 2. We will construct an attacker A who will use this forger and forge
regular RSA signatures. Given the RSA public key (n,e) of a signer S for which A would
like to forge a signature he proceeds as follows. He chooses a random value r and sets
the public key of the undeniable signature scheme to the triple (n,w = ¢ mod n, S, = 7)
and gives these values to F. When F requests an undeniable signature on a message m
the attacker A asks S to sign this message and hands F the pair (m,S,,). When A is
requested by F to participate in a confirmation/denial protocol on a pair (m,S) then A
checks if m is a previously signed message and 5,, = 5, if yes then he interacts with the
forger in a confirmation protocol otherwise he interacts in a denial protocol. The attacker
utilizes the simulator for these protocols. We assume that the pair (m, §) still hasn’t helped
the attacker to factor the modulus. After this procedure the forger F output a forgery of
our undeniable scheme, i.e. a pair (m,m?) or (m, am?) where ord(a) = 2. A forgery for
the RSA scheme is achieved as follows. If the pair is (m,m*) then A outputs this value
directly, as it is a standard RSA signature. In the second case, A holds the value e and thus
by computing (am?)®/m A extracts o (note that e is odd) and in return factors n which
enables to generate forgeries. Note that A has asked the signer only for signatures which
the forger has asked, thus the forger’s output must be of a signature on a message which
was not previously signed by the signer of the standard RSA scheme.

4.2 Indistinguishability of Signatures

A basic goal of undeniable signatures is that no one should be able to verify the validity (or
invalidity) of a message and its (alleged) signature without interacting with the legitimate
signer in a confirmation (or denial) protocol. Following [DP96] we need to show that given
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the public key information and any message m (but not the signature exponent d) one
can efficiently generate a simulated signature s(m) of m, in the sense that the distribution
of simulated signatures cannot be distinguished (efficiently) from the distribution of true
signatures on m. We achieve this property in the following way. Given any message m, we
apply to it the encoding m as determined by the underlying RSA scheme and then raise the
result 7 to a random exponent modulo n (i.e., s(m) = m” mod n, for 7 € [n]). Notice that
distinguishing s(m) from the signature m* mod n on m is equivalent to deciding whether

log,,(s(m)) = log,, (S.) (2)

where the discrete logarithm operation is taken in Z*. This problem has no known efficient
solution, though its equivalence to RSA, factoring, or the discrete logarithm problems has
not been established.® We thus require the following intractability assumption in order to
claim the hardness of distinguishing between valid and simulated signatures.

Assumption EDL: For values n,w, S,,m, and s(w) as defined above it is infeasible to
decide the validity of equation (2) over Z;.

Note that the encoding of m is part of the assumption. We stress that the analogous
assumption modulo a prime number is necessary for claiming the security of previous unde-
niable signature schemes as well (see [DP96]). However, while we can prove that the EDL
assumption implies the simulatability of our signatures, in [DP96] this implication is not
proven but just conjectured to hold.

Theorem 4 Under the above EDL assumption, our signatures are simulatable and hence
cannot be verified without the signer’s (or its delegated confirmers) cooperation.

Remark: The above theorem does not concern itself with a general problem of undeniable
signatures pointed out first by Desmedt and Yung [DY91]. It is possible that the signer
is fooled into proving a signature to several (mutually distrustful) verifiers while he is
convinced of proving the signature to only one of them. We will address this problem in
Section 5.

4.3 Choosing the Signer’s Keys

In Section 3 we defined what the public and private parameters for the signer should be.
Our analysis of the (soundness of the) confirmation and denial protocols depends on these
parameters being selected correctly. Typically, the verification of this public key will be done
whenever the signer registers it with a trusted party (e.g., a certification authority). Here
we outline protocols to check the right composition of the modulus n, the sample element
w, and the fact that .S, is chosen as a power of w (the latter serves as the “commitment”
of the signer to the signature exponent d). Notice that these protocols are executed only
once at registration time and not during the subsequent signing/verification operations. We

6The problem is at least as hard as the decisional Diffie-Hellman problem (i-e., given a triple (g%, g¥,r)
decide whether 7 = g®¥). For the case of a composite modulus (our case), the related search problem (given
9°,¢¥ find ¢®¥) is known to be at least as hard as factoring [Shm85, McC88]. A similar result for the
decisional problem is not known; such a result would imply that all the security aspects of our construction
could be based solely on the security of RSA.
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denote by V the entity that acts as the verifier of these parameters, and by P the signer
that proves its correct choices.

VERIFICATION THAT w IS OF HIGH ORDER. Specifically, we use in our analysis the assump-
tion that w is an element of order at least p'q’. By virtue of Lemma 1 all that V needs to
verify is that w ¢ {—1,1} and that ged(w — 1,7n) is not a factor of n. Actually, the value w
can be chosen as a constant, e.g. w = 2, for all the undeniable signatures public keys. Such
a value must always pass the verification (or otherwise factoring is trivial).

VERIFICATION THAT S5, €<w>. The following protocol is essentially the protocol for
proving possession of discrete logarithms as presented in [CEvdG87], once again modified
in order to work with composite moduli. The signer P chooses a value r €g [¢(n)] and sends
to V the value w’ = w”. The verifier V answers with a random bit . If 6 = 0, P returns the
value r, otherwise it returns the value d + » mod ¢(n). In the first case, V' checks whether
w” = w', and in the second, whether w("+9 = w'S,,. If w ¢ <w> then the probability that P
passes this test is 1/2. By repeating this procedure k times the probability that the dealer
can cheat reduces to 27%. The protocol is statistical zero-knowledge as the simulator does
not know ¢(n), but can use the uniform distribution on [1..n] to statistically approximate
the one on [1..¢(n)]. As a practical matter, we observe that this protocol can be performed
non-interactively if one assumes the existence of an ideal hash function (a la Fiat-Shamir

[FS86]).

VERIFICATION OF THE PRIME FACTORS. We need to check that the signer chooses the
modulus n of the right form, i.e. n = pg with p = 2p'+ 1 and ¢ = 2¢' + 1 and p,q,7',¢
are all prime numbers. Recently, Gennaro, Micciancio and Rabin [GMR98] have presented
a zero-knowledge proof to verify that a composite is of a slightly different form, where p, g
are of the form p =2pf + 1 and ¢ = 2¢° +1. Applying their techniques in our setting even
though the test if for a prime power the result is that it equates the signer’s probability of
cheating with the probability of factoring his composite. See [GMRI8] for details.

5 Extensions

Our protocols lend themselves to many of the existing extensions in the literature for un-
deniable signatures.

5.1 Convertible Undeniable Signatures

This variation appeared first in [BCDP90], and secure schemes based on ElGamal signa-
tures have been recently presented in [DP96]. Convertible undeniable signatures enable the
signer to publish a value which transforms the undeniable signature into a regular (i.e.,
self-authenticating) digital signature. In our scheme conversion can be easily achieved by
simply publishing the value e = d~! mod ¢(n). Doing so the signer will transform the un-
deniable signatures into regular RSA signatures with public key (n, e). Notice that this will
automatically imply the security (i.e., unforgeability) of the converted scheme, based on the
security of regular RSA signatures.”

"Notice that this holds if the signer issued for the message m its intended signature Sy, = m® mod n. If,
instead, the signer generated a signature of the form S, = am?, where o is an element of order 2, then when
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SELECTIVE CONVERSION. In some applications it may be desirable to convert only a subset
of the past signatures (selective conversion [BCDP90]). For this scenario we can make use
of a non-interactive zero-knowledge confirmation proof for those messages.

Let (my, S1),...,(my, S¢) be the message—signature pairs that the signer wants to con-
vert. If the signer were allowed to interact with an honest verifier he could use the public-
coin, statistical zero-knowledge, confirmation protocol in Figure 3. The protocol is based
on a similar one in [CP92] which works for prime moduli. &

Honest Verifier Signature Confirmation Protocol

Input: Prover: secret d,e € [¢(n)]
Common: RSA composite n € NV, sample message w € Z,
signature Sy, messages my, ..., my, claimed S1,...,5;

1. P chooses r €g [¢(n)] and computes «; Lef m; modn for ¢ =
1,...,Zand,8d§fwr mod n
P—V:iay,...,a,0

2. V chooses ¢ €g [n]

V—P:c
3. P computes ¢ = r + ¢d mod ¢(n)
P—V:a
4. V checks if:
o;S; =mf modnfort=1,...,f and 8S; = w* mod n

If all equalities holds then V accepts the S;’s as the signatures on
the m;’s, otherwise it rejects.

Figure 3: Proving that S; € STG(m;) to an honest verifier

In order to use this protocol for selective conversion we need to make it non—interactive
using standard techniques (e.g. computing the challenge via a hash-function applied to the
first message.) Security is retained in the random oracle model [BR93].

5.2 Delegation

The idea is for the signer to delegate the ability to confirm and deny to a third party without
providing that party the capabilities to generate signatures. In the literature this notion is
usually treated in the context of convertibility of signatures. However the two notions are
conceptually different. Clearly the information used in order to delegate confirmation/denial
authority to a third party if made public would basically convert undeniable signatures into

e is made public it is easy to recover a (and then the factorization of n) from a triple (m, Sm = am? e)
since e is odd. We stress that although we consider as valid also signatures of that form (see Section 3.2),
it is in the interest of the prover not to generate them in that way.

8We stress that we did not use this protocol as our main confirmation protocol since it is zero-knowledge
only against an honest verifier.
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universally verifiable ones. However the converse is not necessarily true. It may be that
the information used to convert signatures, if given secretly to a third party, would still not
allow that party to prove in a non-transferable way the validity /invalidity of a signature®.
In our setting the signer can simply give the third party the key e which is the only needed
information in order to carry out successfully the denial and confirmation protocols. Clearly,
the recipient of e cannot sign by itself as this is the basic assumption behind regular RSA
signatures.

5.3 Distributed Provers (and signers)

Distributed Provers for undeniable signatures were introduced by Pedersen [Ped91]. With
distributed provers the signer can delegate the capability to confirm/deny signatures, with-
out needing to trust a single party. This is obtained by sharing the key, used to verify
signatures, using a (verifiable) secret sharing scheme among the provers. This way only if
t out of the n provers cooperate it is possible to verify or deny a signature. The existing
solutions for threshold RSA signatures [DDFY94, GJKR96] can then be used to obtain an
efficient distributed scheme as the only operation needed during confirmation or denial pro-
tocols is RSA exponentiations. The fault-tolerance of the protocol in [GJKR96] guarantees
the security of the scheme even in the presence of ¢ (out of n) maliciously behaving provers.

As Pedersen pointed out in [Ped91], undeniable signatures with distributed provers
present some difficulties. Indeed when the provers are presented with a message and its
alleged signature, they have to decide which protocol (either the denial or the confirmation)
to use. They can do this by first distributively checking for themselves if the claimed
signature is correct or not. But this in turn means that a dishonest prover can use the
other provers as an oracle to the verification key at his will. The problem applies to our
schemes as well. Several ways of dealing with the problem have been suggested in the
literature [Ped91, JY96] some of which easily extend to our scenario.

Also solutions for threshold RSA allow to share the power to sign (in addition to the
power to verify/deny signatures) among several servers. Once again in case of possibly
maliciously behaving signers a fault-tolerant scheme as [GJKR96] must be used.

5.4 Designated Verifier

The following problem of undeniable signatures has been pointed out (see [DY91, Jak94]):
in general a mutually suspicious group of verifiers can get simultaneously convinced of the
validity of a signature by interacting with the signer in a single execution of the confir-
mation protocol (in other words, the signer may believe that it is providing the signature
confirmation to a single verifier while in actuality several of them are getting convinced at
once). This is possible by having the “official” verifier act as the intermediary (or man in
the middle) between the prover and the larger set of verifiers. While this is not always a
problem, in some cases this may defeat the purpose of undeniable signatures (e.g., if the
signer wants to receive payment from each verifier that gets a signature confirmation).
Jakobsson et al. [JSI96] present a solution to this problem through the notion of des-
ignated verifiers proofs that is readily applicable to our scheme. All that is required is for

®An example is the above scheme for the selective conversion of signatures.
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the verifier to have a public key. Then when the prover commits to his answer during
the zero-knowledge steps of our protocols he will use a trapdoor commitment scheme (as
in [BCC88]) which the verifier can open in any way. This will prevent the verifier from
“transferring” the proof (see [JSI96] for the details).

5.5 Designated Confirmer

Designated confirmer undeniable signatures were introduced by Chaum in [Cha94]| and
further studied by Okamoto in [Oka94]. This variant of undeniable signature is used to
provide the recipient of a signature with a guarantee that a specified third party (called a
“designated confirmer”) will later be able to confirm that signature. Notice the difference
between this variant and the delegation property described above. Indeed in the present
case the signature is specifically bound at time of generation to a particular confirmer. The
techniques of [Cha94, Oka94| easily extend to our scheme.

An Open Question

It would be interesting to see whether efficient undeniable signatures could be designed
using more general form of composite.
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