
0018-9162/07/$25.00 © 2007 IEEE68 Computer P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

R E S E A R C H F E A T U R E

word-based authentication methods are susceptible to
attacks if used on insecure communication channels like
the Internet. Meanwhile, complex passwords might get
lost or stolen when users write them down, defeating
the purpose of constructing secure password-based
authentication schemes in the first place.

COMMON MECHANISMS
AND SECURITY CONCERNS

Transmitting a password in plaintext from the user to
the server is the simplest (and most insecure) method of
password-based authentication. To validate a user pass-
word, the server compares it with a password (either in
plaintext or an image of the password under a one-way
function) stored in a file. However, this method lets an
adversary passively eavesdrop on the communication
channel to learn the password.

Challenge-response protocol
To secure against passive eavesdropping, researchers

have developed challenge-response protocols.1 To initi-
ate a challenge-response protocol, Entity A sends a mes-
sage containing A’s identity to Entity B. Then B sends A
a random number, called a challenge.

A uses the challenge and its password to perform some
computation and sends the result, called a response, to
B. Then B uses A’s stored password to perform the same
computation and verify the response. Since B chooses a
different challenge for every run of the protocol, an

Password-based authentication is susceptible to attack if used on insecure communication

channels like the Internet. Researchers have engineered several protocols to prevent

attacks, but we still need formal models to analyze and aid in the effective design of

acceptable password protocols geared to prevent dictionary attacks.

Saikat Chakrabarti and Mukesh Singhal
University of Kentucky

A uthentication provides a means of reliably
identifying an entity. The most common veri-
fication technique is to check whether the
claimant possesses information or character-
istics that a genuine entity should possess. For

example, we can authenticate a phone call by recogniz-
ing a person’s voice and identify people we know by rec-
ognizing their appearance.

But the authentication process can get complicated
when visual or auditory clues aren’t available to help
with identification—for example, when a print spooler
tries to authenticate a printer over the network, or a
computer tries to authenticate a human user logging in.

A computer can authenticate humans through

• biometric devices such as retinal scanners, finger-
print analyzers, and voice-recognition systems that
authenticate who the user is;

• passwords that authenticate what the user knows;
• and smart cards and physical keys that authenticate

what the user has.

Because they’re cheap and convenient, passwords
have become the most popular technique for authenti-
cating users trying to access confidential data stored in
computers. However, password-based authentication is
vulnerable to several forms of attack.

People generally select short, easily memorized pass-
words to log in to a server without considering that pass-

Password-Based
Authentication: Preventing
Dictionary Attacks

adversary can’t simply eavesdrop, record messages,
and resend them at a later time (a replay attack) to
impersonate an entity.

Dictionary attacks
The challenge-response protocol is vulnerable to

a password-guessing attack. In this kind of attack,
we assume that an adversary has already built a
database of possible passwords, called a dictionary.
The adversary eavesdrops on the channel and
records the transcript of a successful run of the pro-
tocol to learn the random challenge and response.
Then the adversary selects passwords from the dic-
tionary and tries to generate a response that matches
the recorded one. If there’s a match, the adversary
has successfully guessed A’s password.

After every failed matching attempt, the adver-
sary picks a different password from the dictio-
nary and repeats the process. This noninteractive
form of attack is known as the offline dictionary
attack.

Sometimes an adversary might try different user
IDs and passwords to log in to a system. For pop-
ular Internet services like Yahoo!, the adversary can
trivially choose any reasonable user ID due to the large
number of registered users. An adversary can also find
user IDs within interactive Web communities such as
auction sites. If the system rejects the password as being
incorrect for that particular user, the adversary picks a
different password from the dictionary and repeats the
process. This interactive form of attack is called the
online dictionary attack.

Other security issues
Password-based authentication also can involve other

security issues. Let’s consider a scenario in which two
entities, A and B, are trying to authenticate each other
through a password protocol. An adversary can inter-
cept messages between the entities and inject his own
messages. In this man-in-the-middle attack, the adver-
sary’s goal is to play the role of A in the messages he sends
to B and the role of B in the messages he sends to A.

In an insider attack, a legitimate user might try to
attack other accounts in the system. Any additional
information regarding a certain user might help in guess-
ing that user’s password.

PREVENTING OFFLINE DICTIONARY ATTACKS
Seeking convenience, people tend to choose weak

passwords from a small sample space, which an adver-
sary can easily enumerate. Thus, systems need some-
thing stronger than simple challenge-response protocols
that can use these cryptographically weak passwords to
securely authenticate entities. Such an authentication
protocol would be deemed secure if, whenever an entity
accepts an authentication session with another entity,

it should have indeed participated in the authentication
session.2

Guarantees of mutual authentication are essential for
remote users trying to access servers over insecure net-
works like the Internet. The goal of a password-based
authentication protocol aimed at preventing offline dic-
tionary attacks is to produce a cryptographically strong
shared secret key, called the session key, after a success-
ful run of the protocol. Both entities can use this session
key to safely encrypt subsequent messages.

Encrypted key exchange
Steven Bellovin and Michael Merritt3 made the first

attempt to protect a password protocol against offline
dictionary attacks. They developed a password-based
encrypted key exchange (EKE) protocol using a combi-
nation of symmetric and asymmetric cryptography.
Algorithm 1 in Figure 1 describes the EKE protocol, in
which users A and B serve as the participating entities in
a particular run of the protocol, resulting in a session
key (stronger than the shared password) the users can
later apply to encrypt sensitive data.

In Step 1, user A generates a public/private key pair
(EA,DA) and also derives a secret key Kpwd from his pass-
word pwd. In Step 2, A encrypts his public key EA with
Kpwd and sends it to B. In Steps 3 and 4, B decrypts the mes-
sage using the stored password of A, and uses EA together
with Kpwd to encrypt a session key KAB and sends it to A.

In Steps 5 and 6, A uses this session key to encrypt a
unique challenge CA and sends the encrypted challenge
to B. In Step 7, B decrypts the message to obtain the chal-
lenge and generates a unique challenge CB.

June 2007 69

1. A : (EA,DA).
2. A → B : A, Kpwd(EA).
3. B : Compute EA = K-1

pwd (Kpwd(EA)). Generate random
secret key KAB.

4. B → A : Kpwd (EA (KAB)).
5. A : KAB = DA(K-1

pwd(Kpwd(EA(KAB)))). Generate unique
challenge CA .

6. A → B : KAB (CA).
7. B :Compute CA = K-1

AB(KAB (CA)) and generate unique
challenge CB.

8. B → A : K AB (C A,CB).
9. A: Decrypt message sent by B to obtain CA and C B.

Compare the former with his own challenge. If they
match, go to next step, else abort.

10. A → B : KAB (CB).
11. B : Decrypt message A sends and compare with chal-

lenge CB. If they match, B knows that A has the abil-
ity to encrypt subsequent messages using key KAB.

Figure 1. Algorithm 1: Encrypted key exchange.The EKE protocol uses

a combination of symmetric and asymmetric cryptography.

70 Computer

Secure remote password
Thomas Wu1 combined zero-knowledge proofs with

asymmetric key-exchange protocols to develop secure
remote password (SRP), a verifier-based protocol that
eliminates plaintext equivalence. If the password is a pri-
vate key with limited entropy, we can think of the cor-
responding verifier as a public key. It’s easy to compute
the verifier from the password, but deriving the pass-
word, given the verifier, is computationally infeasible.

However, unlike with a public key, the entity doing
the validation can keep the verifier secret. All SRP com-
putations are carried out on the finite field Fn, where n
is a large prime. Let g be a generator of Fn. Let A be a
user and B be a server. Before initiating the SRP proto-
col, A and B do the following:

• A and B agree on the underlying finite field.
• A picks a password pwd and a random salt s, and

computes the verifier v = gx, where x = H(s, pwd) is
the long-term private key and H is a cryptographic
hash function.

• B stores the verifier v and the salt s corresponding to
A. Now, A and B can engage in the SRP protocol.

Alorithm 2 in Figure 2 describes the SRP protocol,
which works as follows:

In Step 1, A sends its username A to server B. In Step
2, B looks up A’s verifier v and salt s and sends A the
salt. In Steps 3 and 4, A computes its long-term private-
key x = H(s, pwd), generates an ephemeral public key
KA = ga where a is randomly chosen from the interval
1 < a < n and sends KA to B.

In Steps 5 and 6, B computes ephemeral public-key
KB = v + gb where b is randomly chosen from the inter-
val 1 < a < n and sends KB and a random number r to A.
In Step 7, A computes S = (KB – gx)a + rx = gab + brx
and B computes S = (KAvr)b = gab + brx. The values of
S that A and B compute will match if the password A
enters in Step 3 matches the one that A used to calcu-
late the verifier v that is stored at B.

In Step 8, both A and B use a cryptographically strong
hash function to compute a session key KAB = H(S). In Step
9, A computes CA = H(KA, KB, KAB) and sends it to B as
evidence that it has the session key. CA also serves as a
challenge. In Step 10, B computes CA itself and matches it
with A’s message. B also computes CB = H(KA; CA; KAB). In
Step 11, B sends CB to A as evidence that it has the same
session key as A. In Step 12, A verifies CB, accepts if the ver-
ification passes and aborts otherwise.

Unlike EKE, the SRP protocol doesn’t encrypt mes-
sages. Since neither the user nor the server has access to
the same secret password or hash of the password, SRP
successfully eliminates plaintext equivalence. SRP is
unique in its swapped-secret approach to developing a
verifier-based, zero-knowledge protocol that resists
offline dictionary attacks.5

In Step 8, B then encrypts both CA and CB with the ses-
sion key KAB and sends it to A. In Step 9, A decrypts this
message to obtain CA and CB and compares the former
with his own challenge. A match verifies the correctness
of B’s response.

In Step 10, A encrypts B’s challenge CB with the session
key KAB and sends it to B. In Step 11, B decrypts this mes-
sage and compares it with his own challenge CB. If they
match, B knows that A can use KAB to encrypt subse-
quent messages.

Bellovin and Merritt also developed augmented EKE
(A-EKE),4 which stores passwords under a one-way func-
tion. The objective is to prevent an adversary who obtains
the one-way encrypted password file from mimicking the
user to the host. They implemented A-EKE using digital
signatures and a family of commutative one-way func-
tions. Researchers subsequently developed a gamut of
protocols that provide stronger security guarantees than
EKE and have additional desirable properties.

The EKE protocol and its variants (except A-EKE) suf-
fer from plaintext equivalence, which means the user
and the host have access to the same secret password or
hash of the password. Intuitively, there are disadvan-
tages to plaintext equivalence.

Imagine a simple case in which entity A (the user)
enters his password in the client software, which uses a
one-way function to hash the password and sends the
hashed password over the network to entity B (the
server). An adversary can eavesdrop on the channel to
obtain entity A’s hashed password and can impersonate
entity A by resending the hashed password later.

To understand the problem of plaintext equivalence,
we can extend the simple case to more complex chal-
lenge-response protocols, like EKE. This vulnerability
will arise whenever two entities share a secret and per-
form symmetric operations, however complex, based on
the shared secret and exchanged messages.

1. A → B : A.
2. B → A : s.
3. A : x = H(s, pwd); KA = ga.
4. A → B : KA .
5. B : KB = v + gb.
6. B → A : KB; r.
7. A : S = (KB -gx)a+rx and B : S = (KAvr)b.
8. A, B : KAB = H(S).
9. A → B : CA = H(KA,KB,KAB).

10. B verifies CA and computes CB = H(KA,CA,KAB).
11. B → A : CB.
12. A verifies CB. Accept if verification passes; abort

if not.

Figure 2. Algorithm 2: Secure remote-password protocol. SRP

successfully eliminates plaintext equivalence.

A formal approach to prevention
Password protocols need more than heuristic argu-

ments to provide security guarantees. The use of formal
methods to analyze and validate security issues is of
paramount importance in constructing “acceptable”
password protocols.

Shai Halevi and Hugo Krawczyk2 carried out the first
rigorous security analysis of password-based authenti-
cation protocols, examining the use
of password protocols for strong
authentication and key exchange in
asymmetric scenarios.

In an asymmetric scenario, the
authentication server can store a pri-
vate key for public-key encryption,
but the client uses a weak password
and doesn’t have a means to authen-
ticate the server’s public key via a
trusted third party. Halevi and
Krawczyk presented and analyzed the security of sim-
ple and intuitive password-based authentication proto-
cols—like a generic encrypted challenge-response
protocol and a mutual authentication/key exchange pro-
tocol. They also proved that every authentication pro-
tocol that attempts to resist offline dictionary attacks
needs public-key encryption and demonstrated that they
could build a secure key-exchange protocol, given any
such password protocol.

Standard model
Other researchers including Mihir Bellare and his col-

leagues6 subsequently proposed formal models for pass-
word-authenticated key exchange. However, the formal
validations of security don’t constitute proofs in the stan-
dard model. For example, Bellare used ideal ciphers to
achieve provable security. The standard model is com-
monly used in modern cryptography.

Since we still don’t have proofs that any of the stan-
dard cryptographic building blocks have computational
lower bounds, achieving common cryptographic goals
requires making some complexity-theoretic hardness
assumptions.7 Examples of such assumptions include
the following:

• Factoring the product of large primes is hard.
• Computing the discrete logarithm is hard in certain

sufficiently large groups.
• The Advanced Encryption Standard (AES) is a good

pseudorandom permutation.

Although the proofs performed under the standard
model use such assumptions, the cryptographic com-
munity widely accepts the standard model.

Alternative models
When constructing proofs, researchers often resort to

an alternative when proofs in the standard model are
unappealing or provably impossible (http://eprint.iacr.
org/2005/210.pdf). One such model is the random-
oracle model, which constitutes a public random func-
tion that takes any string s �{0,1}* as input and outputs
n bits. For every input string, the output is uniform and
independent of all other outputs. Powerful as it is, the
random oracle doesn’t exist in the real world. A cryp-

tographic hash function usually
instantiates it.

Another alternative, the ideal-
cipher model, uses a block cipher, an
algorithm that accepts a fixed-length
block of plaintext and a fixed-length
key as input and outputs a block of
cipher text that’s the same length as
the block of plaintext. The block
cipher is constructed with a k-bit key
and an n-bit block size and is chosen

uniformly from the set of all possible block ciphers of
the same form. Somewhat analogous to the random ora-
cle model, a practical block cipher must instantiate the
ideal-cipher model’s black box.

If a password-authenticated key-exchange protocol
uses the random-oracle model or the ideal-cipher model
to construct a formal analysis of its security and achieves
provable security under that model, what guarantees do
we get once we instantiate those alternative models?

Some cryptographers have doubted protocols using
such alternative models to claim provable security. There
are cases where instantiations of idealized models have
resulted in erroneous outcomes. Zhu Zhao and his col-
leagues7 presented examples of real ciphers that resulted
in broken instantiations of Bellare and his colleagues’
password protocol.

To the best of our knowledge, achieving provable
security in a password-based authentication protocol
(preventing offline dictionary attacks) based on the stan-
dard model is still an open problem. At the current stage
of research, the best we can do is aim for achieving prov-
able security under a formal model, maybe an idealized
one, and not construct a protocol claiming security
attributes based on heuristic arguments.

PREVENTING ONLINE DICTIONARY ATTACKS
Password-based authentication will continue to be the

most commonly used authentication technique, and
hacking and identity thefts will be the wave of the future.
However, several techniques are available to help with-
stand online dictionary attacks, where the adversary tries
to impersonate a user to the server by repeatedly trying
different passwords from a dictionary of passwords.

Prevention techniques and drawbacks
In 2002, online dictionary attacks were blamed for

eBay accounts being taken over and used to set up

June 2007 71

Password protocols

need more than

heuristic arguments

to provide

security guarantees.

72 Computer

fraudulent auctions (http://news.zdnet.com/2100-9595_
22-868306.html). Users clearly found this vulnerability
unacceptable. The attacks pointed to the need for coun-
termeasures, and Benny Pinkas and Tomas Sander
responded with several mechanisms.8

Delayed response.After receiving a user ID/password
pair, the server sends a slightly delayed response. This
prevents an adversary from checking a sufficiently large
number of passwords for a user ID in a reasonable
amount of time.

However, just as a server can process several user
logins in parallel, an adversary can try several login
attempts in parallel to work around the delayed-response
approach. For popular Internet services like Yahoo!, the
adversary can trivially choose a user ID due to the large
number of users. User IDs also can be found in interac-
tive Web communities like auction sites.

Account locking. To prevent an adversary from try-
ing many passwords for a particular user ID, systems
can lock accounts after a certain number of unsuccess-
ful login attempts. However, an adversary can mount a
denial-of-service attack by choosing a valid user ID and
trying several passwords until the account gets locked.
This would cause a great inconvenience to the owners

of locked accounts, and setting up cus-
tomer service to handle user calls regard-
ing locked accounts wouldn’t be
cost-effective.

Performing extra computation. Origi-
nally developed to combat junk e-mail, this
technique requires a user to perform some
nontrivial computation and send proof of
it while trying to log in.9 The idea is that the
computation would be negligible for a sin-
gle login attempt, but too expensive for a
large number of login attempts.

For example, a server could require the
following computation to be performed for
every login attempt: Choose a value x so
that the last 20 bits of H(x, user ID, pass-
word, time) are all 0, where H is a crypto-
graphic hash function like SHA. If we
assume H to be preimage resistant (given a
message digest y, it’s computationally infea-

sible to find x, such that y = H(x)), it would be necessary
to check 219 values for x on the average to satisfy the
condition.

A legitimate user might do this computation once, pre-
senting a negligible overhead. However, performing this
computation repeatedly for a large number of trial login
attempts would present an extreme burden. The user’s
computer must run special software for the computa-
tion. In addition, the adversary might have a more pow-
erful computer, and since the computation shouldn’t be
too time-consuming for a legitimate user, the adversary
might have an edge in performing the dictionary attack.

Pinkas and Sander8 observed that an automated pro-
gram must carry out such interactive forms of attacks,
whereas legitimate users are humans. Thus, any login
attempt must involve a test that a person can easily pass
but an automated program can’t.

Reverse Turing tests
Colorful images with distorted text have become com-

monplace at Web sites like Yahoo!, Hotmail, and PayPal.
They’re called reverse Turing tests (RTT) or Completely
Automated Public Turing Tests to Tell Computers and
Humans Apart (Captcha; http://captcha.net). Humans
can easily pass the tests, but computer programs can’t,
even if they’re knowledgeable about complete descrip-
tions of the algorithms that created such tests.

Pinkas and his colleagues have implemented RTTs to
prevent dictionary attacks. People can easily use the login
accompanied by the RTT, but automated programs trying
to carry out an online dictionary attack can’t. The RTT
should constitute a test with a small probability of a ran-
dom guess producing a correct answer. For example, a test
asking the user to identify whether an image is a man or
a woman wouldn’t be permissible since a random guess
produces a correct answer with 50 percent probability.

Figure 3. A Gimpy is a Captcha based on optical-character recognition.

Figure 4.Yahoo! uses EZ-Gimpy, which presents a distorted

image over a textured background.

Figure 3 shows Gimpy, a Captcha
based on optical-character recogni-
tion. It renders a distorted image con-
taining 10 words (some repeated),
overlaid in pairs. Human users can
easily read three different words from
the distorted image, but computer
programs can’t.

Yahoo! uses an easier version called
EZ-Gimpy, which presents a distorted
image of a single word presented on a
cluttered textured background, as
Figure 4 shows.

Figure 5 illustrates Bongo, a Captcha
that presents a visual pattern-recogni-
tion problem. Bongo asks users to dis-
tinguish between two blocks, then
presents a single block and asks the user
to determine whether it belongs to the
right or left block.

A basic password-based authentication protocol using
RTTs requires the user to pass an RTT before entering the
user ID and password. This method has some drawbacks
because it’s demanding to ask users to solve an RTT for
every login attempt. Currently, RTTs are more commonly
generated for filling out online registration forms.

It’s unknown whether the algorithm-generating RTTs
can scale up to be used for every login attempt. Pinkas
assumed that users log in from a limited set of comput-
ers containing activated cookies. So instead of using
RTTs for every login, the user is asked to pass an RTT
when initially trying to log in from a new computer or
when entering a wrong password. The decision whether
to present an RTT or not is a deterministic function of
the entered user ID/password pair.

Stuart Stubblebine and Paul van Oorschot10 observed
that RTT-based protocols are vulnerable to RTT relay
attacks. Suppose an adversary wants to perform an online
dictionary attack at the eBay Web site. For this, it needs
correct responses to the RTTs. But an adversary can hack
a high-volume Web site such as cnn.com and install attack
software, which initiates a fraudulent attempt to login
at ebay.com when a visitor goes to cnn.com. The RTT
challenge is redirected to the user trying to view the
cnn.com page.

Many nontechnical users will solve the RTT, unaware
that the attack software will relay the answer to eBay,
thus solving the RTT challenge. Solving the RTT, along
with a sufficient number of password guesses, can crack
an eBay account password. To counter these kinds of
RTT relay attacks, Stubblebine developed a protocol
based on a user’s login history, suggesting modifications
to Pinkas’s RTT-based protocol.

Stubblebine suggested that only trustworthy machines
store cookies. He also recommended that systems track
users’ failed-login attempts and set failed-login thresh-

olds. His analysis of the protocol showed that it’s more
secure and user friendly.

Engineers or security architects wanting to select
appropriate authentication techniques should be care-
ful if they want to implement Captchas commercially.
Hewlett-Packard holds a US patent on several forms of
Captchas11 and Yahoo! has applied for a patent on an
image-verification system to prevent messaging abuse.12

P assword-based authentication should continue to
be the most common technique for user verification,
as will attacks on it through a combination of hack-

ing and identity theft. Password protocols preventing
offline dictionary attacks need more than heuristic argu-
ments to provide a guarantee of security. Although
researchers have developed formal models for password-
authenticated key exchange, the formal validations of
security don’t constitute proof in the standard model.
While RTTs serve as tests that humans, but not automated
programs, can pass, it’s demanding to ask users to solve
an RTT for every login attempt. Consequently, effective
design of password protocols using RTTs requires a good
balance between tight security and user friendliness. ■

Acknowledgments

The authors thank the anonymous reviewers whose
valuable comments helped improve this article. This
research was partially supported by grant no. T0505060
from the US Treasury Department.

References

1. T. Wu, “The Secure Remote Password Protocol,” Proc. Net-
work and Distributed System Security (NDSS), The Internet
Soc., 1998, pp. 97-111; http://isoc.org/isoc/conferences/ndss/
98/wu.pdf.

June 2007 73

Figure 5. Bongo.This Captcha asks users to solve a visual pattern-recognition

problem.

74 Computer

2. S. Halevi and H. Krawczyk, “Public-Key Cryptography and
Password Protocols,” ACM Trans. Information System Secu-
rity, ACM Press, vol. 2, no. 3, 1999, pp. 230-268.

3. S.M. Bellovin and M. Merritt, “Encrypted Key Exchange:
Password-Based Protocols Secure Against Dictionary
Attacks,” Proc. IEEE Symp. Security and Privacy, IEEE CS
Press, 1992, pp. 72-84.

4. S.M. Bellovin and M. Merritt, “Augmented Encrypted Key
Exchange: A Password-Based Protocol Secure Against Dic-
tionary Attacks and Password File Compromise,” Proc. ACM
Conf. Computer and Comm. Security, ACM Press, 1993, pp.
244-250.

5. D. Bleichenbacher, “Breaking a Cryptographic Protocol with
Pseudoprimes,” Proc. 8th Int’l Workshop Theory and Practice
in Public-Key Cryptography (PKC 2005), LNCS 3386,
Springer, 2005, pp. 9-15.

6. M. Bellare, D. Pointcheval, and P. Rogaway, “Authenticated
Key Exchange Secure Against Dictionary Attacks,” Advances
in Cryptology—EUROCRYPT 2000, Proc. Int’l Conf. The-
ory and Application Cryptographic Techniques, LNCS 1807,
Springer, 2000, pp. 139-155.

7. Z. Zhao, Z. Dong, and Y. Wang, “Security Analysis of a Pass-
word-Based Authentication Protocol Proposed to IEEE 1363,”
Theoretical Computer Science, vol. 352, no. 1, Elsevier, 2006,
pp. 280-287; http://sis.uncc.edu/~yonwang/papers/TCSsrp5. pdf.

8. B. Pinkas and T. Sander, “Securing Passwords Against Dic-
tionary Attacks,” Proc. 9th ACM Conf. Computer and
Comm. Security, ACM Press, 2002, pp. 161-170.

9. C. Dwork and M. Naor, “Pricing via Processing or Combat-

ing Junk Mail,” E.F. Brickell, ed., Advances in Cryptology—
CRYPTO ’92, LNCS 740, Springer, 1993, pp. 139-147.

10. S.G. Stubblebine and P.C. van Oorschot, “Addressing Online
Dictionary Attacks with Login Histories and Humans-in-the-
Loop,” Financial Cryptography, LNCS 3110, Springer, 2004,
pp. 39-53; www.ccsl.carleton.ca/paper-archive/pvanoorschot-
fc-04.pdf.

11. M.D. Lillibridge et al., Method for Selectively Restricting
Access to Computer Systems, US patent 6,195,698, Patent
and Trademark Office, 1998.

12. Method and System for Image Verification to Prevent Mes-
saging Abuse, US patent application, 2004/0199597, Patent
and Trademark Office, 2004.

Saikat Chakrabarti is a PhD student in the Computer Sci-
ence Department at the University of Kentucky. His
research interests are network and distributed-system secu-
rity and applied cryptography. He received a BS in electri-
cal engineering from Bengal Engineering and Science
University, Shibpur, India. He is a student member of the
IEEE and the ACM. Contact him at schak2@cs.uky.edu.

Mukesh Singhal is the Gartner Group Endowed Chair in
Networking in the Computer Science Department at the
University of Kentucky. His research interests are computer
network security, distributed computing and operating sys-
tems, and wireless and high-speed networks. He received a
PhD in computer science from the University of Maryland.
He is an IEEE Fellow. Contact him at singhal@cs.uky.edu.

■ Monthly updates highlight the latest additions to the digital library
 from all 23 peer-reviewed Computer Society periodicals.

■ New links access recent Computer Society conference publications.

■ Sponsors offer readers special deals on products and events.

Available for FREE to members, students, and computing professionals.

Visit http://www.computer.org/services/csdl_subscribe

For the
IEEE
Computer Society
Digital Library
E-Mail Newsletter

Si
gn

 U
p

To
da

y

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 72.00000
 72.00000
 72.00000
 72.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

