Algorithms

* Ch 7: Quicksort

Ming-Te Chi

Ch7 Quicksort

i Sorting algorithm

= Quick sort: (on an input array of n numbers)

= Based on the divide-and-conquer
mechanism (like merge sort)

= Worst-case time complexity O(n?)

= Average time complexity O(n log n)

= Constants hidden in O(n log n) are small
= Sorts in place

Ch7 Quicksort

7.1 Description of Quicksort

= To sort the subarray A[p..r]
= Divide: PARTITION A[p..r] into A[p..g-1] &
Alg+1..r]
« aeAp.g-1]l=a<Aq]

be Alg+1.r]= Alq]<b

= Conquer: sort the two subarrays by recursive
calls to QUICKSORT

= Combine: no work is needed, because they
are sorted in place.

Ch7 Quicksort

S

QUICKSORT(A. p.r)

1 ifp<r
2 ¢ = PARTITION(A, p,r)
3 QUICKSORT(A. p.q — 1)

B~

QUICKSORT(A.¢q + 1.r)

Ch7 Quicksort

i Partition(A, p, r)

Partition subarray A[p..r] by the following procedure:
1 x=Alr]

2 i=p-1

3 forj=ptor-1

4 if A[j]<x

5 i=i+1

6 exchange A[i] with A[j]
7 exchange A[i +1] with A[r]

8 return i+1

Ch7 Quicksort

Two cases for one iteration of procedure
i Partition
1 i r

.
o [IEEH Tk
LT —

<x >x

®)
Complexity:

Partition on A[p...r] is ©(n)
wheren=r—p +1

Ch7 Quicksort

The operation of Partition on a sample array

i pi r

(@) Iz18]7[1[3]5]e | 3]
PP i r
Partition subarray A[p..r] by the following ™ B OEBNEEE B
rocedure: i J =
| seam © EMEIEETE)
. P J -
2i=p-1 @ TR
3 forj=ptor-1 P J :
4 ifA[jl<x © 3[5[6]4]
5 i=i+1 o ot s
[2]1]3] B £
6 exchange A[i] with A[j] 5 P P
7 exchange A[i +1] with A[r] CENEINE O
8 return i+l » i r
o [ZIE] o
» i -

Ch7 Qu

Partition(A, p, r)

= PARTITION always selects the last element A in
the subarray A[p . . A as the pivot — the element
around which to partition.

= As the procedure executes, the array is partitioned
into four regions, some of which may be empty:

All entries in Alp. . /] are < pivot.

All entries in A[/+ 1 .. j-1] are > pivot.

Alr] = pivot.

It's not needed as part of the loop invariant, but the fourth

region is A[j. . r-1], whose entries have not yet been

examined, and so we don't know how they compare to the

pivot.

Ch7 Quicksort

i Loop invariant

At the beginning of each iteration of the loop of
lines 3-6, for any array index k,

1.if p<k<i, then A[k] <x.

2.ifi+1<k<j -1, then A[k] > x.
3.ifk =r, then A[k] = x.

Ch7 Quicksort

Correctness: Use the loop invariant to
i prove correctness of PARTITION

We have to show that

= the loop invariant is true prior to the first
iteration,

= each iteration of the loop maintains the
invariant, and

= the invariant provides useful property to
show the correctness when the loop
terminates.

Ch7 Quicksort

Correctness: Use the loop invariant to
i prove correctness of PARTITION continue
Idea of loop invariant: similar to the mathematical
induction(§f 4 i¢), so we have to “prove”
= The initial case
= The induction step
If the statement is true at the n-1" step, it will hold for the n step

As indicated in Cormen’s book:

= Initialization

= Maintenance
= Termination

Ch7 Quicksort

Correctness: use the loop invariant to
prove correctness of PARTITION continue

= Initialization:

Before the loop starts, all the conditions of the loop invariant are
satisfied, because ris the pivot and the subarrays A[p .. /]
and A[/+1 .. j-1] are empty. (i=p-1, j=p)

= Maintenance

While the loop is running, if A[j] < pivot, then A[j] and A[/+1]
are swapped and then /and jare incremented. If A[j] >
pivot, then increment only ;.

= Termination

When the loop terminates, j = r, so all elements in A are
partitioned into one of the three cases: Alp../] < pivot,
Al7+1 .. r-1] > pivot, and A[r] = pivot.

Ch7 Quicksort

Correctness: Use the loop invariant to
prove correctness of PARTITION —— continue

= The last two lines of PARTITION move the
pivot element from the end of the array to
between the two subarrays.

= This is done by swapping the pivot and the
first element of the second subarray, i.e., by
swapping A[/+1] and A[r].

Ch7 Quicksort

i 7.2 Performance of quicksort

= The running time of quicksort depends
on the partitioning of the subarrays:

= If the subarrays are balanced, then
quicksort can run as fast as mergesort.

= If they are unbalanced, then quicksort can
run as slowly as insertion sort.

Ch7 Quicksort

Worst case
= Occurs when the subarrays are completely unbalanced.

= Have 0 elements in one subarray and n-1 elements in
the other subarray.

T(n)=T(n-1)+T(0)+O(N)

= ek)=0(> k) =0’
k=1 k=1

i Best case

= Occurs when the subarrays are completely
balanced every time.

= Each subarray has < n/2 elements.

T(n)=2T(n/2)+06(n)

=0O(nlogn)
= Occurs when quicksort takes a sorted array as input
= but insertion sort runs in O(n)time in this case.
Ch7 Quicksort 15 Ch7 Quicksort 16
Balanced partitioning ~ e
i N ki
= Quicksort’s average running time is much = TN e
08 10/0 1 7 . E 5 / S

closer to the best case than to the worst case.

= Imagine that PARTITION always produces a 9-to-1
split.

T(N)<TONn/10)+T(n/10)+6O(n)
=0(nlogn)

Ch7 Quicksort

1 000 /!

1 wmeine < cn

Onlgn)
Balanced partition T(n)=®(nlogn)
T(n)=TOn/10)+T(n/10)+O(n)
=T(n)=0(nlogn)

Ch7 Quicksort

Balanced partitioning —— continue

Look at the recursion tree:
= It's like the one for T(n) = T(n/3)+T(2n/3)+0(n) in
Section 4.2.

= Except that here the constants are different; we get
log;, n full levels and log,q 4 N levels that are
nonempty.

= As long as it's a constant, the base of the log doesn’t
matter in asymptotic notation.

= Any split of constant proportionality will yield a
recursion tree of depth ©(log n).

Ch7 Quicksort 19

Intuition for the average case

= Splits in the recursion tree will not always be
constant.

= There will usually be a mix of good and bad
splits throughout the recursion tree.

= To see that this doesn't affect the asymptotic
running time of quicksort, assume that levels
alternate between best-case and worst-case
splits.

Ch7 Quicksort 20

Intuition for the average case T(n) =®(nlgn)

n
/ \ it (1) N e @(1)
0 / \

n-1
/ \ (n=1)2 (n-1)22
(m-DR-1 (-Df2
(a) (b)

0

Ch7 Quicksort

Intuition for the average case ——continue

= The extra level in the left-hand figure only
adds to the constant hidden in the ©-notation.

= There are still the same number of subarrays
to sort, and only twice as much work was
done to get to that point.

= Both figures result in O(771log n) time, though
the constant for the figure on the left is higher
than that of the figure on the right.

Ch7 Quicksort 22

7.3 Randomized versions of partition

= We could randomly permute the input array.

= Instead, we use random sampling, or picking
one element at random.

= Don't always use A[r] as the pivot. Instead,
randomly pick an element from the subarray
that is being sorted.

= Randomly selecting the pivot element will, on
average, cause the split of the input array to
be reasonably well balanced.

Ch7 Quicksort 23

Randomized partition

RANDOMIZED-PARTITION (A, p.1)

I i = RANDOM(p.r)
2 exchange A[r] with A[f]
3 return PARTITION(A. p.r)

Ch7 Quicksort 24

Randomized quicksort

RANDOMIZED QUICKSORT(A,p,r)

1 if p<r

2 q= RANDOMIZED_PARTITION(A,p,r)
3 RANDOMIZED QUICKSORT(A,p,g-1)
4 RANDOMIZED QUICKSORT(A,g+1,r)

Ch7 Quicksort 25

= Randomization of quicksort stops any specific
type of array from causing worstcase behavior.

= For example, an already-sorted array causes worst-
case behavior in non-randomized QUICKSORT, but
not in RANDOMIZED-QUICKSORT.

Ch7 Quicksort 26

7.4 Analysis of quicksort

= We will analyze

= the worst-case running time of QUICKSORT and
RANDOMIZED-QUICKSORT (the same), and

= the expected (average-case) running time of
RANDOMIZED-QUICKSORT.

Ch7 Quicksort 27

7.4.1 Worst-case Analysis
T(n)= OrPa;xil(T(Q)JrT(n -gq-1)+06(n)

guess T(n) < cn?

T(n)< max (cg?+c(n-qg-1)?*)+06(n)
Sgsnot

= Cr&a{)ﬂ(] (@ +(n-g-1*+0(n)
<en?-c(2n-1)+0O(n)
<cn?
pick the constant ¢ large enough so that the ¢(2n-1) term
dominates the ©(n) term.
=T(n)=06(n?)

Ch7 Quicksort 28

Show that q¢*+(n-q-1 achieves a maximum over

q=012....n-1 When g=0 or q=n-1 s

ans: %% f@=g'+0-q7

2 n

—ZIGT: F@=20-2-0)=4q-2n
L f@=0 = 4q-m=0 = q=2(fB/NMEH)

2
ZRG =4 HOE L)

ARy o<qsn-1 FTLL t0=tm-n=m-17 (FHEHRA(E)

Ch7 Quicksort 29

7.4.2 Expected (average) running time

= The dominant cost of the algorithm is partitioning.

= PARTITION removes the pivot element from future
consideration each time.
=>» PARTITION is called at most 7 times.

= QUICKSORT recurses on the partitions.

= The amount of work that each call to PARTITION
does is a constant plus the number of comparisons
that are performed in its for loop.

= Let X = the total number of comparisons performed
in all calls to PARTITION.

=> the total work done over the entire execution is
O(n + X).

Ch7 Quicksort

i 7.4.2 Expected running time

= Llemma 7.1
= Let X be the number of comparisons performed
in line 4 of partition over the entire execution
of Quicksort on an n-element array. Then the
running time of Quicksort is O(n+X)

Ch7 Quicksort

i Goal: compute X

= Not to compute the number of comparison in
each call to PARTITION.

= Derive an overall bound on the total number
of comparision.

= For easy of analysis:

= Rename the elements of Aas z,, z,, . . ., z,, with
z, being the it smallest element.

= Define the set Z; = {z, 4, . . . , 7} to be the
set of elements between z; and z;, inclusive.

Ch7 Quicksort

continue

i Goal: compute X

= Each pair of elements is compared at
most once, why?

= because elements are compared only to
the pivot element, and then the pivot
element is never in any later call to
PARTITION.

Ch7 Quicksort

we define
Xij =1 {z is compared to 7},
n-1 n
X=>>

Ch7 Quicksort

*

Pr{z; is compared to z;} = Pr{z; or z; is first pivot chosen from Z;}
= Pr{z, is first pivot chosen from Z;}
+Pr{z; is first pivot chosen from Z;}

1 1
Tisie joie
7

:j—i+1

~E[X]= Z Z

i=l j= - i+1

Ch7 Quicksort

i Goal: compute X continue
n-1 n-i 2
ElX1= ;JZ.J; j-i+l _gk:lm
< ZZ ZO(logn)
i=1 k= 1
=0(nlogn)

= (Ref: Eq. A.7 Harmonic series)
= Expected running time of quicksort is
O(nlogn)

Ch7 Quicksort 36

