
1

Ch7 Quicksort 1

Algorithms

Ch 7: Quicksort

Ming-Te Chi

Ch7 Quicksort 2

Sorting algorithm

 Quick sort: (on an input array of n numbers)

 Based on the divide-and-conquer
mechanism (like merge sort)

 Worst-case time complexity O(n2)
 Average time complexity O(n log n)
 Constants hidden in O(n log n) are small
 Sorts in place

Ch7 Quicksort 3

7.1 Description of Quicksort
 To sort the subarray A[p..r]

 Divide: PARTITION A[p..r] into A[p..q-1] &
A[q+1..r]




 Conquer: sort the two subarrays by recursive
calls to QUICKSORT

 Combine: no work is needed, because they
are sorted in place.

[.. 1] []a A p q a A q   

[1..] []b A q r A q b   

Ch7 Quicksort 4

Ch7 Quicksort 5

Partition(A, p, r)
Partition subarray A[p..r] by the following procedure:

1 x = A[r]

2 i = p – 1

3 for j = p to r -1

4 if A[j] ≤ x

5 i = i + 1

6 exchange A[i] with A[j]

7 exchange A[i +1] with A[r]

8 return i +1

Ch7 Quicksort 6

Two cases for one iteration of procedure
Partition

Complexity:
Partition on A[p…r] is (n)
where n = r – p +1

2

Ch7 Quicksort

7

The operation of Partition on a sample array

Partition subarray A[p..r] by the following
procedure:

1 x = A[r]

2 i = p – 1

3 for j = p to r -1

4 if A[j] ≤ x

5 i = i + 1

6 exchange A[i] with A[j]

7 exchange A[i +1] with A[r]

8 return i +1

Ch7 Quicksort 8

Partition(A, p, r)

 PARTITION always selects the last element A[r] in
the subarray A[p . . r] as the pivot — the element
around which to partition.

 As the procedure executes, the array is partitioned
into four regions, some of which may be empty:
 All entries in A[p . . i] are ≤ pivot.
 All entries in A[i + 1 . . j -1] are > pivot.
 A[r] = pivot.
 It’s not needed as part of the loop invariant, but the fourth

region is A[j . . r -1], whose entries have not yet been
examined, and so we don’t know how they compare to the
pivot.

Ch7 Quicksort 9

Loop invariant
At the beginning of each iteration of the loop of
lines 3-6, for any array index k,

1. if p ≤ k ≤ i, then A[k] ≤ x.

2. if i + 1 ≤ k≤ j -1, then A[k] > x.

3. if k = r, then A[k] = x.

Ch7 Quicksort 10

Correctness: Use the loop invariant to
prove correctness of PARTITION

We have to show that
 the loop invariant is true prior to the first

iteration,
 each iteration of the loop maintains the

invariant, and
 the invariant provides useful property to

show the correctness when the loop
terminates.

Ch7 Quicksort 11

Correctness: Use the loop invariant to
prove correctness of PARTITION ── continue

Idea of loop invariant: similar to the mathematical
induction(歸納法), so we have to “prove＂
 The initial case

 The induction step
If the statement is true at the n-1th step, it will hold for the nth step

As indicated in Cormen’s book:
 Initialization

 Maintenance

 Termination

Ch7 Quicksort 12

Correctness: Use the loop invariant to
prove correctness of PARTITION ── continue

 Initialization:
Before the loop starts, all the conditions of the loop invariant are

satisfied, because r is the pivot and the subarrays A[p .. i]
and A[i +1 .. j -1] are empty. (i=p-1, j=p)

 Maintenance
While the loop is running, if A[j] ≤ pivot, then A[j] and A[i +1]

are swapped and then i and j are incremented. If A[j] >
pivot, then increment only j .

 Termination
When the loop terminates, j = r, so all elements in A are

partitioned into one of the three cases: A[p..i] ≤ pivot,
A[i +1 .. r -1] > pivot, and A[r] = pivot.

3

Ch7 Quicksort 13

Correctness: Use the loop invariant to
prove correctness of PARTITION ── continue

 The last two lines of PARTITION move the
pivot element from the end of the array to
between the two subarrays.

 This is done by swapping the pivot and the
first element of the second subarray, i.e., by
swapping A[i +1] and A[r].

Ch7 Quicksort 14

7.2 Performance of quicksort
 The running time of quicksort depends

on the partitioning of the subarrays:
 If the subarrays are balanced, then

quicksort can run as fast as mergesort.
 If they are unbalanced, then quicksort can

run as slowly as insertion sort.

Ch7 Quicksort 15

Worst case
 Occurs when the subarrays are completely unbalanced.
 Have 0 elements in one subarray and n-1 elements in

the other subarray.

 Occurs when quicksort takes a sorted array as input
 but insertion sort runs in O(n) time in this case.

2

1 1

() (1) (0) ()

() () ()
n n

k k

T n T n T n

k k n
 

    

      

Ch7 Quicksort 16

Best case
 Occurs when the subarrays are completely

balanced every time.
 Each subarray has ≤ n/2 elements.

() 2 (/ 2) ()

(log)

T n T n n

n n

  
 

Ch7 Quicksort 17

Balanced partitioning

 Quicksort’s average running time is much
closer to the best case than to the worst case.
 Imagine that PARTITION always produces a 9-to-1

split.

() (9 /10) (/10) ()

(log)

T n T n T n n

n n

  
 

Ch7 Quicksort 18

Balanced partition T n n n() (log) 

)log()(

)()10/()10/9()(

nnnT

nnTnTnT




4

Ch7 Quicksort 19

Balanced partitioning ── continue

Look at the recursion tree:
 It’s like the one for T(n) = T(n/3)+T(2n/3)+O(n) in

Section 4.2.
 Except that here the constants are different; we get

log10 n full levels and log10/9 n levels that are
nonempty.

 As long as it’s a constant, the base of the log doesn’t
matter in asymptotic notation.

 Any split of constant proportionality will yield a
recursion tree of depth Θ(log n).

Ch7 Quicksort 20

Intuition for the average case
 Splits in the recursion tree will not always be

constant.
 There will usually be a mix of good and bad

splits throughout the recursion tree.
 To see that this doesn’t affect the asymptotic

running time of quicksort, assume that levels
alternate between best-case and worst-case
splits.

Ch7 Quicksort 21

Intuition for the average case T(n) = (n lg n)

Ch7 Quicksort 22

Intuition for the average case ──continue

 The extra level in the left-hand figure only
adds to the constant hidden in the Θ-notation.

 There are still the same number of subarrays
to sort, and only twice as much work was
done to get to that point.

 Both figures result in O(n log n) time, though
the constant for the figure on the left is higher
than that of the figure on the right.

Ch7 Quicksort 23

7.3 Randomized versions of partition

 We could randomly permute the input array.
 Instead, we use random sampling, or picking

one element at random.
 Don’t always use A[r] as the pivot. Instead,

randomly pick an element from the subarray
that is being sorted.

 Randomly selecting the pivot element will, on
average, cause the split of the input array to
be reasonably well balanced.

Ch7 Quicksort 24

Randomized partition

5

Ch7 Quicksort 25

Randomized quicksort

RANDOMIZED_QUICKSORT(A,p,r)

1 if p r

2 q= RANDOMIZED_PARTITION(A,p,r)

3 RANDOMIZED_QUICKSORT(A,p,q-1)

4 RANDOMIZED_QUICKSORT(A,q+1,r)

Ch7 Quicksort 26

 Randomization of quicksort stops any specific
type of array from causing worstcase behavior.
 For example, an already-sorted array causes worst-

case behavior in non-randomized QUICKSORT, but
not in RANDOMIZED-QUICKSORT.

Ch7 Quicksort 27

7.4 Analysis of quicksort
 We will analyze

 the worst-case running time of QUICKSORT and
RANDOMIZED-QUICKSORT (the same), and

 the expected (average-case) running time of
RANDOMIZED-QUICKSORT.

Ch7 Quicksort 28

7.4.1 Worst-case Analysis
)())1()(()(max

10
nqnTqTnT

nq




guess T n cn()  2

2

2

22

10

22

10

)()12(

)())1((

)())1(()(

max

max

cn

nnccn

nqnqc

nqnccqnT

nq

nq













pick the constant c large enough so that the)12(nc term

dominates the ()n term.

 T n n() () 2

Ch7 Quicksort 29

Show that 22)1( qnq achieves a maximum over

1,.....,2,1,0  nq when 0q or 1 nq

ans: 先令 22)()(qnqqf 

一次微分: nqqnqqf 24)(22)(' 

 令 0)(' qf  024  nq 
2

n
q  (極小值)

二次微分: 4)('' qf (開口向上)

因為 10  nq 所以 2)1()1()0( nnff (相對極大值)

nn/20

Ch7 Quicksort 30

7.4.2 Expected (average) running time

 The dominant cost of the algorithm is partitioning.
 PARTITION removes the pivot element from future

consideration each time.
 PARTITION is called at most n times.

 QUICKSORT recurses on the partitions.
 The amount of work that each call to PARTITION

does is a constant plus the number of comparisons
that are performed in its for loop.

 Let X = the total number of comparisons performed
in all calls to PARTITION.

 the total work done over the entire execution is
O(n + X).

6

Ch7 Quicksort 31

7.4.2 Expected running time

 Lemma 7.1
 Let X be the number of comparisons performed

in line 4 of partition over the entire execution
of Quicksort on an n-element array. Then the
running time of Quicksort is O(n+X)

Ch7 Quicksort 32

Goal: compute X
 Not to compute the number of comparison in

each call to PARTITION.
 Derive an overall bound on the total number

of comparision.
 For easy of analysis:

 Rename the elements of A as z1, z2, . . . , zn, with
zi being the ith smallest element.

 Define the set Zij = {zi , zi+1, . . . , zj } to be the
set of elements between zi and zj, inclusive.

Ch7 Quicksort 33

Goal: compute X ── continue

 Each pair of elements is compared at
most once, why?
 because elements are compared only to

the pivot element, and then the pivot
element is never in any later call to
PARTITION.

Ch7 Quicksort 34

we define
{zi is compared to zj},IXij 

.
1

1 1
 


 


n

i

n

ij
ijXX

1

1 1

1

1 1

1

1 1

[]

Pr{ is compared to }

n n

ij
i j i

n n

ij
i j i

n n

i j
i j i

E X E X

E X

z z



  



  



  

 
  

 

   



 





Ch7 Quicksort 35

Pr{zi is compared to zj} = Pr{zi or zj is first pivot chosen from Zij}

= Pr{zi is first pivot chosen from Zij}

+ Pr{zj is first pivot chosen from Zij}

1

1

1

1







ijij

1

2




ij

 


  


1

1 1

.
1

2
][

n

i

n

ij ij
XE

Ch7 Quicksort 36

Goal: compute X ── continue

 (Ref: Eq. A.7 Harmonic series)
 Expected running time of quicksort is

1 1

1 1 1 1

1 1

1 1 1

2 2
[]

1 1

2
(log)

(log)

n n n n i

i j i i k

n n n

i k i

E X
j i k

O n
k

O n n

  

    

 

  

 
  

 



  

 

(log)O n n

