
1

Ch7 Quicksort 1

Algorithms

Ch 7: Quicksort

Ming-Te Chi
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Sorting algorithm

 Quick sort: (on an input array of n numbers)

 Based on the divide-and-conquer 
mechanism (like merge sort)

 Worst-case time complexity O(n2)
 Average time complexity O(n log n)
 Constants hidden in O(n log n) are small
 Sorts in place
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7.1 Description of Quicksort
 To sort the subarray A[p..r]

 Divide: PARTITION A[p..r] into A[p..q-1] & 
A[q+1..r]




 Conquer: sort the two subarrays by recursive 
calls to QUICKSORT

 Combine: no work is needed, because they 
are sorted in place.

[ .. 1] [ ]a A p q a A q   

[ 1.. ] [ ]b A q r A q b   
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Partition(A, p, r)
Partition subarray A[p..r] by the following procedure:

1   x = A[r]

2   i  = p – 1

3   for j = p to r -1 

4   if A[j] ≤ x

5          i = i + 1

6   exchange A[i] with A[j]

7   exchange A[i +1] with A[r] 

8   return i +1
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Two cases for one iteration of procedure 
Partition

Complexity: 
Partition on A[p…r] is (n) 
where n = r – p +1
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The operation of Partition on a sample array

Partition subarray A[p..r] by the following 
procedure:

1   x = A[r]

2   i = p – 1

3   for j = p to r -1 

4       if A[j] ≤ x

5   i = i + 1

6   exchange A[i] with A[j]

7   exchange A[i +1] with A[r] 

8   return i +1
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Partition(A, p, r)

 PARTITION always selects the last element A[r] in 
the subarray A[p . . r] as the pivot — the element 
around which to partition.

 As the procedure executes, the array is partitioned 
into four regions, some of which may be empty:
 All entries in A[p . . i ] are ≤ pivot.
 All entries in A[i + 1 . . j -1] are > pivot.
 A[r ] = pivot.
 It’s not needed as part of the loop invariant, but the fourth 

region is A[ j . . r -1], whose entries have not yet been 
examined, and so we don’t know how they compare to the 
pivot.
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Loop invariant
At the beginning of each iteration of the loop of 
lines 3-6, for any array index k,

1. if p ≤ k ≤ i, then A[k] ≤ x.

2. if i + 1 ≤ k≤ j -1, then A[k] > x.

3. if k = r, then A[k] = x.
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Correctness: Use the loop invariant to 
prove correctness of PARTITION

We have to show that
 the loop invariant is true prior to the first 

iteration,
 each iteration of the loop maintains the 

invariant, and
 the invariant provides useful property to 

show the correctness when the loop 
terminates.
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Correctness: Use the loop invariant to 
prove correctness of PARTITION ── continue

Idea of loop invariant: similar to the mathematical 
induction(歸納法), so we have to “prove＂
 The initial case

 The induction step
If the statement is true at the n-1th step, it will hold for the nth step

As indicated in Cormen’s book:
 Initialization

 Maintenance

 Termination 
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Correctness: Use the loop invariant to 
prove correctness of PARTITION ── continue

 Initialization:
Before the loop starts, all the conditions of the loop invariant are 

satisfied, because r is the pivot and the subarrays A[p .. i ] 
and A[i +1 .. j -1] are empty. (i=p-1, j=p)

 Maintenance
While the loop is running, if A[ j ] ≤ pivot, then A[ j] and A[i +1] 

are swapped and then i and j are incremented. If A[ j ] >
pivot, then increment only j .

 Termination
When the loop terminates, j = r, so all elements in A are 

partitioned into one of the three cases: A[p..i ] ≤ pivot,
A[i +1 .. r -1] > pivot, and A[r] = pivot.
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Correctness: Use the loop invariant to 
prove correctness of PARTITION ── continue

 The last two lines of PARTITION move the 
pivot element from the end of the array to 
between the two subarrays. 

 This is done by swapping the pivot and the 
first element of the second subarray, i.e., by 
swapping A[i +1] and A[r ].
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7.2 Performance of quicksort
 The running time of quicksort depends 

on the partitioning of the subarrays:
 If the subarrays are balanced, then 

quicksort can run as fast as mergesort.
 If they are unbalanced, then quicksort can 

run as slowly as insertion sort.
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Worst case
 Occurs when the subarrays are completely unbalanced.
 Have 0 elements in one subarray and n-1 elements in 

the other subarray.

 Occurs when quicksort takes a sorted array as input
 but insertion sort runs in O(n) time in this case.
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Best case
 Occurs when the subarrays are completely 

balanced every time.
 Each subarray has ≤ n/2 elements.
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Balanced partitioning

 Quicksort’s average running time is much 
closer to the best case than to the worst case.
 Imagine that PARTITION always produces a 9-to-1 

split.
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Balanced partitioning ── continue

Look at the recursion tree:
 It’s like the one for T(n) = T(n/3)+T(2n/3)+O(n) in 

Section 4.2.
 Except that here the constants are different; we get 

log10 n full levels and log10/9 n levels that are 
nonempty.

 As long as it’s a constant, the base of the log doesn’t 
matter in asymptotic notation.

 Any split of constant proportionality will yield a 
recursion tree of depth Θ(log n).
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Intuition for the average case
 Splits in the recursion tree will not always be 

constant.
 There will usually be a mix of good and bad 

splits throughout the recursion tree.
 To see that this doesn’t affect the asymptotic 

running time of quicksort, assume that levels 
alternate between best-case and worst-case 
splits.
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Intuition for the average case T(n) = (n lg n )
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Intuition for the average case ──continue

 The extra level in the left-hand figure only 
adds to the constant hidden in the Θ-notation.

 There are still the same number of subarrays 
to sort, and only twice as much work was 
done to get to that point.

 Both figures result in O(n log n ) time, though 
the constant for the figure on the left is higher 
than that of the figure on the right.
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7.3 Randomized versions of partition

 We could randomly permute the input array.
 Instead, we use random sampling, or picking 

one element at random.
 Don’t always use A[r ] as the pivot. Instead, 

randomly pick an element from the subarray 
that is being sorted.

 Randomly selecting the pivot element will, on 
average, cause the split of the input array to 
be reasonably well balanced.
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Randomized partition
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Randomized quicksort

RANDOMIZED_QUICKSORT(A,p,r) 

1 if p r  

2     q= RANDOMIZED_PARTITION(A,p,r)  

3     RANDOMIZED_QUICKSORT(A,p,q-1) 

4     RANDOMIZED_QUICKSORT(A,q+1,r) 
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 Randomization of quicksort stops any specific 
type of array from causing worstcase behavior.
 For example, an already-sorted array causes worst-

case behavior in non-randomized QUICKSORT, but 
not in RANDOMIZED-QUICKSORT.
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7.4 Analysis of quicksort
 We will analyze

 the worst-case running time of QUICKSORT and 
RANDOMIZED-QUICKSORT (the same), and

 the expected (average-case) running time of 
RANDOMIZED-QUICKSORT.
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7.4.1 Worst-case Analysis
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Show that 22 )1(  qnq  achieves a maximum over  

1,.....,2,1,0  nq  when 0q  or 1 nq  

ans: 先令 22 )()( qnqqf   

一次微分: nqqnqqf 24)(22)('   

  令 0)(' qf    024  nq    
2

n
q  (極小值) 

二次微分: 4)('' qf  (開口向上) 

 

因為 10  nq  所以 2)1()1()0(  nnff  (相對極大值) 

nn/20
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7.4.2 Expected (average) running time

 The dominant cost of the algorithm is partitioning.
 PARTITION removes the pivot element from future 

consideration each time. 
 PARTITION is called at most n times.

 QUICKSORT recurses on the partitions.
 The amount of work that each call to PARTITION 

does is a constant plus the number of comparisons 
that are performed in its for loop.

 Let X = the total number of comparisons performed 
in all calls to PARTITION.

 the total work done over the entire execution is
O(n + X).
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7.4.2 Expected running time

 Lemma 7.1
 Let X be the number of comparisons performed 

in line 4 of partition over the entire execution 
of Quicksort on an n-element array. Then the 
running time of Quicksort is O(n+X)
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Goal: compute X
 Not to compute the number of comparison in 

each call to PARTITION.
 Derive an overall bound on the total number 

of comparision.
 For easy of analysis:

 Rename the elements of A as z1, z2, . . . , zn, with 
zi being the ith smallest element.

 Define the set Zij = {zi , zi+1, . . . , zj } to be the 
set of elements between zi and zj, inclusive.
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Goal: compute X ── continue

 Each pair of elements is compared at 
most once, why?
 because elements are compared only to 

the pivot element, and then the pivot 
element is never in any later call to 
PARTITION.
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we define                           
{zi is compared to zj},IXij 
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Pr{zi is compared to zj} = Pr{zi or zj is first pivot chosen from Zij}

= Pr{zi is first pivot chosen from Zij}

+ Pr{zj is first pivot chosen from Zij}
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Goal: compute X ── continue

 (Ref: Eq. A.7 Harmonic series)
 Expected running time of quicksort is

1 1

1 1 1 1

1 1

1 1 1

2 2
[ ]

1 1

2
(log )

( log )

n n n n i

i j i i k

n n n

i k i

E X
j i k

O n
k

O n n

  

    

 

  

 
  

 



  

 

( log )O n n


