
1

Ch7 Quicksort 1

Algorithms

Ch 7: Quicksort

Ming-Te Chi
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Sorting algorithm

 Quick sort: (on an input array of n numbers)

 Based on the divide-and-conquer 
mechanism (like merge sort)

 Worst-case time complexity O(n2)
 Average time complexity O(n log n)
 Constants hidden in O(n log n) are small
 Sorts in place
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7.1 Description of Quicksort
 To sort the subarray A[p..r]

 Divide: PARTITION A[p..r] into A[p..q-1] & 
A[q+1..r]




 Conquer: sort the two subarrays by recursive 
calls to QUICKSORT

 Combine: no work is needed, because they 
are sorted in place.

[ .. 1] [ ]a A p q a A q   

[ 1.. ] [ ]b A q r A q b   
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Partition(A, p, r)
Partition subarray A[p..r] by the following procedure:

1   x = A[r]

2   i  = p – 1

3   for j = p to r -1 

4   if A[j] ≤ x

5          i = i + 1

6   exchange A[i] with A[j]

7   exchange A[i +1] with A[r] 

8   return i +1
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Two cases for one iteration of procedure 
Partition

Complexity: 
Partition on A[p…r] is (n) 
where n = r – p +1
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The operation of Partition on a sample array

Partition subarray A[p..r] by the following 
procedure:

1   x = A[r]

2   i = p – 1

3   for j = p to r -1 

4       if A[j] ≤ x

5   i = i + 1

6   exchange A[i] with A[j]

7   exchange A[i +1] with A[r] 

8   return i +1
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Partition(A, p, r)

 PARTITION always selects the last element A[r] in 
the subarray A[p . . r] as the pivot — the element 
around which to partition.

 As the procedure executes, the array is partitioned 
into four regions, some of which may be empty:
 All entries in A[p . . i ] are ≤ pivot.
 All entries in A[i + 1 . . j -1] are > pivot.
 A[r ] = pivot.
 It’s not needed as part of the loop invariant, but the fourth 

region is A[ j . . r -1], whose entries have not yet been 
examined, and so we don’t know how they compare to the 
pivot.
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Loop invariant
At the beginning of each iteration of the loop of 
lines 3-6, for any array index k,

1. if p ≤ k ≤ i, then A[k] ≤ x.

2. if i + 1 ≤ k≤ j -1, then A[k] > x.

3. if k = r, then A[k] = x.
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Correctness: Use the loop invariant to 
prove correctness of PARTITION

We have to show that
 the loop invariant is true prior to the first 

iteration,
 each iteration of the loop maintains the 

invariant, and
 the invariant provides useful property to 

show the correctness when the loop 
terminates.
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Correctness: Use the loop invariant to 
prove correctness of PARTITION ── continue

Idea of loop invariant: similar to the mathematical 
induction(歸納法), so we have to “prove＂
 The initial case

 The induction step
If the statement is true at the n-1th step, it will hold for the nth step

As indicated in Cormen’s book:
 Initialization

 Maintenance

 Termination 
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Correctness: Use the loop invariant to 
prove correctness of PARTITION ── continue

 Initialization:
Before the loop starts, all the conditions of the loop invariant are 

satisfied, because r is the pivot and the subarrays A[p .. i ] 
and A[i +1 .. j -1] are empty. (i=p-1, j=p)

 Maintenance
While the loop is running, if A[ j ] ≤ pivot, then A[ j] and A[i +1] 

are swapped and then i and j are incremented. If A[ j ] >
pivot, then increment only j .

 Termination
When the loop terminates, j = r, so all elements in A are 

partitioned into one of the three cases: A[p..i ] ≤ pivot,
A[i +1 .. r -1] > pivot, and A[r] = pivot.
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Correctness: Use the loop invariant to 
prove correctness of PARTITION ── continue

 The last two lines of PARTITION move the 
pivot element from the end of the array to 
between the two subarrays. 

 This is done by swapping the pivot and the 
first element of the second subarray, i.e., by 
swapping A[i +1] and A[r ].
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7.2 Performance of quicksort
 The running time of quicksort depends 

on the partitioning of the subarrays:
 If the subarrays are balanced, then 

quicksort can run as fast as mergesort.
 If they are unbalanced, then quicksort can 

run as slowly as insertion sort.
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Worst case
 Occurs when the subarrays are completely unbalanced.
 Have 0 elements in one subarray and n-1 elements in 

the other subarray.

 Occurs when quicksort takes a sorted array as input
 but insertion sort runs in O(n) time in this case.
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Best case
 Occurs when the subarrays are completely 

balanced every time.
 Each subarray has ≤ n/2 elements.
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( log )
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Balanced partitioning

 Quicksort’s average running time is much 
closer to the best case than to the worst case.
 Imagine that PARTITION always produces a 9-to-1 

split.

( ) (9 /10) ( /10) ( )

( log )

T n T n T n n

n n

  
 
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Balanced partitioning ── continue

Look at the recursion tree:
 It’s like the one for T(n) = T(n/3)+T(2n/3)+O(n) in 

Section 4.2.
 Except that here the constants are different; we get 

log10 n full levels and log10/9 n levels that are 
nonempty.

 As long as it’s a constant, the base of the log doesn’t 
matter in asymptotic notation.

 Any split of constant proportionality will yield a 
recursion tree of depth Θ(log n).
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Intuition for the average case
 Splits in the recursion tree will not always be 

constant.
 There will usually be a mix of good and bad 

splits throughout the recursion tree.
 To see that this doesn’t affect the asymptotic 

running time of quicksort, assume that levels 
alternate between best-case and worst-case 
splits.
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Intuition for the average case T(n) = (n lg n )
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Intuition for the average case ──continue

 The extra level in the left-hand figure only 
adds to the constant hidden in the Θ-notation.

 There are still the same number of subarrays 
to sort, and only twice as much work was 
done to get to that point.

 Both figures result in O(n log n ) time, though 
the constant for the figure on the left is higher 
than that of the figure on the right.
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7.3 Randomized versions of partition

 We could randomly permute the input array.
 Instead, we use random sampling, or picking 

one element at random.
 Don’t always use A[r ] as the pivot. Instead, 

randomly pick an element from the subarray 
that is being sorted.

 Randomly selecting the pivot element will, on 
average, cause the split of the input array to 
be reasonably well balanced.
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Randomized partition
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Randomized quicksort

RANDOMIZED_QUICKSORT(A,p,r) 

1 if p r  

2     q= RANDOMIZED_PARTITION(A,p,r)  

3     RANDOMIZED_QUICKSORT(A,p,q-1) 

4     RANDOMIZED_QUICKSORT(A,q+1,r) 
 

Ch7 Quicksort 26

 Randomization of quicksort stops any specific 
type of array from causing worstcase behavior.
 For example, an already-sorted array causes worst-

case behavior in non-randomized QUICKSORT, but 
not in RANDOMIZED-QUICKSORT.
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7.4 Analysis of quicksort
 We will analyze

 the worst-case running time of QUICKSORT and 
RANDOMIZED-QUICKSORT (the same), and

 the expected (average-case) running time of 
RANDOMIZED-QUICKSORT.
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7.4.1 Worst-case Analysis
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Show that 22 )1(  qnq  achieves a maximum over  

1,.....,2,1,0  nq  when 0q  or 1 nq  

ans: 先令 22 )()( qnqqf   
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2

n
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二次微分: 4)('' qf  (開口向上) 

 

因為 10  nq  所以 2)1()1()0(  nnff  (相對極大值) 
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7.4.2 Expected (average) running time

 The dominant cost of the algorithm is partitioning.
 PARTITION removes the pivot element from future 

consideration each time. 
 PARTITION is called at most n times.

 QUICKSORT recurses on the partitions.
 The amount of work that each call to PARTITION 

does is a constant plus the number of comparisons 
that are performed in its for loop.

 Let X = the total number of comparisons performed 
in all calls to PARTITION.

 the total work done over the entire execution is
O(n + X).
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7.4.2 Expected running time

 Lemma 7.1
 Let X be the number of comparisons performed 

in line 4 of partition over the entire execution 
of Quicksort on an n-element array. Then the 
running time of Quicksort is O(n+X)
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Goal: compute X
 Not to compute the number of comparison in 

each call to PARTITION.
 Derive an overall bound on the total number 

of comparision.
 For easy of analysis:

 Rename the elements of A as z1, z2, . . . , zn, with 
zi being the ith smallest element.

 Define the set Zij = {zi , zi+1, . . . , zj } to be the 
set of elements between zi and zj, inclusive.
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Goal: compute X ── continue

 Each pair of elements is compared at 
most once, why?
 because elements are compared only to 

the pivot element, and then the pivot 
element is never in any later call to 
PARTITION.
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we define                           
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Pr{zi is compared to zj} = Pr{zi or zj is first pivot chosen from Zij}

= Pr{zi is first pivot chosen from Zij}

+ Pr{zj is first pivot chosen from Zij}
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Goal: compute X ── continue

 (Ref: Eq. A.7 Harmonic series)
 Expected running time of quicksort is

1 1

1 1 1 1

1 1

1 1 1

2 2
[ ]

1 1

2
(log )

( log )

n n n n i

i j i i k

n n n

i k i

E X
j i k

O n
k

O n n

  

    

 

  

 
  

 



  

 

( log )O n n


