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i Sorting algorithm

= Quick sort: (on an input array of n numbers)

= Based on the divide-and-conquer
mechanism (like merge sort)

= Worst-case time complexity O(n?)

= Average time complexity O(n log n)

= Constants hidden in O(n log n) are small
= Sorts in place
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7.1 Description of Quicksort

= To sort the subarray A[p..r]
= Divide: PARTITION A[p..r] into A[p..g-1] &
Alg+1..r]
« aeAp.g-1]l=a<Aq]

be Alg+1.r]= Alq]<b

= Conquer: sort the two subarrays by recursive
calls to QUICKSORT

= Combine: no work is needed, because they
are sorted in place.
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S

QUICKSORT(A. p.r)

1 ifp<r
2 ¢ = PARTITION(A, p,r)
3 QUICKSORT(A. p.q — 1)

B~

QUICKSORT(A.¢q + 1.r)
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i Partition(A, p, r)

Partition subarray A[p..r] by the following procedure:
1 x=Alr]

2 i=p-1

3 forj=ptor-1

4 if A[j]<x

5 i=i+1

6 exchange A[i] with A[j]
7 exchange A[i +1] with A[r]

8 return i+1
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Two cases for one iteration of procedure
i Partition
1 i r

.
o [IEEH Tk
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Complexity:

Partition on A[p...r] is ©(n)
wheren=r—p +1
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The operation of Partition on a sample array
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6 exchange A[i] with A[j] 5 P P
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Partition(A, p, r)

= PARTITION always selects the last element A in
the subarray A[p . . A as the pivot — the element
around which to partition.

= As the procedure executes, the array is partitioned
into four regions, some of which may be empty:

All entries in Alp. . /] are < pivot.

All entries in A[/+ 1 .. j-1] are > pivot.

Alr] = pivot.

It's not needed as part of the loop invariant, but the fourth

region is A[ j. . r-1], whose entries have not yet been

examined, and so we don't know how they compare to the

pivot.
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i Loop invariant

At the beginning of each iteration of the loop of
lines 3-6, for any array index k,

1.if p<k<i, then A[k] <x.

2.ifi+1<k<j -1, then A[k] > x.
3.ifk =r, then A[k] = x.
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Correctness: Use the loop invariant to
i prove correctness of PARTITION

We have to show that

= the loop invariant is true prior to the first
iteration,

= each iteration of the loop maintains the
invariant, and

= the invariant provides useful property to
show the correctness when the loop
terminates.
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Correctness: Use the loop invariant to
i prove correctness of PARTITION continue
Idea of loop invariant: similar to the mathematical
induction(§f 4 i¢ ), so we have to “prove”
= The initial case
= The induction step
If the statement is true at the n-1" step, it will hold for the n step

As indicated in Cormen’s book:

= Initialization

= Maintenance
= Termination
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Correctness: use the loop invariant to
prove correctness of PARTITION continue

= Initialization:

Before the loop starts, all the conditions of the loop invariant are
satisfied, because ris the pivot and the subarrays A[p .. /]
and A[/+1 .. j-1] are empty. (i=p-1, j=p)

= Maintenance

While the loop is running, if A[ j] < pivot, then A[ j] and A[/+1]
are swapped and then /and jare incremented. If A[ j] >
pivot, then increment only ;.

= Termination

When the loop terminates, j = r, so all elements in A are
partitioned into one of the three cases: Alp../] < pivot,
Al7+1 .. r-1] > pivot, and A[r] = pivot.
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Correctness: Use the loop invariant to
prove correctness of PARTITION —— continue

= The last two lines of PARTITION move the
pivot element from the end of the array to
between the two subarrays.

= This is done by swapping the pivot and the
first element of the second subarray, i.e., by
swapping A[/+1] and A[r].
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i 7.2 Performance of quicksort

= The running time of quicksort depends
on the partitioning of the subarrays:

= If the subarrays are balanced, then
quicksort can run as fast as mergesort.

= If they are unbalanced, then quicksort can
run as slowly as insertion sort.
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Worst case
= Occurs when the subarrays are completely unbalanced.

= Have 0 elements in one subarray and n-1 elements in
the other subarray.

T(n)=T(n-1)+T(0)+O(N)

= ek)=0(> k) =0’
k=1 k=1

i Best case

= Occurs when the subarrays are completely
balanced every time.

= Each subarray has < n/2 elements.

T(n)=2T(n/2)+06(n)

=0O(nlogn)
= Occurs when quicksort takes a sorted array as input
= but insertion sort runs in O(n)time in this case.
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Balanced partitioning ~ e
i N ki
= Quicksort’s average running time is much = TN e
08 10/0 1 7 . E 5 / S

closer to the best case than to the worst case.

= Imagine that PARTITION always produces a 9-to-1
split.

T(N)<TONn/10)+T(n/10)+6O(n)
=0(nlogn)
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1 000 /!

1 wmeine < cn

Onlgn)
Balanced partition T(n)=®(nlogn)
T(n)=TOn/10)+T(n/10)+O(n)
=T(n)=0(nlogn)
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Balanced partitioning —— continue

Look at the recursion tree:
= It's like the one for T(n) = T(n/3)+T(2n/3)+0(n) in
Section 4.2.

= Except that here the constants are different; we get
log;, n full levels and log,q 4 N levels that are
nonempty.

= As long as it's a constant, the base of the log doesn’t
matter in asymptotic notation.

= Any split of constant proportionality will yield a
recursion tree of depth ©(log n).
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Intuition for the average case

= Splits in the recursion tree will not always be
constant.

= There will usually be a mix of good and bad
splits throughout the recursion tree.

= To see that this doesn't affect the asymptotic
running time of quicksort, assume that levels
alternate between best-case and worst-case
splits.
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Intuition for the average case T(n) =®(nlgn)

n
/ \ it (1) N e @(1)
0 / \

n-1
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0
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Intuition for the average case ——continue

= The extra level in the left-hand figure only
adds to the constant hidden in the ©-notation.

= There are still the same number of subarrays
to sort, and only twice as much work was
done to get to that point.

= Both figures result in O(771log n) time, though
the constant for the figure on the left is higher
than that of the figure on the right.
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7.3 Randomized versions of partition

= We could randomly permute the input array.

= Instead, we use random sampling, or picking
one element at random.

= Don't always use A[r] as the pivot. Instead,
randomly pick an element from the subarray
that is being sorted.

= Randomly selecting the pivot element will, on
average, cause the split of the input array to
be reasonably well balanced.
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Randomized partition

RANDOMIZED-PARTITION (A, p.1)

I i = RANDOM(p.r)
2 exchange A[r] with A[f]
3 return PARTITION(A. p.r)
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Randomized quicksort

RANDOMIZED QUICKSORT(A,p,r)

1 if p<r

2 q= RANDOMIZED_PARTITION(A,p,r)
3 RANDOMIZED QUICKSORT(A,p,g-1)
4 RANDOMIZED QUICKSORT(A,g+1,r)
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= Randomization of quicksort stops any specific
type of array from causing worstcase behavior.

= For example, an already-sorted array causes worst-
case behavior in non-randomized QUICKSORT, but
not in RANDOMIZED-QUICKSORT.
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7.4 Analysis of quicksort

= We will analyze

= the worst-case running time of QUICKSORT and
RANDOMIZED-QUICKSORT (the same), and

= the expected (average-case) running time of
RANDOMIZED-QUICKSORT.
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7.4.1 Worst-case Analysis
T(n)= OrPa;xil(T(Q)JrT(n -gq-1)+06(n)

guess T(n) < cn?

T(n)< max (cg?+c(n-qg-1)?*)+06(n)
Sgsnot

= Cr&a{)ﬂ(] (@ +(n-g-1*+0(n)
<en?-c(2n-1)+0O(n)
<cn?
pick the constant ¢ large enough so that the ¢(2n-1) term
dominates the ©(n) term.
=T(n)=06(n?)
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Show that q¢*+(n-q-1 achieves a maximum over

q=012....n-1 When g=0 or q=n-1 s

ans: %% f@=g'+0-q7

2 n

—ZIGT: F@=20-2-0)=4q-2n
L f@=0 = 4q-m=0 = q=2(fB/NMEH)

2
ZRG =4 HOE L)

ARy o<qsn-1 FTLL t0=tm-n=m-17 (FHEHRA(E)
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7.4.2 Expected (average) running time

= The dominant cost of the algorithm is partitioning.

= PARTITION removes the pivot element from future
consideration each time.
=>» PARTITION is called at most 7 times.

= QUICKSORT recurses on the partitions.

= The amount of work that each call to PARTITION
does is a constant plus the number of comparisons
that are performed in its for loop.

= Let X = the total number of comparisons performed
in all calls to PARTITION.

=> the total work done over the entire execution is
O(n + X).
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i 7.4.2 Expected running time

= Llemma 7.1
= Let X be the number of comparisons performed
in line 4 of partition over the entire execution
of Quicksort on an n-element array. Then the
running time of Quicksort is O(n+X)
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i Goal: compute X

= Not to compute the number of comparison in
each call to PARTITION.

= Derive an overall bound on the total number
of comparision.

= For easy of analysis:

= Rename the elements of Aas z,, z,, . . ., z,, with
z, being the it smallest element.

= Define the set Z; = {z, 4, . . . , 7} to be the
set of elements between z; and z;, inclusive.
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continue

i Goal: compute X

= Each pair of elements is compared at
most once, why?

= because elements are compared only to
the pivot element, and then the pivot
element is never in any later call to
PARTITION.
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we define
Xij =1 {z is compared to 7},
n-1 n
X=>>
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*

Pr{z; is compared to z;} = Pr{z; or z; is first pivot chosen from Z;}
= Pr{z, is first pivot chosen from Z;}
+Pr{z; is first pivot chosen from Z;}

1 1
Tisie joie
7

:j—i+1

~E[X]= Z Z

i=l j= - i+1
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i Goal: compute X continue
n-1 n-i 2
ElX1= ;JZ.J; j-i+l _gk:lm
< ZZ ZO(logn)
i=1 k= 1
=0(nlogn)

= (Ref: Eq. A.7 Harmonic series)
= Expected running time of quicksort is
O(nlogn)
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