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Abstract—This paper proposes a music recommendation ap-
proach based on various similarity information via Factorization
Machines (FM). We introduce the idea of similarity, which has
been widely studied in the filed of information retrieval, and
incorporate multiple feature similarities into the FM framework,
including content-based and context-based similarities. The sim-
ilarity information not only captures the similar patterns from
the referred objects, but enhances the convergence speed and
accuracy of FM. In addition, in order to avoid the noise within
large similarity of features, we also adopt the grouping FM as an
extended method to model the problem. In our experiments, a
music-recommendation dataset is used to assess the performance
of the proposed approach. The datasets is collected from an
online blogging website, which includes user listening history,
user profiles, social information, and music information. Our
experimental results show that, with various types of feature
similarities the performance of music recommendation can be
enhanced significantly. Furthermore, via the grouping technique,
the performance can be improved significantly in terms of Mean
Average Precision, compared to the traditional collaborative
filtering approach.

I. INTRODUCTION

Similarity is an important concept in recommendation.
Given the favorite items of a user, it is sensible to recommend
the other items similar to those favorite ones. Similarity
between items can be measured in several ways, and different
methods in measuring similarity can be complementary to one
another in practice. For example, for music recommendation,
some users prefer songs similar in melody, while others
prefer songs similar in lyrics. The more information we have
regarding different aspects of similarity, the more likely we
are able to give successful recommendation.

If similarity is measured in terms of the number of people
who share the same taste regarding the items, the resulting
model can be considered as a collaborative filtering (CF)-based
model. On the other hand, if similarity is measured in terms of
the affinity of the items in a feature space, the resulting model
is usually known as content-based (CB) model. Hybrid models
that blend the aforementioned two models have also been
studied in the literature. In particular, Factorization Machine
(FM) has emerged in recent years as a promising framework
for hybrid recommendation. With proper features, FM is able
to mimic many state-of-the-art CF/CB-based algorithms.

Under the FM framework, it is possible to exploit every co-
occurrence pattern among items to capture more information.
Moreover, representing similarity in the form of a matrix
can be more informative than representing each item as a
feature vector, because the latter requires an additional process
to extract similarity information from the feature vectors, an
operation which is performed only implicitly by FM.

Music preference is not only affected by personal factors
of the listener and the musical factors of the music items; it is
also highly dependent on the context of music listening. For
example, people listen to different music when being in an
office or when exercising; when feeling blue or when being in
a happy mood. Therefore, it is important to consider contex-
tual information for better recommendation performance. This
study also features the use of multiple similarity information
computed from the contextual factors of music listening.

From technical point of view, FM models the global bias,
feature biases and weights of the interactions among all the
features, including vector-based and matrix-based ones. There-
fore, it is likely that some noisy information will be mixed in
the final prediction model. To remedy this, we propose to adopt
a grouping technique to remove unnecessary interactions. In
other words, we divide the features into distinct group and
only account for interactions among the features between the
different groups. In this way, noises inherent from unnecessary
interactions can be largely eliminated. Our evaluation shows
that such grouping technique is in particular important when
one considers matrix-based features as similarity matrices, due
to the increase in the number of features (and accordingly the
number of potential unnecessary interactions). Although there
are multiple ways features can be grouped, our result shows
that there are some guidelines in finding a good grouping.

In the experiments, a dataset crawled from a real-world
social blogging website, LiveJournal 1, as it contains rich
contextual information that is entered by users spontaneously
in their day-to-day lives [1], [2]. The features are extracted
from user profiles and music characteristics such as geographic
information and audio information, showing that similarity
computation can be easily applied to most kinds of features.
Since some interactions between features provide little infor-
mation, we generate different grouping methods to examine
whether the grouping technique can improve the performance.

1http://www.livejournal.com/

http://www.livejournal.com/


Finally we conduct experiments with different parameters.
The experimental results show that similarity information
significantly enhance the recommendation performance. Fur-
thermore, via grouping factorization machine, the performance
can be further improved to 0.52 in terms of Mean Average
Precision with p-value less than 0.01.

II. RELATED WORK

Recommender systems are widely deployed in commercial
business, with collaborative filtering (CF) being one of the
most popular models . CF models filter out the useless infor-
mation and keep similar patterns to predict user behavior. More
recently, machine-learning techniques provide a promising way
to perform recommendation. In this section, we survey on the
related studies from the different perspectives.

A. Contextual Recommender System

Traditional recommendation methods can be divided into
two main categories: CF and CB. Many famous commercial
recommendation systems are based on these methods, such
as the ones used by Youtube or Amazon [3], [4]. However,
such methods are limited due to the difficulty of incorporating
contextual information, which is gaining increasing importance
due to the rapid growth of information on the Internet.

In light of this, many methods have been proposed for the
problem of contextual recommendation. For example, Meng
et al. [5] investigated the individual preference and the inter-
personal influence on online item adoption and recommenda-
tion. Yelong et al. [6] proposed a joint personal and social
latent factor (PSLF) model that combines the state-of-the-
art collaborative filtering and the social network modeling
approaches for social recommendation. Kailong et al. [7]
employed several interesting features form tweets, including
social relation features, content-relevance features, tweets’
content-based features and publisher authority features. From
these prior arts, we can observe that most studies develop-
ing their model based on various types of features. In the
competition of KDDCup 2012, Tianqi et al. [8] combined a
variety of models by incorporating different features. Their
result indicates the importance of the contextual features.
Instead of focusing on the CF method, we propose an approach
that integrates the advantages from the CF method, that is,
incorporates the similarity information into the factorization
model.

B. Music Recommender System

There are also many studies related to music recommen-
dation. For example, Negar et al. [9] presented a context-
aware music recommendation system that infers user’s short-
term music preference based on the most recent sequence of
songs liked by the user using sequential data mining. Noam et
al. [10] used a hierarchical track-album-artist-genre structure in
modeling the biases of music items, and used music sessions
to model session bias of users, showing the importance of
bias modeling. Cai et al. [11] showed that emotion can be
useful for matching songs to documents according to the audio
and text content. Unlike these existing works, the contextual
information considered in this work is mined from user-
generated articles. Moreover, we use FM to study the effect
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Fig. 1. Illustration of Our Proposed Approach vs. Factorization Machine

of multiple types of features which are extracted from user
profile, user-generated articles, geographic information, item
characteristic and audio features.

C. Factorization Model

The goal of a recommender system is to predict whether a
user would like an object. In recent years, FM models has
proven itself to be a competitive and flexible model for a
variety of recommendation tasks [5], [8]. For example, Jason
et al. [12] studied the joint problem of recommending items to
a user with respect to a given query and introduced a factorized
model for optimization. István et al. [13] took an MF-based
approach with a simple rating-based predictor on the Netflix
Prize Dataset.

It can be found that a common problem among FM-like
models is the need to re-design the prediction model task
by task. To solve this problem, Rendle described a generic
FM framework called libFM [14], which is able to simulate
many other successful models via factorization machine by
feature engineering (i.e., by using corresponding features). As
demonstrated in [14], libFM generalizes existing methods such
as standard matrix factorization, Pairwise Interaction Tensor
Factorization (PITF) and SVD++. Moreover, a system based on
libFM has won the second title in a KDDcup competition [15].
Liangjie et al. [15] modified the original model to handle
multiple aspects of the dataset at the same time. In contrast,
in this work we aim at incorporating similarity information to
libFM without major modification of its framework, thereby
reserve the advantages of libFM.

III. METHODOLOGY

Figure 1 illustrates the main concept of incorporating
similarity information into the FM framework. In general, a
traditional CF-based matrix only keeps the records of user-to-
item information, but FM factorizes this form to a multiplica-
tion of two feature vectors (i.e. V and V T in Figure 1). Our
proposed approach further integrates the similarity information
with the framework to capture the similar patterns from the
referred objects. Below we further describe the Factorization
Machines and our proposed approaches.



A. Standard FM

Factorization Machines can act like most factorization
models by feeding various types of features. It learns the
weights of all interactions between the features. In general,
a two-way factorization machine model can be defined as:

ŷ(x) = w0 +

n∑
i=1

wixi +

n∑
l=1

n∑
j=l+1

ŵljxlxj , (1)

where w0 is the global bias, wl is the weight of features
xl, and wlj models the interaction of each pair of features.
The interaction wlj can be factorized into pairs of interaction
parameters,

ŵlj =

κ∑
f=1

vlfvjf . (2)

The parameter κ determines the model complexity. Rather
than only using single parameter for each interaction, this
way allows high quality parameters estimated by higher-order
interactions under sparsity. Factorization Machine provides a
promising framework for recommendation problem. Unlike the
generic matrix factorization model, it can be easily used to
conduct feature engineering. For more details of FM, please
refer to [14].

B. Grouping FM

Factorization Machines provide a good framework for
modeling the interactions between features, but sometimes
similar type of features may cause confusion while learning,
especially with a large number of features. Hence we can
utilize the bag-of-feature concept to the standard factorization
machine by grouping the features with similar characteristic.
Therefore it can deal with the tasks in a more flexible way with
different feature partitions. After removing the non-informative
weights from the FM models, the original formula can be
rewritten as:

ŷ(x) = w0 +

n∑
i

wixi +

n∑
l∈G(l)

n∑
j /∈G(l)

xlxj

κ∑
f=1

vl,fvj,f , (3)

where the xl belongs to the group G(l), and the mutual effect
of xl and xj is dropped out while they are in the same group.
By the grouping technique, it eliminates the unnecessary
interactions such as the interaction between a user and the
user’s age is non-informative. The grouping technique not only
speeds up the convergence of optimization but also provides a
flexible way to construct different feature combinations. Note
that the modified prediction function would be the same as the
original one when every feature has its own group.

LibFM provides three major optimization criteria to learn
the data: stochastic gradient descent [16] (SGD), alternating
least-squares [17] (ALS) and Markov Chain Monte Carlo [18]
(MCMC). In our experiments, the MCMC method is chosen
because it can automatically learn the data without giving
the external parameters such as learning rate 2 and the reg-
ularization term 3. For MCMC, the gradient for the grouping

2The learning rate is a common parameter for controlling the learning steps.
3The regulation term is used to prevent the model from overfitting problem.

Factorization Machine is derived as follows:

hθ(x) =
∂ŷ(x)

∂θ
=

 1, if θ = w0

xj , if θ = wj
xj

∑
j′ /∈G(j) vj′,fxj , if θ = vj,f

(4)

C. Similarity Computation

Motivated by the strength and efficiency of CF method,
we seek to combines the advantages with the factorization
model. Since FM has a good framework for modeling the input
features, we can directly extract the similarity information from
the users and items. This is similar to CF methods, and can be
easily embedded into a feature vector. In general, the utilized
features are divided into following three types, and each type
has its own computation method.

1) ID Domain: The ID variable is used to identify a
target, and it only belongs to a specific target. For
instance, User ID is in the ID domain, which means
that each user has his/her own unique ID variable.
Technically a similarity measurement is a function
that computes the degree of similarity between a pair
of targets, e.g. the similarity of listening histories of
two users. Given two vectors of attributes, A and
B, the similarity score is computed by the extended
version of cosine similarity:

similarity =
A ∩B

|A|1−α|B|α
, (5)

where α ∈ [0, 1] is a tuning parameter.

2) Categorical Domain: The categorical variable
represents the extracted features from the user and
item attributes such as the User Age and Music
Genre. The similarity computation is also based on
Equation 5.

3) Real Value Domain: If the attribute is already a
number ∈ R, such as Audio Information. The sim-
ilarity score is calculated by the Euclidean distance.
In general, for an n-dimensional space, the distance
between feature vector q and feature vector p is:

d(p, q) =

√√√√ n∑
i=1

(pi − qi)2. (6)

For the ID domain, the function O represents the referred
objects from target i and target j. For example, given the
listening histories of two users the α determines whether the
similarity score considers the amount of referred objects from
another target or not. Take the following three users with the
listening records as an example:

O(Useri) = [1, 2, 3],
O(Userj) = [1, 2, 3],
O(Userk) = [1, 2, 3, 4].

Then Userj is more similar to Useri than Userk based on
the listening history while the α = 1; on the other hand, they
will get a same score while the α = 0.



For the categorical indicators, because this kind of feature
usually occurs in different objects, the function O will be the
collection of referred objects for a target. Take the User Age
as an example, if we want to know the similarity of listening
history between 15-year-old users and 30-year-old users, the
function O will collect all the songs of the users whose age is
between 15 and 30.

For the real-value indicators, the feature vector is nor-
malized by the standard score: x−µ

σ , where µ is the mean
of the population and σ is the standard deviation of the
population. The score indicates how many standard deviations
an observation is above or below the mean.

Finally suppose we have a set of similarity scores for a
specific target and seek to embed them into a feature vector,
a simple way is to directly index them with corresponding
scores. However, the popular object generally contains more
similar objects than the others. It may leads to an unbalance
problem that unpopular objects are hard to get the similarity
score. In order to take the balance issues into account, we
only keep the top-k similar objects as the new score basis,
and normalize the new vector of k values to 1:

s̄ij =
sij∑n

j′=1 |sij′ |
. (7)

The purpose of this step is to avoid the unbalance of simi-
larity information. For example, s(Useri) = (0, 0.8, 0.6) and
s(Userj) = (0.1, 0, 0.2), Useri will have more probability of
getting high scores because of the high values of the similarity
vector.

IV. EXPERIMENTAL SETUP

This section describes the experimental setup we employed
to study the influence of different factors on the performance
of music recommendation.

A. Evaluation Metric

We employed two metrics to evaluate the recommenda-
tion performance: the truncated mean average precision at k
(MAP@k) and recall. For each user, let P (k) denotes the
precision at cut-off k:

AP (u, o) =

∑k
p=1 P (k)× ruo(p)

I(u)
, (8)

where o(p) = i describes the item i is ranked at position p in
the order list o, and rui means whether the user u has listened
to song i or not(1 = yes, 0 = no). MAP@k is the mean of
the average precision scores for the top-k results:

MAP@k =

∑U
u=1AP (u, o)

U
, (9)

where U is the total number of target users. Higher MAP@k
indicates better recommendation accuracy.

Recall measures how many songs the user really likes are
recommended by the automatic system. It is computed by:

Recall =
|{Correct Songs}| ∩ |{Returned Top k Songs}|

|{Correct Songs}|
.

(10)
High recall means that most of songs the user actually likes
or listens to are recommended.

TABLE I. THE FEATURE SETS CONSIDERED IN THIS WORK.

abbr. Feature Unique Index Type

U User ID 19,596 -
S Song ID 30,260 -
H Listening History 30,260 -

BY Birth Year (of users) 100 Cb
LR Live Region (of users) 208 Cb
M Mood Tags (of users) 132 Cx

VAD VAD values (of articles) 3 Cx
A Artists (of songs) 5,175 Cb

Au Audio Information 53 Cb
SR Social Relation 674,932 Cx

Note: P denotes the feature of user profile, Cb denotes the
content-based feature that are extracted from songs, and Cx
denotes the context-based feature that are extracted from
user.

Fig. 2. Livejournal sample posts.

B. Dataset

Our experiments are performed on a real-world dataset
collected from a well-known social blogging websites – Live-
Journal. LiveJournal is unique in that, in addition to the
common feature of blogging, each post is accompanied with a
“Mood” column and a “Music” column so that users can write
down their moods and songs in their minds while posting,
as Figure 2 exemplifies. From LiveJournal, we crawled a
total number of 1,928,868 listening records covering 674,932
users and 72,913 songs as an initial set. For the purpose of
retaining enough number of data in the training and test sets
for this study, we only considered users who have more than
10 listening records and discarded the records of the other
users. This filtering resulted in the final set of 225,652 listening
records (11.7% of the initial set) among 19,596 users and
30,260 songs.

For evaluation, we split the dataset for each user according
to the following 80/20 rule: keeping full listening history for
the 80% and the half of listening history for the remaining 20%
users as the training data, and the other half of the remaining
20% users as the testing data. For each record, we randomly
add 10 songs as negative records to construct the testing pool.

C. Feature

The structure of collected music dataset is depicted in
Figure 3, as these factors affect how people choose the music.
Personal factors indicate the characteristics that people would
possess for a long period of time, such as age and gender.
People with different levels of music background may appre-
ciate music differently, which in turn affects music preference.
Musical factors consist of the audio content, its profile, and
even the artwork of the CD. People may choos a song because
its melody or the singer. Situational factors include those that
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Fig. 3. The structure of LiveJournal dataset

TABLE II. AFFECTIVE NORMS FOR ENGLISH WORDS

Description Valence Arousal Dominance

dream 6.73 4.53 5.53
eat 7.47 5.69 5.60
favor 6.46 4.54 5.67
good 7.47 5.43 6.41
hate 2.12 6.95 5.05
Note: 5 example words of ANEW dictionary.

persist for a short period of time such as when and where you
listen to music, what you are doing and what your mood is.
People often express their feelings through listening to music,
and the user-generated article reflects their recent mood.

Table I summarizes the features used in the experiments,
which are described in detail below.

1) Content-based Features: Content-based features refer to
features that describe either the user or the item. For describing
users, we have Birth Year (BY), Live Region (LR) and Social
Relations (SR) features. The birth years for the users in our
dataset fall in a window of 100 years. Moreover, the users are
from 208 regions. We consider users who were born in the
same year or users who were from the same region as similar.
On the other hand, from LiveJournal we can obtain friendship
and construct the social network among the users. This gives
rise to the social relation based similarity matrix. People who
are friends to one another are likely to share similar music
taste.

For describing songs, we have Artist (A) and Audio Infor-
mation (Au) features. The artist feature simply indicates the
artist (among the 5,175 possible artists) of the songs. If two
songs are sung/performed by the same artist, they are likely to
be more similar. The audio features consists of 53 perceptual
dimensions of music, including danceability, loudness, mode,
and tempo. They are extracted by using the EchoNest API 4, a
commonly used audio feature extraction tool developed in the
field of music information retrieval [19]. We can measure the
similarity between two songs in this 53-dimensional feature
space.

4http://echonest.com/

TABLE III. EVALUATION RESULT OF CF-BASED ALGORITHMS

Model MAP@10 Recall

Randomize 0.0578 0.1656
User-based CF 0.3668 0.4748
Item-based CF 0.3093 0.5115
SVD++ 0.3506 0.4844
FM 0.3817 0.5216

2) Context-based Features: The user-generated articles are
interesting context-based features in the dataset, but it may
contains too many redundant words. Motivated by the idea
of emotional matching, we convert the original content of an
article into a vector of emotional words by referring to the
dictionary of Active Norms for English Words (ANEW) [20],
which provides a set of normative emotional ratings for English
words. We retain the words which can be found in the
ANEW dictionary and weight them by the TF-IDF weighting.
Specifically, a word is scored by tf(t, d)× idf(t, d), where

tf(t, d) =
f(w, d)

max{f(w, d) : w ∈ d}
, (11)

idf(t, d) = log
|D|

|{d ∈ D : t ∈ d}|
, (12)

and D is the set of all articles. A term with higher score
indicates that the term has a higher term frequency wight and a
lower document frequency of the term in the whole collection
of articles. In addition, the ANEW dictionary also provides
a set of normative emotional ratings for English words. The
emotional words are rated by Valence (or pleasantness; pos-
itive/negative active states) , Activation (or arousal; energy
and stimulation level) and Dominance (or potency; a sense
of control or freedom to act), the fundamental emotion dimen-
sions found by psychologists [21]. Finally each word vector of
articles is converted to valence, arousal, and dominance (VAD)
values. For example, for the sentence ”I had a dream last night,
I was eating a marshmallow,” the VAD values would be 14.2,
10.22, and 11.13, respectively, according to Table II. Moreover,
we also collected the recent mood tags which are recent used
by each user.

V. EXPERIMENTAL RESULTS

We conducted a series of experiments with different set-
tings. First of all, we attempted to demonstrate the similarity
information is effective on most kinds of features under the
factorization model. Second, we compared the performance of
the standard Factorization Machine with that of the grouping
Factorization Machine, and then examined the effects of dif-
ferent feature combinations. Finally, we studied the sensitivity
of the proposed method to the parameters

A. Similarity Approach

The similarity indicator can be represented as the cate-
gorical set domain as used in [17]. For instance, suppose that
”Alice is similar to Charlie and Sandy”, the corresponding sim-
ilarity indicator may be the vector z(Bob,Charlie, Sandy) =
(0, 0.2, 0.8), where the sum of all values equals to 1 according
to Equation 7.

http://echonest.com/


TABLE IV. PERFORMANCE OF ID SIMILARITY

LiveJournal Dataset
Features MAP@10 Recall

U + S 0.3816 0.5217
U + S + H 0.4409 0.5821
U + S + US 0.4310 0.5712
U + S + H + US 0.4427 0.5810
U + S + SS 0.4635 0.6194
U + S + H + SS 0.4897 0.6413
U + S + US + SS 0.4712 0.6251
U + S + US + SS + H 0.5021 0.6491
Note: For the feature abbreviation, please refer to Table I.

1) CF-based Recommendation: In the first step, we eval-
uated the performance on some well-known CF-based Rec-
ommendation algorithms to verify the strength of factorization
machine. We compare FM with user-based CF, item-based CF,
and a SVD-based approach using only the user-item matrix,
which is a standard input to recommendation models. Note that
context information or similarity information is not exploited
in this comparison. Table III lists the result of these methods.
As the table shows, the resulting MAP of all the CF-based
approaches fall within 0.30–0.38. Among the four methods,
FM performs the best. The performance difference between
FM and other methods is significant under the t-test. This
validates the effectiveness of FM. Therefore, we employed FM
in the subsequent experiments.

Under the CF-based framework, there are two ID indi-
cators: User ID and Song ID. Therefore, we can obtain the
following similarity information according to Equation 5:

• User Similarity (US): Two users are similar if they
listen to the same songs.

• Song Similarity (SS): Two songs are similar if they
are listened by the same users.

Both of them are directly mined from the listening history.
Therefore, they are always available for a standard recom-
mendation problem. US is applied to users, whereas the SS
is applied to items.

We evaluated the performance on every possible feature
combination. As shown in Table IV, both the user similarity
and the song similarity (U+S+US or U+S+SS) lead to signif-
icantly better result, comparing to the baseline U+S.

We have also implemented KNN-based FM of [14] by
adding the listening history to libFM, as shown in from the
second row of Table IV (i.e., U+S+H). It can be seen that
the incorporation of listening history (’H’) generally improves
the result as well. Note that the SS feature is the top-k most
similar music which is not extracted from listening history.
If we compare H, US, and SS, SS achieves the highest
MAP@10 (0.4635), showing that the similarity approach is
more effective than the KNN approach is. Moreover, KNN
approach may fail when the amount of listening histories is
limited or overwhelmed, but it is easy to determine the number
of most similar features used in the whole data.

By combining all the available information from the lis-
tening records (U+S+US+SS+H), we obtained the best result
0.5021 in MAP@10 in Table IV, which is significantly better
than the baseline 0.3816. A simple idea as it is, using the
proposed ID similarity indicators greatly improve the accuracy

TABLE V. PERFORMANCE OF FEATURE SIMILARITY

Features MAP@10 Recall

U + S + BY 0.4301 0.5751
U + S + BY + BYS 0.4348 0.5830
U + S + A 0.5025 0.6538
U + S + A + AS 0.5125 0.6640
U + S + LR 0.4283 0.5723
U + S + LR + LRS 0.4382 0.5834
U + S + Au 0.4254 0.5809
U + S + Au + AuS 0.4576 0.6114

TABLE VI. PERFORMANCE OF FEATURE SIMILARITY

Features MAP@10 Recall

U + S + M 0.4134 0.5539
U + S + M + MS 0.4202 0.5652
U + S + VAD 0.4483 0.5905
U + S + VAD + VADS 0.4511 0.5935
U + S + SRS 0.4213 0.5653

of recommendation. Moreover, the ID similarity indicators are
suitable for other recommendation problems because they are
in the same problem structure: to predict whether an item
would be accepted by a user.

2) Content-based Recommendation: Four similarity fea-
tures were extracted from the dataset:

• Birth Year Similarity (BYS): Two users are similar
if they are born in the same year.

• Live Region Similarity (LRS): Two users are similar
if they live in the same region geographically.

• Artist Similarity (AS): Two songs are similar if they
are sung by the same artist.

• Audio Similarity (AuS): Two songs are similar if they
are close in the audio feature space spanned by the 53
audio features considered in this work.

Note that BYS and LRS are personal information that is not
always available for a recommendation problem. Similarly, AS
and Aus are musical information that is only available if we
have access to the metadata or the audio content of the songs.

Table V lists the improvement introduced by the use
of feature similarity. The results show that four similarities
perform well in recommendations. Among the four similarities,
Birth Year Similarity cannot obtain a significant improvement
in the experiments. This is possibly due to the incompleteness
of the metadata, because only half of the users have birth
year information in our dataset. Moreover, another interesting
observation is that the audio features significantly enhance on
the recommendation performance after the audio similarity is
added. The result implies that the abstract information such
as the audio feature is hard to be organized directly, but its
similarity information provides insightful information.

3) Context-based Recommendations: Next, we evaluated
context-based recommendation by using Mood Tag and Emo-
tional Words. These two features reflect the user’s mood
when writing the article. We want to utilize the emotional
information from user-generated articles and mood tags. The
similarity information can be obtained in the same way:

• Mood Similarity (MS): Two user are similarly if they
tend to express similar moods in their articles.



TABLE VII. PERFORMANCE ON COMPLETE FEATURE VECTOR.

Features MAP@10 Recall Note

U + S 0.3817 0.5216 Base-line
U + S + C* 0.5120 0.6614
U + S + C* + S* 0.5236 0.6684 Hybrid
U + S + C* + S* 0.5251 0.6708 Hybrid + Grouping
Note: C* denotes all the categorical features, and S* denotes
all the extracted similarity features.
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Fig. 4. An example for explaining different grouping method.

• VAD Similarity (VADS): Two users are similar if the
affective qualities of the articles they wrote are similar.

Note that contextual information is also not always available
for a recommendation problem. We only considered context
information extracted from mood tags and articles in this work,
but the proposed method is also applicable for other contextual
information as well.

As the first and third rows of Table VI shows, the perfor-
mance of adding the Mood Tags feature is 0.4134 in terms
of MAP@10, which is lower than the contextual VAD feature
computed from user-generated articles. This result indicates
that the VAD feature provides more affective information of
the user context. Although the mood similarity does not lead
to remarkable improvement, the VAD similarity feature is still
considered effective.

4) Hybrid Recommendation: Finally, we studied if we can
further boost the accuracy by integrating all the proposed sim-
ilarity features, including categorical ones (denoted as C* col-
lectively) and similarity features (denoted as S* collectively).
As Table VII shows, using more data generally leads to better
accuracy. When all the features are considered (U+S+C*+S*),
we are able to obtain 0.5251 in MAP@10 and 0.6708 in recall,
both of which are the highest ones in our evaluation. This
result confirms again the ability of the proposed method in
incorporating multiple similarity information.

B. Grouping Approaches

Since there are too many similarity features that could be
utilized in the FM model, the increasing interactions would
lead to a high computation cost. Moreover, these interactions
might also be non-informative or noisy. For instance, the

TABLE VIII. PERFORMANCE OF DIFFERENT GROUPING SCHEME.

Features MAP@10 Recall

U + US + S + SS 0.4712 0.6251
(U, US) + (S, SS) 0.4670 0.6206
(U + US) + (S + SS) 0.4570 0.5975
(U) + (US) + (S) + (SS) 0.4845 0.6334
Note: The first result is run on standard factoriza-
tion machine.

interaction between User ID and User Age is non-informative;
and the inner-connection among the similarity features will
increase the too much computation cost. To avoid the situation,
we applied grouping Factorization Machine as an extended
model to offer a more flexible framework for combining the
features. Since the self-group interactions are eliminated from
the model, we have more choices to build different useful
features. In the case of similarity feature, we employ following
three index schemes:

A. Same Group and Same Index
B. Same Group and Different Index
C. Different Group and Different Index

Figure 4 illustrates the three grouping schemes. The scores
of similar songs will be directly added in the same indexes for
the first scheme, but will have additional index value in the
second scheme. Scheme A can reduce the index dimension,
but it is inappropriate for combing multiple features since the
index may encounters the duplication problem. For the third
scheme, the song similarities are indexed in another group. The
main difference is that the interactions between the song and
similar songs will be counted in learning process. In short, the
feature vector can be organized with more different forms.

We evaluated the three schemes on user-item features with
the grouping factorization machine. Table VIII shows the
result. The first result is conducted by standard factorization
machine and the remaining results are obtained from the group-
ing factorization machine. The interactions between object and
similar objects are helpful according to the performance, but
the noise may occurs when the interactions between similar
features. In view of this, we adopt the grouping factorization
machine as an extended method to further improve the quality
of recommendations. The final result is shown in Table VII.
Moreover, in order to demonstrate the strength of grouping
factorization, we further examine performance on the standard
factorization machine with different settings.

1) Training Loss: Figure 5 plots the training loss in the
training step of the two approaches. The Y-axis corresponds to
the root mean square error (RMSE), measuring the difference
between predicted values and true values:

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2. (13)

The X-axis indicates the number of iterations. The grouping
factorization machine is much faster to achieve the conver-
gence. In addition, although it does not get a lower RMSE
score, it still gets a better performance on testing data. In
other words, the grouping action helps prevent the model from
overfitting the training data.
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2) Model Complexity: The parameter κ controls the model
complexity of FM. We change it from 3 to 10, and plot the
performance in Figure 6. The grouping factorization machine
gets better performance for each factor κ. The results indicate
that the grouping FM is useful to enhance the quality of
recommendations.

VI. CONCLUSION

In this paper, we have presented a novel approach that
incorporates multiple feature similarity to factorization model
via feature engineering. The similarity computation captures
the similar patterns from the objects and enhances the con-
vergence speed and accuracy of FM. The proposed method
is applicable to many kinds of features, which means we
can obtain the higher level information from multiple aspects.
Our experimental results show that feature similarity indeed
benefits the recommendation performance. In addition, we
also propose several features, including CF-based, content-
based and context-based ones. Among these features, we try to
capture the relationship between users and songs by matching
users’ emotions. The results show that the idea is able to
enhance the quality of recommendations. Then, in order to
avoid the noise within large similarity features, we adopt the

grouping FM as the extended method to model the problem.
The unnecessary connection can be eliminated if the features
are within a same group. With the aforementioned technical
contributions, we are able to improve the Mean Average
Precision in music recommendation for a real-world, large-
scale dataset from 0.3817 to 0.5251, comparing to the tradition
CF-based baseline.
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