

A UDP Based Protocol for Distributed P2P File Sharing
Yao-Nan Lien and Hong-Qi Xu

Computer Science Department
National Chengchi University

Taipei, Taiwan
lien@cs.nccu.edu.tw

Abstract -- Some Peer-to-Peer (P2P) file sharing
operation models over asymmetric networks have
several shortcomings that may have a significant
impact to the system and network performance: data
transmission paths are highly redundant wasting a lot
of backbone bandwidth; the download throughput in a
peer node may be limited by the upward bandwidth of
other peer nodes; TCP performance is deteriorated
due to the blocking of acknowledge packets on the
upward channel. These shortcomings severely impair
the efficiency of P2P file sharing as well as network
performance. We designed a UDP based transport
mechanism at the application level to alleviate parts of
problems caused by TCP.

Key Words: P2P and TCP.

I. INTRODUCTION

P2P file sharing is a very popular network application.
There are many successful systems such as Napster, Kazza,
Gnutella, Freenet, and BitTorrent [1,2,6]. By the degree of
centralization, these systems can be roughly classified into
Pure Decentralized, Partially Decentralized, and Hybrid
Decentralized [9]. By the network structure, they can be
classified into Unstructured, Structured, and Loosely
Structured systems [5]. BitTorren (BT), which is
originated by Bram Cohen [1], has become a bandwidth
glutton, devouring more than one third of the Internet's
bandwidth. Its operation can be classified as a Partially
Decentralized Unstructured-network operation model.
Because BitTorrent is becoming a dominant technology,
this paper will take the BitTorrent compatible P2P file
sharing model as a typical model to study. Nevertheless,
some problems are not unique to the BitTorrent and many
techniques can be applied to other paradigms as well.

Without loss of generality, we assume the following
abstract operation model. The file to be shared is broken
into many smaller fragments and is stored in a seed node
(initial seeder) waiting for retrieving by other peers. Each

peer may retrieve these file fragments either from the
initial seeder or from other peers that have already
retrieved some fragments. Each peer may also serve as a
redistribution node to share its retrieved fragments with
other peers.

In reality, Internet users are using various software tools
that are compliant with BitTorrent protocol to cheaply
spread files around the Internet. To share a file to other
peers, a user server serves as the initial seeder to launch a
BT-compatible server software, called tracker, to break
the file into many smaller fragments and store the meta
data into a small file called torrent, and then to publish it
to some web site. To download the file, a user downloads
the torrent onto his/her computer first. A BT-compatible
client software, called downloader, opens the torrent to
obtain the contained meta data, then searches for other
downloaders that have downloaded the same torrent, and
tries one by one to download the needed fragments from
those downloaders. Each downloader will share the
fragments it has downloaded successfully even before it
finishes downloading all fragments. Through BitTorrent
protocol, all peer users share their downloaded fragments
to each other. The downloader in each peer combines all
retrieved fragments back into a copy of the original file.
As a common courtesy, a downloader needs to voluntarily
stay online becoming a seeder to share the downloaded
copy to other peers for some certain length of time. What
a tracker does is giving each request a fragment, then
introducing all peers to one another so that they can
download file fragments from each other.

Unstructured P2P file sharing networks do not take
network topology into consideration, the paths of data
transmission may overlay each other severely. As a
consequence, it may waste a lot of backbone bandwidth.
Although existing structured network model can organize
the participating peers into a less redundant network
topology and thus can relieve this problem, they are all file
based and may not be applicable for fragment-based
model such as BitTorrent.

Furthermore, when most peer nodes are attached to the
Internet via asymmetric access networks such as ADSL,
there will be some performance problems. First, within a
node, the download throughput is often smaller than the
upload throughput, even though the former usually has
much larger bandwidth capacity. Secondly, the
performance of TCP based network applications will be
interfered by the P2P file sharing operation. These
problems are further complicated by the voluntary nature
of P2P that peer nodes may be fairly unstable making
downloading operations fairly unstable.

We can easily identify at least two possible causes that
may contribute to the problems mentioned above. First,
since a file fragment is often retrieved by more than one
node, all such file sharing streams must share the narrow
upward bandwidth of the node that is sharing out the file
fragment. Therefore, each stream is only allocated with a
small bandwidth. Secondly, when an upward channel is
congested by the file sharing load, the performance TCP
will deteriorate due to the blocking of acknowledge
packets on the upward channel [7]. For simplicity, the first
problem is referred to as the Fractional Upward
Bandwidth (FUB) problem and the second one as the
Blockage of Acknowledge (BoA) problem [4]. These
shortcomings severely impair the performance of
networks and the P2P file sharing itself.

The problems mentioned above were analyzed with some
solution approaches proposed in paper [4]. This paper
addresses the performance issues caused by TCP.

II. IMPACT OF TRANSPORT PROTOCOLS

A network application that demands a reliable data
transfer would probably choose TCP to "transport" data
[7]. This section will discuss the performance problems
caused by the impairment of TCP as well as solution
approaches.

A. Overview of TCP Protocol

TCP is a transport protocol that can guarantee the delivery
of packets and is built-in with a congestion control
mechanism. TCP software resides at the both ends (sender
and receiver) of a connection. The basic version can
perform well without any support from the network
elements at IP layer. To transmit a message (or a file), the
sender breaks the message into packets and transmits them
in sequence to the receiver. The receiver acknowledges the
received packets by sending acknowledge packets (ACK)
back to the sender. If the sender receives a packet loss
signal (three duplicated ACKs) for a particular packet or
doesn't receive the ACK by a certain time period, the

packet is considered lost and must be retransmitted. The
process of transmitting data from the beginning to the end
is a session.

When TCP is invoked to transport a file or a message, the
sender doesn't know the appropriate data rate it should
take to transmit data. Therefore, it takes some calculated
steps, such as AIMD (Additive Increasing Multiplicative
Decreasing) policy, to adjust a sending window, which has
a direct effect of adjusting the data rate, in a trial-and-
error fashion. To prevent the network from overly
congested, TCP takes packet losses as signals of network
congestion and adjusts the data rate accordingly. AIMD
policy adjusts data rate much slower in increasing phases
and much faster in decreasing phases. Adjusting
transmission data rate in this trial-and-error fashion is not
very efficient. Many improvement mechanisms have been
proposed and implemented to enhance TCP performance
under various conditions [4].

Controlling congestion by taking packet losses as the
signals of network congestion performs well for regular
networks. However, it may not work well in some network
environments, such as BitTorrent over asymmetric
networks, in which acknowledge packets sent by a TCP
receiver may be lost or delayed frequently in the
congested upward channel of the receiver. In these cases,
TCP will unnecessarily initiate undesirable congestion
control to reduce data rate when it detects the occurrences
of packet loss. This problem will be illustrated in the rest
of this section.

B. TCP Problems on Asymmetric Networks

The performance of TCP depends on an uncongested two-
way communications, one channel for sending data
packets, the other for sending ACKs back. To make TCP
perform well, neither channel can be congested.

In an asymmetric network such as ADSL, the upward
channel (from user's viewpoint) has a smaller bandwidth
than the downward channel. Ideally, the downward
channel must be able to carry a bigger downloading traffic
up to its maximum bandwidth. In reality, its actual
throughput may be influenced by the congestions occurred
on the upward channel. The congestion occurred on the
upward channel may block the delivery of ACKs and
trigger the congestion control mechanism at the sender
side unnecessarily.

Unfortunately, BT-compatible P2P file sharing over
asymmetric networks is facing exactly such a problem.
Most downloaders are sharing out their own fragments
while downloading the needed fragments from other peer

nodes. The upward channels may be congested by the
sharing out traffic and many ACKs for TCP will be held at
the receiver side. Consequently, the corresponding data
packets are considered lost when the timers at the sender
side expire. Once the sender detects the occurrence of
severe packet loss, its congestion control mechanism will
automatically reduce the data rate to the minimum level
accordingly. This is one of the major reasons why BT
users are not satisfied with the downloading speed. In next
section, some approaches will be discussed to solve this
problem.

C. Approaches to Improve Transport Protocol

The first approach to overcome the problems mentioned
above is to design a new TCP protocol for BitTorrent
environment [4]. The second approach is to use UDP
instead of TCP to transport data.

C.1 TCP Approaches

Some possible techniques are (1) use longer lost packet
timers to accommodate delayed ACKs and thus to prevent
the sender from triggering congestion control procedure;
(2) improve the accuracy of bandwidth estimation to
prevent senders from running too fast; (3) use more
delicate information to detect congestion (not to take
packet loss as the sole congestion signal). Further
researches are needed to implement this approach [4].

C.2 UDP Approaches

The advantage of using UDP is obvious: the download
throughput at the receiver side will not be affected by the
congestion occurred on the upward channel. However, this
approach has two problems yet to be solved: (1) data
integrity assurance (i.e. to recover the lost packets) and (2)
data rate determination (i.e. flow control and congestion
control). Because the sender of a transport session has no
knowledge about the end-to-end network bandwidth
between the source and the destination, the determination
of data rate becomes one of the trickiest tasks to a
transport protocol. A number of TCP flavors were
developed to cope with this problem. Most of them use a
complicated mechanism to control the size of sending
window, which has an equivalent effect of automatic data
rate adjustment. On the other hand, the sender of a UDP
session blindly transmits data at a fixed data rate, which is
set by the application program without any adaptation to
the network status. Overflowed packets are dropped
somewhere in the congested network nodes.

III. DESIGN OF UDP BASED APPROACH

We solve the two problems mentioned in the previous
section by embedding extra mechanisms at the application
level. Data integrity assurance is done by a mechanism
similar to TCP. That is, the receiver acknowledges for the
received data and the sender retransmits the lost data. On
the other hand, the data rate determination is done by
decomposing a UDP session into a number of smaller
UDP sessions, measuring the available network bandwidth
by inserting probing packets before each session, and then
transmitting the succeeding packets using the measured
bandwidth. In a nutshell, we designed a special TCP
protocol on the top of UDP dedicated for BT-like file
sharing systems.

A. Granularity of Retransmitted Data Segment

A retransmitted data segment (RDS) is a group of data
packets, which will be retransmitted entirely if any packet
in the group is lost in transmission. The first granularity
option is the packet level RDS. This option may not be
practical because it requires a tedious packet management
mechanism implemented at the application level. It may
also incur a significant acknowledge overhead if real time
acknowledgement is needed. The second option is the file
(fragment) level RDS. If there is any packet lost, the entire
file fragment must be retransmitted. The retransmission
cost of this option is too high, but it doesn't require any
packet management mechanism at the application level.
To reduce retransmission overhead, we took the third
option to design an Incremental Retransmission (IR)
mechanism that doesn't require to retransmit the entire file
fragment if a transmission session fails.

B. Incremental Retransmission

The incremental retransmission is done as follows:

1. If a RDS is found unrecoverable, the receiver
sends a signal to the sender to request for
retransmission. This signal also carries necessary
information to indicate the missing RDSs.

2. Upon receiving a retransmission request, the
sender terminates the current transmission,
repackages the remaining file fragment, then
reinitiates the transmission.

This retransmission mechanism is simple but may not be
precise. In other words, it may retransmit more data than
necessary. However, it is already able to reduce the
retransmission overhead from the file level down to the
RDS level. More delicate retransmission mechanisms such
as those used in TCP are yet to be evaluated for a possible
reuse.

C. Packet Level Error Correcting Mechanism

To reduce retransmission overhead, we also designed an
error correcting mechanism that partitions the data stream
into groups of size n, called self-protect packet set (SPPS),
and embeds a parity packet into each group. As depicted
in Fig. 1, the value of each bit in a parity packet is the
parity value of the same bit position in the same group. (In
fact, a SPPS is a good candidate for a RDS. Furthermore,
we use n instead of n+1 to denote the size of SPPS for
simplicity).

Fig. 1 Packet Level Error Correction

Assuming packets are numbered in sequence and the
receiver keeps track of received packet sequence, the
receiver can recover one lost packet for each SPPS. When
more than one packet in a SPPS is lost, the entire file (or
the rest of the file if IR is used) must be retransmitted. The
size of SPPS has a significant impact to the retransmission
efficiency. The higher the value, the smaller the number of
parity packets, but higher the retransmission probability.
The determination of SPPS size is dependent on the
reliability of data transmission. This will be discussed in
next section.

D. SPPS Size Determination

We assume to use file (fragment) level RDS for simplicity.
A file fragment consists of m packets. Each segment has n
packets. Thus each fragment has ⎡ ⎤nm segments. Each of
these segments is associated with a parity packet to form a
SPPS. Assuming the probability that a packet may be lost
in the transmission is γ, it is straightforward to calculate
the probability that a file fragment must be retransmitted is

()1 (0 | 1,) (1| 1,)p bin n bin nγ γ= − + + + (1)

Assuming the granularity of RDS is one SPPS, the total
extra overhead is then:

() ()
() ⎥

⎦

⎤
⎢
⎣

⎡

−
+

+⎥⎥
⎤

⎢⎢
⎡= 21

11,
p

pn
n
mmnPenalty γ

(2)

The optimal SPPS size can then be easily obtained by
taking a derivative on (2).

E. Adaptive UDP mechanism

To prevent a data sender from congesting the network, a
transport protocol must choose an appropriate data rate to
transmit data. As described in the previous section, TCP is
able to adjust transmitting data rate by trail-and-error to
match to the network bandwidth. However, UDP can't
determine the appropriate data rate by itself. It depends on
external instructions to set its data rate. An easy way to
solve this problem is to send probing packets to the
receiver periodically to measure the effective network
bandwidth and then adjust the data rate accordingly. This
technique is similar to TCP Vegas, which measures the
round trip packet delay time and adjusts sending window
size accordingly. In our algorithm, a fragment
downloading session is decomposed into a number of
smaller UDP sessions and then several probing packets are
sent before each UDP session to measure the available
network bandwidth. The succeeding UDP session then
uses the measured bandwidth to transmit succeeding data.
Receivers estimate the network bandwidth based on the
measured dispersion of inter-packet elapse time [3], and
then send the information back to the senders. The
bandwidth estimation formula is as follows:

 bandwidth = α (packet size)/(avg. packet dispersion time) (3)

In (3), α is the network bandwidth coefficient representing
individual network characteristics and can only be
determined empirically.

IV. PERFORMANCE EVALUATION

In this section, the best size of SPPS is analyzed, the
network bandwidth coefficient is experimentally studied,
and our UDP-based BT protocol is evaluated against that
with TCP-Reno and with TCP-Vegas using experimental
approach.

A. Size of SPPS

In this analysis, we calculate the optimal size of SPPS
given the parameters of fragment size and network error

rate. The fragment size is set at 250 packets and each
packet consists of 1000 bytes. The packet error rate is set
from 0.005 to 0.02. Assuming the entire fragment is
retransmitted if a SPPS is found unrecoverable. Penalty is
defined as the overhead for retransmission. The penalty as
a function of SPPS size is shown in Fig. 2. The optimal
size of SPPS as a function of packet loss rate is shown in
Fig. 3. As we can see from Fig. 2 and 3, the optimal size
of SPPS is 21 at 0.005 packet loss rate. From Fig. 3 we
can see that the lower the packet loss rate, the higher the
optimal size of SPPS.

Fig. 2. Penalty Analysis

Fig. 3. SPPS size Analysis

B. Determination of Network Bandwidth Coefficient

To use (3) to probe the network bandwidth, we need to
know the value of Network Bandwidth Coefficient (α). It

is an empirical value depending on the characteristics of
specific networks. We use the topology shown in Fig. 4 to
investigate the appropriate value of α. Testing traffic is
sent from X1 to Y1. Interference traffics are crossing the
intermediary routers to simulate the change of available
bandwidth.

Fig. 4. Topology for Network Bandwidth Coefficient
Experiments

The number of intermediary routers in five different
topologies is 1,3,5,7, and 9 respectively. For each
topology, the traffics are set from 1 to 10 Mbps. The value
of α is calculated using (4).

_

_ _ _
Available Bandwidthavg

Packet Size Average Dispersion Time
α

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

 (4
)

The average α value among all five topologies is 0.929.
The difference between the maximum and minimum is
smaller than 0.1. Therefore, it is a good value for most
networks.

C. Evaluation of UDP-Based Approach

This section evaluates the performance of BT with our
UDP-based approach against BT with TCP Reno or with
TCP Vegas using NS-2 network simulator. The simulated
topology is shown in Fig. 5. The bandwidth at the core
network is set at 1 Gbps such that the core network will
never be congested. Six downloaders (Y1, X1, X2, ..., X5)
are located at the both ends of a core network path. R1 and
R2 are access routers. Y1 downlaods a file (fragment) from
every other downloader (session 1-5) and uploads a file to
each of them (session 6-10). Each downloader accesses
the core network using an asymmetric bidirectional link.
Each access link has a 2-8 Mbps downward channel and a
56 kbps upward channel. Under this topology, the link
from Y1 to R1 will most likely be congested by the upward
streams and, as a consequence, the streams from Y1 to X1-
X5 (session 6-10) will be affected by the BoA problem.
Parts of results are shown in Fig. 6.

Fig. 5. Topology for Performance Evaluation

(a)

(b)

Fig. 6. Performance of BT with Three Protocols
(a) packet loss rate = 0.1%, (b) packet loss rate=10%

Fig. 7. Average Time to Transport 1/4 Mbytes of Data

The average elapse time to transfer a file of 1/4 M bytes
by BT with TCP Reno, TCP Vegas, and our protocol are
46.5 sec., 50 sec. and 30.8 sec. respectively. From these
experiments we can see that our algorithm is much better
than the other two, especially when the packet loss rate is
high. This result is consistent with our analysis. TCP Reno
is a very aggressive transport protocol and is highly
dependent on the acknowledge packets to "clock" its
operation. The blockage of acknowledge packet will cause
excessive number of time out and, as a consequence,
reduce its sending window size and data rate. TCP Vegas
is very conservative and may not be able to fully utilize
the network bandwidth. Besides, our packet error
correcting mechanism may make a significant contribution
too.

V. CONCLUDING REMARKS

In this paper, we analyze the performance problems of
BitTorrent based P2P file sharing operation model over
asymmetric networks from two viewpoints: network
topology and impairment of TCP protocol. Some
shortcomings may affect system and network performance:
data transmission paths are highly redundant wasting a lot
of backbone bandwidth, download throughput is only a
fraction of upward bandwidth; TCP performance is
deteriorated due to the blocking of acknowledge packets
on the upward channel. We propose a solution approach
that use UDP for data transportation to alleviate BOA
problem. The simulation results show that it can really
improve the throughput. Since TCP protocol is a dominant
transport protocol that are used by many network
applications, the expected research results will be
applicable to other P2P file sharing models as well as
other network applications.

REFERENCES

1. http://bittorrent.com.
2. Hari Balakrishnan, Venkata N. Padmanabhan,

Srinivasan Seshan and Randy H. Katz, "A
Comparison of Mechanisms for Improving TCP
Performance over Wireless Links", Proc. ACM
SIGCOMM'96, Aug. 1996.

3. P. Heleher, B. Bhattacharjee, and B. Silaghi, "Are
Vitrualized Overlay Networks Too Much of a Good
Thing?", Proceedings of the 1st International
Workshop on Peer-to-Peer Systems (IPTPS '02),
MIT Faculty Club, Cambridge, MA, USA, Mar.
2002.

4. Asymmetric and Wireless Networks '', Proceedings
of The First International Workshop on Mobility in
Peer-to-peer Systems (MPPS05), June. 6-9, 2005, pp.
850-855.

5. Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker,
"Search and Replication in Unstructured Peer-to-
peer Networks", Proceedings of the 16th Annual
ACM International Conference on Supercomputing,
2002.

6. R. Matei, A. Iamnitchi, and P. Foster, "Mapping the
Gnutella Network", IEEE Internet Computing, Vol.
6, Issue 1, Jan.-Feb. 2002, pp. 50-57.

7. J. Postel, "Transmission Control Protocol", IETF
RFC 793, Sep. 1981.

8. S. Saroiu, K. Gummadi, and S. Gribble, "A
Measurement Study of Peer-to-peer File Sharing
Systems", Proceedings of Multimedia Conferencing
and Networking, San Jose, Jan. 2002.

9. S. Saroiu, P. K. Gummadi, and S. D. Gribble,
"Exploring the Design Space of Distributed Peer-to-
peer Systems: Comparing the web, Triad and
Chord/cfs", Proceedings of the 1st International
Workshop on Peer-to-Peer Systems (IPTPS '02),
MIT Faculty Club, Cambridge, MA, USA, Mar.
2002.

10. B. Y. Zhao, Ling Huang, J. Stribling, S. C. Rhea, A.
D. Joseph, J. D. Kubiatowicz, "Tapestry: a Resilient
Global-Scale Overlay for Service Deployment",
IEEE Journal on Selected Areas in Communications,
Vol. 22, Issue 1, Jan. 2004.

