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Abstract -- Some Peer-to-Peer (P2P) file sharing 
operation models over asymmetric networks have 
several shortcomings that may have a significant 
impact to the system and network performance: data 
transmission paths are highly redundant wasting a lot 
of backbone bandwidth; the download throughput in a 
peer node may be limited by the upward bandwidth of 
other peer nodes; TCP performance is deteriorated 
due to the blocking of acknowledge packets on the 
upward channel. These shortcomings severely impair 
the efficiency of P2P file sharing as well as network 
performance. We designed a UDP based transport 
mechanism at the application level to alleviate parts of 
problems caused by TCP.  
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I. INTRODUCTION 

P2P file sharing is a very popular network application. 
There are many successful systems such as Napster, Kazza, 
Gnutella, Freenet, and BitTorrent [1,2,6]. By the degree of 
centralization, these systems can be roughly classified into 
Pure Decentralized, Partially Decentralized, and Hybrid 
Decentralized [9]. By the network structure, they can be 
classified into Unstructured, Structured, and Loosely 
Structured systems [5]. BitTorren (BT), which is 
originated by Bram Cohen [1], has become a bandwidth 
glutton, devouring more than one third of the Internet's 
bandwidth. Its operation can be classified as a Partially 
Decentralized Unstructured-network operation model. 
Because BitTorrent is becoming a dominant technology, 
this paper will take the BitTorrent compatible P2P file 
sharing model as a typical model to study. Nevertheless, 
some problems are not unique to the BitTorrent and many 
techniques can be applied to other paradigms as well.  

Without loss of generality, we assume the following 
abstract operation model. The file to be shared is broken 
into many smaller fragments and is stored in a seed node 
(initial seeder) waiting for retrieving by other peers. Each 

peer may retrieve these file fragments either from the 
initial seeder or from other peers that have already 
retrieved some fragments. Each peer may also serve as a 
redistribution node to share its retrieved fragments with 
other peers.  

In reality, Internet users are using various software tools 
that are compliant with BitTorrent protocol to cheaply 
spread files around the Internet. To share a file to other 
peers, a user server serves as the initial seeder to launch a 
BT-compatible server software, called tracker, to break 
the file into many smaller fragments and store the meta 
data into a small file called torrent, and then to publish it 
to some web site. To download the file, a user  downloads 
the torrent onto his/her computer first. A BT-compatible 
client software, called downloader, opens the torrent to 
obtain the contained meta data, then  searches for other 
downloaders that have downloaded the same torrent, and 
tries one by one to download the needed fragments from 
those downloaders. Each downloader will share the 
fragments it has downloaded successfully even before it 
finishes downloading all fragments. Through BitTorrent 
protocol, all peer users share their downloaded fragments 
to each other. The downloader in each peer combines all 
retrieved fragments back into a copy of the original file. 
As a common courtesy, a downloader needs to voluntarily 
stay online becoming a seeder to share the downloaded 
copy to other peers for some certain length of time. What 
a tracker does is giving each request a fragment, then 
introducing all peers to one another so that they can 
download file fragments from each other.  

Unstructured P2P file sharing networks do not take 
network topology into consideration, the paths of data 
transmission may overlay each other severely. As a 
consequence, it may waste a lot of backbone bandwidth. 
Although existing structured network model can organize 
the participating peers into a less redundant network 
topology and thus can relieve this problem, they are all file 
based and may not be applicable for fragment-based 
model such as BitTorrent.  



Furthermore, when most peer nodes are attached to the 
Internet via asymmetric access networks such as ADSL, 
there will be some performance problems. First, within a 
node, the download throughput is often smaller than the 
upload throughput, even though the former usually has 
much larger bandwidth capacity. Secondly, the 
performance of TCP based network applications will be 
interfered by the P2P file sharing operation. These 
problems are further complicated by the voluntary nature 
of P2P that peer nodes may be fairly unstable making 
downloading operations fairly unstable.  

We can easily identify at least two possible causes that 
may contribute to the problems mentioned above. First, 
since a file fragment is often retrieved by more than one 
node, all such file sharing streams must share the narrow 
upward bandwidth of the node that is sharing out the file 
fragment. Therefore, each stream is only allocated with a 
small bandwidth. Secondly, when an upward channel is 
congested by the file sharing load, the performance TCP 
will deteriorate due to the blocking of acknowledge 
packets on the upward channel [7]. For simplicity, the first 
problem is referred to as the Fractional Upward 
Bandwidth (FUB) problem and the second one as the 
Blockage of Acknowledge (BoA) problem [4]. These 
shortcomings severely impair the performance of 
networks and the P2P file sharing itself.  

The problems mentioned above were analyzed with some 
solution approaches proposed in paper [4]. This paper 
addresses the performance issues caused by TCP.  

II. IMPACT OF TRANSPORT PROTOCOLS 

A network application that demands a reliable data 
transfer would probably choose TCP to "transport" data 
[7]. This section will discuss the performance problems 
caused by the impairment of TCP as well as solution 
approaches.  

A. Overview of TCP Protocol  

TCP is a transport protocol that can guarantee the delivery 
of packets and is built-in with a congestion control 
mechanism. TCP software resides at the both ends (sender 
and receiver) of a connection. The basic version can 
perform well without any support from the network 
elements at IP layer. To transmit a message (or a file), the 
sender breaks the message into packets and transmits them 
in sequence to the receiver. The receiver acknowledges the 
received packets by sending acknowledge packets (ACK) 
back to the sender. If the sender receives a packet loss 
signal (three duplicated ACKs) for a particular packet or 
doesn't receive the ACK by a certain time period, the 

packet is considered lost and must be retransmitted. The 
process of transmitting data from the beginning to the end 
is a session.  

When TCP is invoked to transport a file or a message, the 
sender doesn't know the appropriate data rate it should 
take to transmit data. Therefore, it takes some calculated 
steps, such as AIMD (Additive Increasing Multiplicative 
Decreasing) policy, to adjust a sending window, which has 
a direct effect  of adjusting the data rate, in a trial-and-
error fashion. To prevent the network from overly 
congested, TCP takes packet losses as signals of network 
congestion and adjusts the data rate accordingly. AIMD 
policy adjusts data rate much slower in increasing phases 
and much faster in decreasing phases. Adjusting 
transmission data rate in this trial-and-error fashion is not 
very efficient. Many improvement mechanisms have been 
proposed and implemented to enhance TCP performance 
under various conditions [4].  

Controlling congestion by taking packet losses as the 
signals of network congestion performs well for regular 
networks. However, it may not work well in some network 
environments, such as BitTorrent over asymmetric 
networks, in which acknowledge packets sent by a TCP 
receiver may be lost or delayed frequently in the 
congested upward channel of the receiver. In these cases, 
TCP will unnecessarily initiate undesirable congestion 
control to reduce data rate when it detects the occurrences 
of packet loss. This problem will be illustrated in the rest 
of this section.  

B. TCP Problems on Asymmetric Networks  

The performance of TCP depends on an uncongested two-
way communications, one channel for sending data 
packets, the other for sending ACKs back. To make TCP 
perform well, neither channel can be congested.  

In an asymmetric network such as ADSL, the upward 
channel (from user's viewpoint) has a smaller bandwidth 
than the downward channel. Ideally, the downward 
channel must be able to carry a bigger downloading traffic 
up to its maximum bandwidth. In reality, its actual 
throughput may be influenced by the congestions occurred 
on the upward channel. The congestion occurred on the 
upward channel may block the delivery of ACKs and 
trigger the congestion control mechanism at the sender 
side unnecessarily.  

Unfortunately, BT-compatible P2P file sharing over 
asymmetric networks is facing exactly such a problem. 
Most downloaders are sharing out their own fragments 
while downloading the needed fragments from other peer 



nodes. The upward channels may be congested by the 
sharing out traffic and many ACKs for TCP will be held at 
the receiver side. Consequently, the corresponding data 
packets are considered lost when the timers at the sender 
side expire. Once the sender detects the occurrence of 
severe packet loss, its congestion control mechanism will 
automatically reduce the data rate to the minimum level 
accordingly. This is one of the major reasons why BT 
users are not satisfied with the downloading speed. In next 
section, some approaches will be discussed to solve this 
problem.  

C. Approaches to Improve Transport Protocol  

The first approach to overcome the problems mentioned 
above is to design a new TCP protocol for BitTorrent 
environment [4]. The second approach is to use UDP 
instead of TCP to transport data.  

C.1 TCP Approaches  

Some possible techniques are (1) use longer lost packet 
timers to accommodate delayed ACKs and thus to prevent 
the sender from triggering congestion control procedure; 
(2) improve the accuracy of bandwidth estimation to 
prevent senders from running too fast; (3) use more 
delicate information to detect congestion (not to take 
packet loss as the sole congestion signal). Further 
researches are needed to implement this approach [4].  

C.2 UDP Approaches  

The advantage of using UDP is obvious: the download 
throughput at the receiver side will not be affected by the 
congestion occurred on the upward channel. However, this 
approach has two problems yet to be solved: (1) data 
integrity assurance (i.e. to recover the lost packets) and (2) 
data rate determination (i.e. flow control and congestion 
control). Because the sender of a transport session has no 
knowledge about the end-to-end network bandwidth 
between the source and the destination, the determination 
of data rate becomes one of the trickiest tasks to a 
transport protocol. A number of TCP flavors were 
developed to cope with this problem. Most of them use a 
complicated mechanism to control the size of sending 
window, which has an equivalent effect of automatic data 
rate adjustment. On the other hand, the sender of a UDP 
session blindly transmits data at a fixed data rate, which is  
set by the application program without any adaptation to 
the network status. Overflowed packets are dropped 
somewhere in the congested network nodes.  

III. DESIGN OF UDP BASED APPROACH 

We solve the two problems mentioned in the previous 
section by embedding extra mechanisms at the application 
level. Data integrity assurance is done by a mechanism 
similar to TCP. That is, the receiver acknowledges for the 
received data and the sender retransmits the lost data. On 
the other hand, the data rate determination is done by 
decomposing a UDP session into a number of smaller 
UDP sessions, measuring the available network bandwidth 
by inserting probing packets before each session, and then 
transmitting the succeeding packets using the measured 
bandwidth. In a nutshell, we designed a special TCP 
protocol on the top of UDP dedicated for BT-like file 
sharing systems.  

A. Granularity of Retransmitted Data Segment  

A retransmitted data segment (RDS) is a group of data 
packets, which will be retransmitted entirely if any packet 
in the group is lost in transmission. The first granularity 
option is the packet level RDS. This option may not be 
practical because it requires a tedious packet management 
mechanism implemented at the application level. It may 
also incur a significant acknowledge overhead if real time 
acknowledgement is needed. The second option is the file 
(fragment) level RDS. If there is any packet lost, the entire 
file fragment must be retransmitted. The retransmission 
cost of this option is too high, but it doesn't require any 
packet management mechanism at the application level. 
To reduce retransmission overhead, we took the third 
option to design an Incremental Retransmission (IR) 
mechanism that doesn't require to retransmit the entire file 
fragment if a transmission session fails.  

B. Incremental Retransmission  

The incremental retransmission is done as follows:  

1. If a RDS is found unrecoverable, the receiver 
sends a signal to the sender to request for 
retransmission. This signal also carries necessary 
information to indicate the missing RDSs.  

2. Upon receiving a retransmission request, the 
sender terminates the current transmission, 
repackages the remaining file fragment, then 
reinitiates the transmission.  

This retransmission mechanism is simple but may not be 
precise. In other words, it may retransmit more data than 
necessary. However, it is already able to reduce the 
retransmission overhead from the file level down to the 
RDS level. More delicate retransmission mechanisms such 
as those used in TCP are yet to be evaluated for a possible 
reuse.  



C. Packet Level Error Correcting Mechanism  

To reduce retransmission overhead, we also designed an 
error correcting mechanism that partitions the data stream 
into groups of size n, called self-protect packet set (SPPS), 
and embeds a parity packet into each group. As depicted 
in Fig. 1, the value of each bit in a parity packet is the 
parity value of the same bit position in the same group. (In 
fact, a SPPS is a good candidate for a RDS. Furthermore, 
we use n instead of n+1 to denote the size of SPPS for 
simplicity).  

 

Fig. 1 Packet Level Error Correction 

Assuming packets are numbered in sequence and the 
receiver keeps track of received packet sequence, the 
receiver can recover one lost packet for each SPPS. When 
more than one packet in a SPPS is lost, the entire file (or 
the rest of the file if IR is used) must be retransmitted. The 
size of SPPS has a significant impact to the retransmission 
efficiency. The higher the value, the smaller the number of 
parity packets, but higher the retransmission probability. 
The determination of SPPS size is dependent on the 
reliability of data transmission. This will be discussed in 
next section.  

D. SPPS Size Determination  

We assume to use file (fragment) level RDS for simplicity. 
A file fragment consists of m packets. Each segment has n 
packets. Thus each fragment has ⎡ ⎤nm  segments. Each of 
these segments is associated with a parity packet to form a 
SPPS. Assuming the probability that a packet may be lost 
in the transmission is γ, it is straightforward to calculate 
the probability that a file fragment must be retransmitted is  

( )1 (0 | 1, ) (1| 1, )p bin n bin nγ γ= − + + +    (1)  

Assuming the granularity of RDS is one SPPS, the total 
extra overhead is then:  
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The optimal SPPS size can then be easily obtained by 
taking a derivative on (2). 

E. Adaptive UDP mechanism  

To prevent a data sender from congesting the network, a 
transport protocol must choose an appropriate data rate to 
transmit data. As described in the previous section, TCP is 
able to adjust transmitting data rate by trail-and-error to 
match to the network bandwidth. However, UDP can't 
determine the appropriate data rate by itself. It depends on 
external instructions to set its data rate. An easy way to 
solve this problem is to send probing packets to the 
receiver periodically to measure the effective network 
bandwidth and then adjust the data rate accordingly. This 
technique is similar to TCP Vegas, which measures the 
round trip packet delay time and adjusts sending window 
size accordingly. In our algorithm, a fragment 
downloading session is decomposed into a number of 
smaller UDP sessions and then several probing packets are 
sent before each UDP session to measure the available 
network bandwidth. The succeeding UDP session then 
uses the measured bandwidth to transmit succeeding data. 
Receivers estimate the network bandwidth based on the 
measured dispersion of inter-packet elapse time [3], and 
then send the information back to the senders. The 
bandwidth estimation formula is as follows:  
 
  bandwidth = α (packet size)/(avg. packet dispersion time)  (3) 
 
In (3), α is the network bandwidth coefficient representing 
individual network characteristics and can only be 
determined empirically.  

IV. PERFORMANCE EVALUATION 

In this section, the best size of SPPS is analyzed, the 
network bandwidth coefficient is experimentally studied, 
and our UDP-based BT protocol is evaluated against that 
with TCP-Reno and with TCP-Vegas using experimental 
approach.  

A. Size of SPPS  

In this analysis, we calculate the optimal size of SPPS 
given the parameters of fragment size and network error 



rate. The fragment size is set at 250 packets and each 
packet consists of 1000 bytes. The packet error rate is set 
from 0.005 to 0.02. Assuming the entire fragment is 
retransmitted if a SPPS is found unrecoverable. Penalty is 
defined as the overhead for retransmission. The penalty as 
a function of SPPS size is shown in Fig. 2. The optimal 
size of SPPS as a function of packet loss rate is shown in 
Fig. 3. As we can see from Fig. 2 and 3, the optimal size 
of SPPS is 21 at 0.005 packet loss rate. From Fig. 3 we 
can see that the lower the packet loss rate, the higher the 
optimal size of SPPS.  

Fig. 2. Penalty Analysis 

 

Fig. 3. SPPS size Analysis 

B. Determination of Network Bandwidth Coefficient  

To use (3) to probe the network bandwidth, we need to 
know the value of Network Bandwidth Coefficient ( α). It 

is an empirical value depending on the characteristics of 
specific networks. We use the topology shown in Fig. 4 to 
investigate the appropriate value of α. Testing traffic is 
sent from X1 to Y1. Interference traffics are crossing the 
intermediary routers to simulate the change of available 
bandwidth.  

Fig. 4. Topology for Network Bandwidth Coefficient 
Experiments 

The number of intermediary routers in five different 
topologies is 1,3,5,7, and 9 respectively. For each 
topology, the traffics are set from 1 to 10 Mbps. The value 
of α is calculated using (4).  
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The average α value among all five topologies is 0.929. 
The difference between the maximum and minimum is 
smaller than 0.1. Therefore, it is a good value for most 
networks.  

C. Evaluation of UDP-Based Approach  

This section evaluates the performance of BT with our 
UDP-based approach against BT with TCP Reno or with 
TCP Vegas using NS-2 network simulator. The simulated 
topology is shown in Fig. 5. The bandwidth at the core 
network is set at 1 Gbps such that the core network will 
never be congested. Six downloaders (Y1, X1, X2, ..., X5) 
are located at the both ends of a core network path. R1 and 
R2 are access routers. Y1 downlaods a file (fragment) from 
every other downloader (session 1-5) and uploads a file to 
each of them (session 6-10). Each downloader accesses 
the core network using an asymmetric bidirectional link. 
Each access link has a 2-8 Mbps downward channel and a 
56 kbps upward channel. Under this topology, the link 
from Y1 to R1 will most likely be congested by the upward 
streams and, as a consequence, the streams from Y1 to X1-
X5 (session 6-10) will be affected by the BoA problem. 
Parts of results are shown in Fig. 6.  



 
 

 
Fig. 5. Topology for Performance Evaluation 

 

(a) 

(b) 

Fig. 6. Performance of BT with  Three Protocols 
(a) packet loss rate = 0.1%, (b) packet loss rate=10% 

 

 

Fig. 7. Average Time to Transport 1/4 Mbytes of Data  
 

The average elapse time to transfer a file of 1/4 M bytes 
by BT with TCP Reno, TCP Vegas, and our protocol are 
46.5 sec., 50 sec. and 30.8 sec. respectively. From these 
experiments we can see that our algorithm is much better 
than the other two, especially when the packet loss rate is 
high. This result is consistent with our analysis. TCP Reno 
is a very aggressive transport protocol and is highly 
dependent on the acknowledge packets to "clock" its 
operation. The blockage of acknowledge packet will cause 
excessive number of time out and, as a consequence, 
reduce its sending window size and data rate. TCP Vegas 
is very conservative and may not be able to fully utilize 
the network bandwidth. Besides, our packet error 
correcting mechanism may make a significant contribution 
too.  

V. CONCLUDING REMARKS 

In this paper, we analyze the performance problems of 
BitTorrent based P2P file sharing operation model over 
asymmetric networks from two viewpoints: network 
topology and impairment of TCP protocol. Some 
shortcomings may affect system and network performance: 
data transmission paths are highly redundant wasting a lot 
of backbone bandwidth, download throughput is only a 
fraction of upward bandwidth; TCP performance is 
deteriorated due to the blocking of acknowledge packets 
on the upward channel. We propose a solution approach 
that use UDP for data transportation to alleviate BOA 
problem. The simulation results show that it can really 
improve the throughput. Since TCP protocol is a dominant 
transport protocol that are used by many network 
applications, the expected research results will be 
applicable to other P2P file sharing models as well as 
other network applications.  
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