
Performance Issues of P2P File Sharing Over Asymmetric and
Wireless Networks

Yao-Nan Lien
Computer Science Department
National Chengchi University

Taipei, Taiwan
lien@cs.nccu.edu.tw

Abstract

Some Peer-to-Peer (P2P) file sharing operation
models over asymmetric networks have several
shortcomings that may affect system and network
performance: data transmission paths are highly
redundant wasting a lot of backbone bandwidth,
the download throughput in a node may be limited
by the the upward bandwidth of other nodes; TCP
performance is deteriorated due to the blocking of
acknowledge packets on the upward channel.
These shortcomings severely impair the efficiency
of P2P file sharing as well as network
performance. These problems are further
complicated by the voluntary nature of P2P: peer
nodes are fairly unstable. For similar reasons,
when such P2P file sharing paradigm is moving to
wireless networks, it may suffer from even worse
performance degradation due to many reasons
such as lower link reliability, lower bandwidth,
and the impairment of TCP protocol.

This paper analyzes these problems mainly from
topology and protocol viewpoints and proposes
some solution approaches to alleviate some of
these problems.

Key Words:

P2P and TCP.

1. Introduction

P2P file sharing is a very popular network
application. There are many successful systems
such as Napster, Kazza, Gnutella, Freenet, and
BitTorrent [1,5,9]. By the degree of centralization,
these systems can be roughly classified into Pure
Decentralized, Partially Decentralized, and Hybrid
Decentralized [14]. By the network structure, they
can be classified into Unstructured, Structured, and
Loosely Structured systems [8]. BitTorrent, which
is originated by Bram Cohen [1], has become a

bandwidth glutton, devouring more than one third
of the Internet's bandwidth. Its operation can be
classified as a Partially Decentralized
Unstructured-network operation model. Because
BitTorrent is becoming a dominant technology,
this paper will take the BitTorrent compatible P2P
file sharing model as a typical model to study.
Nevertheless, some problems are not unique to the
BitTorrent and many techniques can be applied to
other paradigms as well.

Without loss of generality, we assume the
following abstract operation model. The file to be
shared is broken into many smaller fragments and
is stored in a seed node (original seeder) waiting
for retrieving by some peer nodes. Each peer node
may retrieve these file fragments either from the
original seeded or from other peer nodes that have
already retrieved some fragments. Each peer node
may also serve as a redistribution node to share out
the retrieved fragments.

In reality, many users are using various software
tools that are compliant with BitTorrent protocol to
cheaply spread files around the Internet. If a user
wants to share a file to others, it will serve as the
original seeder (or original downloader). A
BitTorrent-compatible server software, called
tracker, breaks the file into many smaller
fragments, then publishes a small file called
torrent to some web site. If a user wants to
download a copy of the file, rather than
downloading the actual file, instead the user would
download the torrent onto his/her computer. When
the torrent is opened by a BitTorrent-compatible
client software, called end user downloader, the
downloader searches for other downloaders that
have downloaded the same torrent, and try one by
one to download the needed fragments from those
downloaders. Each downloader will share the
fragments it has downloaded successfully even
before it finishes downloading all fragments.
Through BitTorrent protocol, all peer users share
their downloaded fragments to each other. The

downloader in each peer node combines all
retrieved fragments back into a single file that is
identical to the original file. As a common
courtesy, a downloader needs to voluntarily stay
online becoming a seeder to share out his/her
downloaded copy to other downloaders for some
certain length of time. What a tracker does is
giving each request a fragment, then introducing
all peer nodes to one another so that they can
download file fragments from each other.

Unstructured P2P file sharing networks do not take
network topology into consideration, the paths of
data transmission may overlay over each other
severely. As a consequence, it may waste a lot of
backbone bandwidth. Although structured network
model can organize the participating peer nodes
into a less redundant network topology and thus
can relieve this problem, current solutions are all
file based such that they may not be applicable for
fragment-based model such as BitTorrent.

Furthermore, when most peer nodes are attached to
the Internet via asymmetric access networks such
as ADSL, there will be some performance
problems. First, within a node, the download
throughput is often smaller than the upload
throughput, even though the former usually has
much higher bandwidth. Secondly, the
performance of TCP based network applications
will be interfered by the P2P file sharing operation.
These problems are further complicated by the
voluntary nature of P2P that peer nodes may be
fairly unstable such that the failure rates of
download operations are fairly high.

We can easily identify at least two possible causes
that may contribute to the problems mentioned
above. First, since a file fragment is often retrieved
by more than one node, all such file sharing
streams must share the narrow upward bandwidth
of the node that is sharing out the file fragment.
Therefore, each stream is only allocated with a
small bandwidth. Secondly, when an upward
channel is congested by the file sharing load, the
performance TCP will deteriorate due to the
blocking of acknowledge packets on the upward
channel [12]. For simplicity, the first problem is
referred to as the Fractional Upward Bandwidth
(FUB) problem and the second one as the
Blockage of Acknowledge (BoA) problem. These
shortcomings severely impair the performance of
networks and the P2P file sharing itself.

When this kind of P2P file sharing model is
applied to a wireless network, similar network
performance problems may occur. It may suffer
from even worse performance degradation due to
the poor TCP performance over unreliable wireless
links.

This paper is set to analyze these problems mainly
from network topology and TCP protocol
viewpoints as well as to propose some solution
approaches to alleviate the problems.

2. Influence of Fragment Topology

For simplicity, we assume only a single file is to
be shared. Assuming each peer user is accessing a
fragment either from the original downloader or
from another end user downloader, the download-
upload relationship among all peer nodes forms a
fragment tree. All fragment trees share the same
root node, which is the original downloader. It is
sufficient to analyze the performance of BitTorrent
operation model based on the topology of a single
fragment tree. Thus, our analysis is based on a
single fragment tree. Note that it is not necessary
for all downloaders of the same fragment tree to be
alive simultaneously. As long as there is at least
one downloader that has the complete fragment
and is willing to share it out, the fragment itself is
available for retrieving.

2.1 Long Physical Paths

Each link in a fragment tree, named f-link for
simplicity, is really a path of any length on the
Internet. Unfortunately, BitTorrent operation
model does not force downloaders to take path
length into account such that the physical topology
of a fragment tree may contain many redundant
path segments. As a result, P2P file sharing
unnecessarily generates too much Internet traffic,
and together they devour one third of backbone
bandwidth today.

Using structured-network approach to construct an
overlay network and then having all peer nodes to
download the desired files from designated
neighboring nodes seems an attractive solution
[6,15]. However, since peer nodes in BitTorrent
paradigm join and leave the file sharing network
arbitrarily, and the locations of file fragments are
hectically determined in real time, it is impractical
to use such a pre-planning approach.

Nevertheless, a straightforward solution is to have
every downloader select the "nearest neighbor" to
download the fragment [11]. To identify the
"nearest neighbor" of a node, we need to estimate
the physical distances between each other based on
some measurement, such as throughput or packet
transfer latency.

2.2 Width of Fragment Trees

Bushy Tree

The average width of a fragment tree may have a
significant impact on the performance. A bushy
tree may cause a downloader uploading too many
file sharing streams to other downloaders and
suffering from severe FUB and BoA problems.

Slim Tree

In a slim fragment tree, each downloader needs to
offer fewer uploading streams for others to
download. Thus, in a peer node, each uploading
stream may be allocated with a larger share of the
upward bandwidth. Furthermore, the upward
channel may be less congested. The FUB and BoA
problems associated with a bushy fragment tree
can be alleviated.

On the other hand, a slim fragment tree may cause
some problems too. First, a newly joined
downloader may be forced to retrieve the fragment
from a remote downloader rather than a
neighboring downloader. As a result, the average
length of access paths may be longer. Furthermore,
it would take much more time to search a
downloader that has the desired fragment and has
available "quota" for file sharing.

The two influence factors associated with the
width of the fragment tree seems contradict to each
other. Good P2P file sharing program designers
must strive for the balance between the two factors.
It is an interesting research issue to find out the
balance points under various conditions and
objectives.

2.3. Distributed Minimum Spanning Tree for
Fragment Tree

When the backbone bandwidth is a precious
resource such as that in an Ad Hoc Wireless LAN,
it is necessary to reduce (or minimize) the total
physical length of f-links.

To reduce the length of a f-link, as mentioned
earlier, a downloader can estimate the physical
distances to all other downloaders based on some
measurement, and then select the best one. This
greedy solution may not be the best solution.
Furthermore, when some downloaders are out of
service for any reason, a reconfiguration procedure
needs to be initiated to reconstruct the fragment
tree. The configuration of the fragment tree can be
modeled as a variation of the conventional
Distributed Minimum Spanning Tree with a
constraint on the maximum number of adjacent
nodes [7]. Finding a good solution is an interesting
research topic.

3. Influence of TCP Protocol

A network application that demands a reliable data
transfer would probably choose TCP to "transport"
data [12]. This section will discuss the
performance problem caused by the impairment of
TCP.

Overview of TCP Protocol

TCP is a transport protocol that can guarantee the
delivery of packets and is built in with a
congestion control mechanism. TCP software
resides at the both ends (sender and receiver) of a
connection. The basic version can perform well
without any support from the network elements at
IP layer. The sender breaks the file or the message
that is to be sent into packets and transmits them in
sequence to the receiver. The sender will keep
track of packet delivery and retransmit the packets
that are lost. When the receiver receives some
packets successfully, it sends acknowledge packets
back to the sender. If the sender doesn't receive the
acknowledge packet within some certain time limit,
the packets corresponding to the missing
acknowledge is considered lost and will be
retransmitted by the sender.

When TCP is invoked to transport a file or a
message, the sender doesn't know the appropriate
data rate it should take to transmit data. Therefore,
it takes some calculated steps, such as AIMD
(Additive Increasing Multiplicative Decreasing)
policy, to adjust transmitting data rate in a trial-
and-error fashion. To prevent the network from
overly congested, TCP takes a packet loss as a
signal of network congestion and adjusts the data
rate accordingly. AIMD policy adjusts data rate
much slower in increasing phases and much faster
in decreasing phases. Adjusting transmission data

rate by trial-and-error is not very efficient. Many
improvement mechanisms have been proposed and
implemented to enhance TCP performance under
various conditions [2,3,10].

Current TCP is designed to take packet loss as a
signal of network congestion. It works well for
regular networks. However, it may not work well
in other network environments, such as unreliable
wireless networks or BitTorrent over asymmetric
networks, where acknowledge packets may be lost
or delayed due to some causes other than network
congestion. In these cases, TCP will unnecessarily
initiate undesired congestion control to reduce data
rate when it detects the occurrence of packet loss.
This problem will be illustrated in the rest of this
section.

TCP Problems on Asymmetric Networks

The performance of TCP depends on an
uncongested two-way communications, one
channel for sending data packets, the other for
sending acknowledge packets back. To make TCP
perform well, neither channel can be congested.

In an asymmetric network such as ADSL, one of
the two-way channels has smaller bandwidth than
the other. Theoretically, the channel that has larger
bandwidth must be able to carry a bigger traffic
flow up to its maximum bandwidth. In reality, its
actual throughput may be limited by the
congestion occurred on the other channel. The
congestion occurred on the other channel may
block the delivery of acknowledge packets and
trigger the congestion control mechanism at the
sender side unnecessarily.

Unfortunately, BitTorrent compatible P2P file
sharing over asymmetric networks is facing
exactly such a problem. Most downloaders are
sharing out their own fragments while
downloading fragments from others. The upward
channels may be congested by the sharing out
traffic. Many acknowledge packets will be held at
the receiver side and be treated as lost packets
when the timers at the sender side are expired.
Once the sender detects the occurrence of severe
packet loss, its congestion control mechanism will
automatically reduce the transmission rate to a
minimum level accordingly. In Section 4, some
approaches will be discussed to solve this problem.

TCP Problems on Unreliable Networks

In some environments, such as an unreliable
wireless network, many packets may be lost due to
high noise on the communication channels. Similar
to the problem associated with asymmetric
networks, the sender of a TCP connection will
trigger a congestion control mechanism to reduce
the transmission data rate although the causes of
these two situations are different.

Many researches are trying to solve this problem
[2,15]. Most of them use some kind of proxy
mechanism to buffer packets for receivers that are
attached to the network through a noisy channel.
The TCP connection looks to the sender like a
reliable network. Therefore, unnecessary
congestion control will not be triggered. In reality,
implementing these mechanisms may not be
practical because they require assistant and support
from proxy nodes. The simplicity of original TCP
will be destroyed.

When BitTorrent P2P file sharing is moving to a
wireless network, upward channels are both
congested and noisy, the TCP performance will
severely deteriorate. It is not easy to solve this
problem though.

4. Approaches to Improve Transport
Protocol

There may be some approaches to overcome the
problems mentioned in the previous section. The
first approach is to use UDP instead of TCP to
transport data. The second approach is to modify
TCP to accommodate to these special situations.
They will be discussed in this section.

4.1. UDP Approaches

The advantage of using UDP is obvious: the
download throughput at the receiver side will not
be affected by the congestion occurred on the
upward channel. However, since UDP has neither
the capability to recover lost packets nor the
capability to determine the appropriate
transmitting data rate, some enhancements are
needed to overcome these problems.

Lost Packet Recovery

Lost packet recovery mechanism, also referred to
as data recovery for generality, can be
implemented at the application level. Data
granularity can be set either at fragment level or at

packet level. Fragment level data recovery is to
throw the entire fragment away when any packet is
found lost and then to ask the same sender of a
different peer node to retransmit the desired
fragment. This method is easy to implement but
may waste too much bandwidth. Thus, it is only
applicable when either the network is reliable or
fragments are small.

On the other hand, packet level data recovery is
more efficient but more tedious to implement. First,
receivers must keep track of packet loss. Secondly,
senders must be able to break the fragment into
packets at the application level and repack the
packets that are to be retransmitted into a new
message for retransmission. Moreover, this
approach will violate the layer structure of network
protocols. In reality, application level software
doesn't know the packetization details at the
transport layer such that it is not easy to extract the
desired packets out of the original fragment. Some
virtual packetization mechanism will have to be
built into the application itself. Further researches
are needed for both approaches.

Data Rate Determination

To prevent the sender from congesting the network,
transport protocol must choose an appropriate data
rate to transmit data. As described in the previous
section, TCP is able to adjust transmitting data rate
by trail-and-error to match to the network
bandwidth. However, UDP can't determine the
appropriate data rate by itself. In many real world
applications, users have to choose an appropriate
data rate explicitly. One simple way to enhance
UDP is to send probing packets to the receiver
periodically to measure the effective network
bandwidth and then adjust the data rate
accordingly. Researches are undergoing to design
appropriate probing procedures.

4.2. TCP Approaches

Since UDP doesn't retransmit lost packets, it is
obviously not applicable for file sharing in an
unreliable wireless network. Thus, TCP is more
appropriate in such situations. There are some
approaches to modify TCP to accommodate to
such special network environments. However, they
are not designed for BitTorrent paradigm though.
In other words, a new TCP protocol specially
designed for BitTorrent environment may be able
to achieve a better performance.

Longer Lost Packet Timer

For asymmetric networks where acknowledge
packets are held at the receiver side because of
congestion occurred on the upward channel, a
simple technique is to set a larger waiting time for
acknowledgement. Since many acknowledge
packets are not lost but delayed, a larger waiting
time would be able to prevent sender from
triggering congestion control procedure.
Nevertheless, this simple technique only works on
regular asymmetric networks (e.g. wired ADSL),
but not for unreliable networks where packet loss
rates are high.

Estimate Data Rate

One possible source of inefficiency is several
versions of TCP protocol is that they take a trial-
and-error fashion to determine the appropriate data
rate and to perform congestion control.
Unfortunately, this trial-and-error approach counts
on the occurrence of congestion to adjust its data
date. One possible way to improve the efficiency
of TCP is to estimate the effective network
bandwidth first, then to determine the appropriate
data rate accordingly. Another way is to use
different indicators that can detects potential
congestions before they actually occurs. Some
researches are undergoing in our research team.

Improve Congestion Control Policy

Congestion control mechanism, which includes
triggering condition and rate control policy, must
be improved too. Although packet loss is still an
important indicator of network congestion, it
shouldn't be the only indicator in many special
network environments. Furthermore, AIMD may
not be the best rate control policy any more. A
good TCP protocol suite must have good solutions
for both issues. Further researches are needed to
obtain concrete results.

5. Summary

In this paper, we analyze the performance
problems of BitTorrent based P2P file sharing
operation models over asymmetric networks and
wireless networks from two viewpoints: network
topology and impairment of TCP protocol. Some
shortcomings may affect system and network
performance: data transmission paths are highly
redundant wasting a lot of backbone bandwidth,

download throughput is only a fraction of upward
bandwidth; TCP performance is deteriorated due
to the blocking of acknowledge packets on the
upward channel. We also propose some solution
approaches that can alleviate these problems.
Many issues are yet to be researched. Since TCP
protocol is a dominant transport protocol that are
used my many network applications, the expected
research results will be applicable to other P2P file
sharing models as well as other network
applications.

References

1. http://bittorrent.com.

2. Hari Balakrishnan, Venkata N.
Padmanabhan, Srinivasan Seshan and Randy
H. Katz, "A Comparison of Mechanisms for
Improving TCP Performance over Wireless
Links", Proc. ACM SIGCOMM'96, Aug.
1996.

3. L. S. Brakmo and L. L. Peterson, "TCP
Vegas: End to End Congestion Avoidance
on a Global Internet", IEEE J. Select. Areas
Commun., vol. 13, pp. 1465-1480, 1995.

4. I. Clarke, T. W. Hong, O. Sanberg, and B.
Wiley, "Protecting Free Expression Online
with Freenet", IEEE Internet Computing,
Vol. 6, No. 1, Jan.-Feb. 2002, pp. 40-49.

5. I. Clarke, O. Sandberg, and B. Wiley,
"Freenet: A Distributed Anonymous
Information Storage and Retrieval System",
Proceedings of the Workshop on Design
Issues in Anonymity and Unobservability,
Berkeley, California, June 2000.

6. P. Heleher, B. Bhattacharjee, and B. Silaghi,
"Are Vitrualized Overlay Networks Too
Much of a Good Thing?", Proceedings of the
1st International Workshop on Peer-to-Peer
Systems (IPTPS '02), MIT Faculty Club,
Cambridge, MA, USA, Mar. 2002.

7. Yao-Nan Lien, "A New Node-Join-Tree
Distributed Algorithm for Minimum Weight
Spanning Trees", Proc. of Eighth IEEE
International Conference on Distributed
Computing Systems, June, 1988, pp. 334-340.

8. Q. Lv, P. Cao, E. Cohen, K. Li, and S.
Shenker, "Search and Replication in

Unstructured Peer-to-peer Networks",
Proceedings of the 16th Annual ACM
International Conference on
Supercomputing, 2002.

9. R. Matei, A. Iamnitchi, and P. Foster,
"Mapping the Gnutella Network", IEEE
Internet Computing, Vol. 6, Issue 1, Jan.-Feb.
2002, pp. 50-57.

10. J. Mo, R. J. La, V. Anantharam, and J.
Walrand, "Analysis and Comparison of TCP
Reno and Vegas", Proc. of IEEE INFOCOM,
pp. 1556-1563, Mar. 1999.

11. C. G. Plaxton, R. Rajaraman, and A. H.
Richa, "Accessing Nearby Copies of
Replicated Objects in a Distributed
Environment", Proceedings of ACM SPAA,
ACM, June 1997.

12. J. Postel, "Transmission Control Protocol",
IETF RFC 793, Sep. 1981.

13. S. Saroiu, K. Gummadi, and S. Gribble, "A
Measurement Study of Peer-to-peer File
Sharing Systems", Proceedings of
Multimedia Conferencing and Networking,
San Jose, Jan. 2002.

14. S. Saroiu, P. K. Gummadi, and S. D. Gribble,
"Exploring the Design Space of Distributed
Peer-to-peer Systems: Comparing the web,
Triad and Chord/cfs", Proceedings of the 1st
International Workshop on Peer-to-Peer
Systems (IPTPS '02), MIT Faculty Club,
Cambridge, MA, USA, Mar. 2002.

15. G. Xylomenos, G.C. Polyzos, P. Mahonen,
M. Saaranen, "TCP Performance Issues over
Wireless Links", IEEE Communications,
Apr. 2001.

16. B. Y. Zhao, Ling Huang, J. Stribling, S. C.
Rhea, A. D. Joseph, J. D. Kubiatowicz,
"Tapestry: a Resilient Global-Scale Overlay
for Service Deployment", IEEE Journal on
Selected Areas in Communications, Vol. 22,
Issue 1, Jan. 2004.

