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摘要摘要摘要摘要    

隨著網路訊務流量的快速成長和無線網路技術日漸成熟，如何妥善的運用

有限的網路資源是一個成功擁塞控制機制要面對的根本問題。TCP 為現行

網路上最廣為使用的傳輸層協定，並且有許多的不同版本被提出來改進其

效能上的問題，例如 TCP NewReno，TCP SACK 及 TCP Vegas 等。然而由

於 TCP 傳送端並未具有網路內部狀態的資訊，如可用頻寬等，大部份的

TCP 擁塞控制機制僅能依賴封包遺失做為觸發擁塞控制的指標。許多研究

指出在無線的環境下 TCP 無法有效使用有限的資源並且分辨封包遺失的

原因，因而造成整體的效能不佳。本篇研究提出一個藉由路由器輔助的

TCP 擁塞控制協定－TCP Muzha，仰賴路由器提供調速資訊，以幫助傳送

端能不依靠封包遺失進行傳輸速度控制，並可更快速的達到最佳的傳輸速

度。本研究同時提出模糊化的多層級速率調整方法，藉由動態所獲得的細

膩資訊做擁塞避免及因應無線環境下因路由改變或傳輸介質不穩所產生

的不必要傳輸速度減低。最後我們在 NS2 模擬器上對所提出的協定做效能

評估，實驗結果顯示本協定除了能有效的避免擁塞外，並能減少不必要的

降速及重傳封包的次數。 
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A New TCP Congestion Control Mechanism over Wireless Ad 

Hoc Networks by Router-Assisted Approach 

 

Abstract 

 

Communication networks have evolved tremendously in the past decades. TCP 

is the most dominant and deployed end-to-end transport protocol across 

Internet today and will continue to be in the foresee future. It has numerous 

enhancing versions for wired network such as TCP Reno, TCP NewReno and 

TCP Vegas to improve the drawbacks of initial version of TCP. As IEEE 

802.11 wireless network technology gains popularity, TCP is very likely to be 

popular for existing applications so far. However due to unawareness of 

network conditions, regular TCP is not able to fully control the limited 

resources and distinguish packet loss from congestion loss and random loss. 

Based on such implicit assumption, many studies have shown this would 

results in serious performance degradation in wireless environment. In this 

paper, we proposed a new TCP congestion control mechanism by 

router-assisted approach which is inspired by the concept of each wireless 

node playing the roles of terminal and router simultaneously. Based on the 

information feedback from routers, sender is able to adjust the sending speed 

dynamically in order to avoid overshooting problem. We also proposed a 

multilevel date rate adjustment method to control the date rate more precisely. 
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Finally we evaluate the performance of our approach by NS2 simulator. Our 

proposed protocol has 5~10% higher throughput than TCP NewReno and 

much less number of retransmission. The fairness requirement is also achieved 

while our proposed protocol coexists with other major TCP variants.  

 

Keyword: TCP, Congestion Control, router, MANET 
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CHAPTER 1  

Introduction 

 

With the fast expansion of Internet technologies and applications, some important issues such 

as network congestion have been raised under the circumstance of traffic burstness. The root 

cause of congestion is usually the amount of packets generated by end users exceeds the 

capacity of the network. Network congestion will result in long delay time and high packet 

loss rate as well as many negative effects in performance. 

With respect to a path that connects two end points, congestion usually occurs in a 

bottleneck node. Network elements including routers and end terminals have to be tightly 

coupled to prevent the network from being crashed by congestion more efficiently. 

In the present, TCP/IP is the de facto and most famous standard to Internet society for 

data transmission and it offers reliable data transfer as well as flow and congestion control so 

that its behavior is tightly coupled with the overall Internet performance. Based on the 

window-adjustment algorithm, sender not only guarantees the successful packet delivery, but 

also maintains the correct sequence of packets by receiving the frequent acknowledgement 

from the receiver. The strength of TCP also relies on the nature of its congestion avoidance 

and control algorithm as well as its retransmission mechanism. Therefore the congestion 

control within the TCP plays a critical role in adjusting data rate to avoid congestion from 

happening.  
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TCP protocol is executed at the terminal nodes and it doesn't have real-time information 

about the network condition. The indicators of network status to the TCP protocol are packet 

traveling time as well as success or failure of package delivery. Therefore, most current TCP 

versions count on these indicators to "guess" (estimate) the available bandwidth over the path 

connecting the sender to the receiver and to adjust data rate accordingly. The accuracy and the 

promptness of bandwidth estimation are dependent on many factors such as the stability of 

network traffic and the length of the path. Not surprisingly, most TCP versions are suffering 

some performance shortcomings such as congesting network by sending data too fast as well 

as decreasing data rate unnecessarily due to what so called "slow start". 

 

The initial version of TCP suffers from performance degradation due to network 

congestion. Therefore some enhancing versions of TCP such as TCP Tahoe[2], TCP Reno[3], 

TCP NewReno[4], and TCP Vegas[11] had been proposed to improve the performance of TCP 

in context of wired networks. 

 

However, the performance of these proposed congestion control protocols might be far 

from optimality due to the insufficient or outdated information about the current network 

condition. This problem will be more significant in future IP-based networks where the 

integration of different wired and wireless networks with their specific bandwidth, delay and 

error characteristics will play an important role. Therefore it might be beneficial in term of 

improving the performance of TCP end-to-end congestion control by appropriate mechanism 

based on router-assisted approach.  

 

Since network elements should share the responsibility to respond to congestion, our 
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philosophy having router provide bandwidth information to sender such that sender can adjust 

their data rate (window size) more accurately. This concept may not be easy to implement on 

WAN (Wide Area Network) because upgrading a large number of routers in a WAN is almost 

a business impossible. However, wireless ad hoc network has no such concern so that it is 

easy for wireless ad hoc network to embrace this new approach because in wireless ad hoc 

network, each node plays two roles of end host and routers simultaneously. 

 

The introduction of new wireless technologies and protocols such as IEEE 802.11 are 

making wireless ad hoc network possible for private and commercial purposes. Because of the 

unique characteristics of ad hoc network such as unstable transmission medium and frequent 

route failures, the principle problem of TCP lies in performing congestion control in case of 

losses that are not induced by network congestion. Nearly all TCP versions assume that 

packet losses are due to congestion and count on this “indicator” to estimate the available 

bandwidth along the end-to-end path. When a packet loss is detected, TCP slows down the 

sending rate by reducing its congestion window. Because of the lack of network status such as 

available bandwidth, the sending rate can easily overshoot. This would result in serious 

throughput degradation. In addition, wireless ad hoc network suffers from different types of 

losses that are not related to network congestion. Any packet loss in wireless ad hoc network 

is mistaken as congestion by regular TCP, thereby reducing the window size to one segment 

and then activating the slow-start algorithm again. However, during the slow start phase TCP 

may face several packet losses due to unstable or breaking link. Therefore connections would 

spend most of the time in slow start phase due to frequent timeout before they reach the 

maximum available sending rate.    
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1.1 Motivation 

Such behavior makes TCP not adaptable to wireless environment because of the inability to 

fully control network resources and distinguish packet losses from congestion and other 

causes. Therefore conventional TCP which is not familiar with network condition due to its 

designed nature originally will suffer from serious performance degradation by 

under-estimation of available bandwidth and frequent trigger of congestion control. Figure.1.1 

illustrates such behavior of congestion control. 

 

 

Figure 1.1 The Effect of Mis-triggering Congestion Control 

 

Therefore our objective is to design a new TCP congestion control mechanism named 

TCP Muzha over wireless ad hoc network. Based on the router-assisted approach, TCP Muzha 

can dynamically adjust its sending rate in response to the network status more accurately 

according to the information feedback by routers  
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1.2 Organization 

The rest of this dissertation is organized as follow. In Chapter 2 and 3, we review the relative 

background and research regarding to TCP and other proposals regarding to performance 

enhancement in wireless ad hoc network. In Chapter 4, we introduce our proposed congestion 

control mechanism – TCP Muzha then we evaluate our algorithm with others by simulations 

in Chapter 5. Finally, we conclude our main contribution of this dissertation and highlight 

some future work in Chapter 6. 
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CHAPTER 2  

Background 

 

2.1 Transmission Control Protocol 

The Transmission Control Protocol (TCP) is a transmission protocol which provides 

byte-oriented data delivery service for applications over IP networks. It has been tuned to 

perform well for wired network. It regulates the number of packets it sends by inflating and 

deflating a window. To do that TCP sender uses the cumulative acknowledgements (ACKs) 

sent by the receiver. TCP also adapts to problems on congestion which is the main cause of 

delay. The congestion control scheme in regular (Tahoe) TCP[2] implementation has three 

major parts: Slow-start, Congestion Avoidance and Fast Retransmit. 

 

Slow-start works as follows: the TCP sender starts with a congestion window (CWND) 

of size 1. For each received ACK, TCP exponentially increase the window size up to a 

threshold (ssthresh), then it enters the congestion avoidance phase where it continues to 

increase its CWND linearly until it reaches the receiver’s maximum advertised window.  

 

A TCP sender continually measures the elapse time that acknowledgements take to return 

to determine whether packet is lost, and provides reliability by retransmitting lost packets. For 

this purpose, it maintains a running average of this delay (round trip delay) and an estimate of 

the expected deviation from this average. If the current delay is longer than the average by 

more than four times the expected deviation (timeout interval), TCP assumes that the packet 
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was lost. TCP then retransmits the lost packets.  

 

TCP also assumes that the packet was lost if the sender receives a number of duplicate 

acknowledgements (usually three). This is because the receiver acknowledges the highest 

in-order sequence number. If it receivers out-of-order packets, it also generates 

acknowledgements for the same highest in-order sequence number and that results in 

duplicate acknowledgements. TCP then activates the Fast Retransmit algorithm. The Fast 

Retransmit algorithm assumes that the missing packets starts with the sequence number that is 

equal to the number acknowledged by the duplicate ACKs, then thus retransmits it.  

 

2.1.1 TCP Reno 

TCP Reno operates almost the same way as TCP Tahoe does. The difference is the 

introduction of Fast Recovery. After fast retransmit mechanism sends what appears to be the 

missing segment, congestion avoidance, but not slow start is performed. This is the fast 

recovery algorithm. It is an improvement that allow high throughput under moderate 

congestion, especially for large windows.  

 

The reason for not performing slow start in this case is that the receipt of the duplicate 

ACKs tells TCP more than just a packet has been lost. The fact that three duplicate ACKs can 

reach the sender indicates that network is not in serious congestion. Although better than 

Tahoe TCP in dealing with single packet loss, Reno TCP is not much better when multiple 

packets are lost within a window of data. 
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Figure 2.1: Congestion Control in Reno-Style TCP 

 

Figure 2.1 shows the behavior of TCP Reno. The value of CWND increases 

exponentially during the slow-start phase and increases linearly in the congestion avoidance 

phase. When TCP finds that a segment is lost, it multiplicatively halves the value of CWND 

and enters Fast retransmit. This behavior is called the Addictive Increment Multiplicative 

Decrement (AIMD) [6] for Reno style window-based congestion control. 

 

Although AIMD works fine and results in the robustness and stability of TCP, it is also 

the key factor that attributes to the poor performance of TCP under wireless environment. We 

will explain this later.  

 

2.1.2 TCP NewReno and TCP SACK 

However TCP Reno is lack of handling multiple packet losses with one transmission window, 
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which is very likely to happen in wireless links. TCP NewReno and TCP SACK[8] were 

originally proposed to handle congestion problem in wired network. TCP NewReno modified 

the fast recovery mechanism of Reno to cope with multiple packet losses from a single 

window. In TCP NewReno, upon the indication of received partial ACKs, the fast recovery 

mechanism does not terminate until multiple packet losses from one window are all recovered. 

On the other hand, TCP SACK is a selective acknowledgement option for TCP, targeting the 

same problem which New Reno tries to solve. TCP SACK uses information field called 

SACK blocks to indicate the discontinuous blocks of data which have been received and 

queued at the receiver buffer. After the sender receives the SACK blocks via the ACK packets 

from receiver, sender maintains a clear view of buffer status of receiver in order to respond to 

packet loss. However due to the nature of both schemes which respond to multiple packet 

losses which can be very likely to occur in wireless network and not able to distinguish the 

cause of packet loss, these schemes still experience the same performance degradation as TCP 

Reno does.   

 

2.1.3 TCP Vegas 

Unlike most TCP variants, TCP Vegas does not rely on lost packets in order to gauge network 

capacity, instead using Round-Trip Time (RTT) measurements to determine the available 

network capacity. The congestion control algorithms within TCP Vegas calculate the expected 

throughput rate and the actual throughput rate once per RTT. The difference between the 

actual and expected rates is then calculated, effectively indicating the number of packets 

which are being queued within the network. Once this difference (known as delta) exceeds a 

certain threshold (gamma, typically set to one packet), slow-start is terminated and 

congestion-avoidance is activated. Upon exiting slow-start, TCP Vegas decreases the 
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congestion window by one eighth of its current size in order to ensure that the network does 

not remain congested. TCP Vegas also has the ability to terminate slow-start before it exceeds 

the network’s available capacity, instead of doubling the congestion window until congestion 

occurs and packets are dropped by the network. During slow-start, CWND is increased by one 

segment for every two RTTs, differing from one segment per acknowledgment as used in 

traditional TCP. When in the congestion-avoidance phase CWND will be increased by 

1/CWND, decreased by one segment or left unchanged, with this decision being made once 

per RTT. The use of RTT measurements results in congestion control algorithms that achieve 

better throughput and transfer more data for the number of packets transmitted across the 

network, resulting in increased goodput. TCP Vegas is also more resilient to error prone links 

and will retransmit packets that have been lost due to corruption far sooner than other 

variants. 

 

2.2 IEEE 802.11 Standard 

The current 802.11[13] protocol covers the MAC and physical layers. The MAC layer defines 

two different access methods, the distributed coordination function (DCF) and point 

coordination function (PCF). We now describe the DCF in detail because the PCF cannot be 

used in ad hoc networks. 

 

DCF is designed to equalize utility and it works as follow. All stations compete for 

access by using Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) 

protocol: they sense the channel before transmitting, either by detecting the carrier of a real 

transmission, or by deferring to a virtual carrier that is signalled through a Request To Send 

(RTS) and Clear To Send (CTS) exchange. If no existing transmission is sensed, a station can 
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transmit one frame, but if an existing transmission is sensed, the station randomly chooses a 

backoff interval that is uniformly distributed in a range called the Contention Window (CW) 

and waits for the channel to be idle for intervals that add up to the backoff interval, before it 

can transmit one frame. 

 

In order to reduce the probability of collision due to stations not hearing each other, the 

well-known “hidden node problem,” the standard defines a virtual CS mechanism: a station 

wanting to transmit a packet first transmits a short control packet called request to send (RTS), 

which includes the source, destination, and duration of the intended packet and ACK 

transaction. The destination station responds (if the medium is free) with a response control 

packet called clear to send (CTS), which includes the same duration information. All other 

stations receiving either the RTS and/or the CTS set their virtual CS indicator, called a 

network allocation vector (NAV), for the given duration and use this information together 

with the physical CS when sensing the medium. The physical layer carrier sensing function is 

called clear channel assessment (CCA). The NAV state is combined with CCA to indicate the 

busy state of the medium. This mechanism reduces the probability of the receiver area 

collision caused by a station that is “hidden’’ from the transmitter during RTS transmission, 

because the station overhears the CTS and “reserves’’ the medium as busy until the end of the 

transaction. 

 

2.3 Characteristic of Wireless Ad Hoc Network 

Wireless ad hoc networks are uniquely characterized by different factors from the traditional 

wired network. We will explain this briefly in this section.  
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1. No fixed infrastructure 

Wireless ad hoc network differentiates from the wired network because not only the 

access medium is wireless, but also each host in wireless ad hoc network plays hybrid 

roles. Mobile hosts serve as end host and router for connections in the network. Therefore 

no dedicated router exists in ad hoc networks.   

2. Mobility 

Every host in ad hoc network is mobile. For a single connection, end host and routers are 

not necessarily static. This character has great influence on topology and routing.    

3. Shared channel with high BER (Bit Error Rate) 

Due to the nature of wireless ad hoc network, the access medium is highly unstable and 

the flows have to contend the channel with each other. The contention behavior somehow 

gets more serious under multihop scenario.   

4. Limited resource 

The wireless channel is a very scarce resource and every flow which wishes to use it 

must contend with each other resulting in multihop flows can only share limited 

bandwidth of at most a few hundred kilobits per second.  

5. Frequent route failure 

The main cause of the route failures are mobility and high BER. The route recovery 

duration depends on the routing protocol, mobility pattern and traffic characteristics. 

Every event of route failure has great impact on performance of transport layer protocol 

such as TCP because the discovering a new route may take a significant amount of time 

which trigger timeout event of TCP.  
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2.4 Problem Description 

2.4.1 Drawbacks of Slow Start and AIMD  

The purpose of growing phase of slow-start is to probe the available bandwidth by increasing 

the congestion window size exponentially and mostly it is used during the connection 

initiation and after the timeout event. However slow-start takes several RTT periods before 

connections actually fully-utilized the available bandwidth. In wired network, connections are 

expected to spend most of the lifetime in the congestion avoidance phase thus the behavior of 

slow-start causes no harm to overall performance. However, due to the characteristics of 

wireless ad hoc network, the frequent route failure and random loss contribute great numbers 

of timeout. Therefore connections tend to spend a considerable amount of time in slow-start 

phase which means before connections probe the true available bandwidth, timeout occurs 

and they re-enter the slow-start phase. Then the overall performance degrades significantly. 

Also the fairness properties of TCP are very likely to be violated since the connections operate 

mostly in slow-start phase and can not enter congestion avoidance phase [35].  

 

Another drawback of slow-start is its exponential window growth which causes 

overshooting problem[29][30].Original TCP tends to take the available resources which is 

very scarce in wireless ad hoc network as much as possible and this is done by the original 

design of slow-start. However the routing discovery and maintenance also require and 

consume part of network resources which is available bandwidth. We describe this problem in 

detail as follow: Initially TCP sender sends data at a higher rate and the capacity of wireless 

ad hoc network soon gets overloaded. This leads to contention loss and route failure at MAC 

layer and forces MAC to trigger route recovery procedure. Meanwhile the TCP connections 

are interrupted and timeout event occurs. However after the routing is recovered and network 
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overload is reduced, TCP restarts and soon leads to overload the network again. This 

phenomenon which named blackout cycle seriously damages the stability and the 

performance of the whole network because of the overshooting problem.  

 

 

Figure 2.2: Overshooting Problem 

  

AIMD (Additive Increase and Multiplicative Decrease), on the other hand, is not able to 

perform well in the wireless ad hoc network [35]. The additive increase phase of AIMD has 

slow convergence to the full available bandwidth and this leads to vulnerability to route 

failure and random loss. The multiplicative decrease is also the main reason of performance 

degradation and becomes inappropriate. Since TCP uses packet losses which inferred either 

receipt of three duplicate ACKs or a timeout to detect congestion, the losses in wireless ad hoc 

network are not always the symptom of congestion. Losses in wireless ad hoc network can be 

classified into either link failure induced, or congestion induced. Wireless channel error and 

mobility are also two primary contributors to losses. Hence treating losses as an indication of 

congestion seems to be inappropriate because TCP halves its congestion window size while 
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detecting packet losses. The congestion window size is further reduced to one if a timeout 

event occurs and connections re-enter the slow-start phase. While the multiplicative decrease 

is a good reaction to congestion, it is certainly not a good solution to deal with route change 

or other cause of losses in wireless ad hoc network. 
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CHAPTER 3  

Related Work 

In this section, we present several approaches that have been proposed to improve TCP 

performance in wireless ad hoc networks. These approaches can be classified into two 

categories: end-to-end approach and router-assisted approach. End-to-end approach requires 

no network support. The end hosts (sender or receiver) is able to detect the network state by 

measuring and monitoring the traffic parameters. For instance, large amount of out-of-order 

delivery indicates route change. The router-assisted approach is able to implicitly or explicitly 

send network information from routers back to senders therefore senders could responds and 

react faster to different situations.  

 

3.1 End-to-End Approach 

Since resource is scarce in wireless ad hoc network, the ability to accurately probe for the 

available bandwidth is the key to better performance. Standard TCP scheme such as TCP 

Reno probes the available bandwidth of the network by continuously increasing the window 

size until network congestion occurs, and then decreases the window size multiplicatively. 

The congestion is mostly indicated by packet losses. However, congestion is no longer the 

only cause of packet loss in wireless ad hoc network. Transmission errors due to high BER 

(Bit Error Rate), mobility, limited bandwidth and frequent route failure also contribute great 

amount of packet loss. In such circumstances, Most of the TCP versions with Reno-Style 

congestion control which treats packet loss as signal of congestion would experience 

tremendous performance degradation under wireless network.  
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In [40], a heuristic is employed to distinguish between route failures and congestion without 

relying on feedback from other network hosts. When timeout occur consecutively, this is 

taken to be evidence of a route loss. The unacknowledged packet is retransmitted again but 

the RTO remains fixed until the route is re-established and the retransmitted packet is 

acknowledged.  

 

TCP-DOOR (Detection of Out-Of-Order and Response)[39] is another pure end-to-end 

approach to improve TCP performance by detecting and responding to out-of-order (OOO) 

packet delivery events, which are interpreted as an indication of route failure. The 

non-decreasing property of ACK sequence numbers makes it simple for the sender to detect 

OOO delivery of non-duplicate ACK packets. To detect OOO delivery of duplicate ACK 

packets, they use one-byte TCP option which is incremented with each duplicate ACK.  

 

ADTCP[41] is an end-to-end approach which is based on the use of multi-metric joint 

identification in order to detect different network states. They introduced four different 

metrics to be measured. The first metric IDD (inter-packet delay difference) reflects the 

congestion level along the forwarding delivery path. IDD is unaffected by random channel 

errors and packet sending behaviors but can be influenced by non-congestion conditions like 

mobility induced out-of-order packet delivery. The second metric is STT (short-term 

throughput) which is also used to detect network congestion. STT is less sensitive to short 

term out-of-order packet delivery than IDD but it is affected by bursty channel errors. Thus 

they combine IDD and STT to jointly identify network congestion. The other two metrics are 

used for non-congestion state identification. POR (packet out-of-order delivery ratio) is 

intended to indicate a route change and PLR (packet loss ratio) is used to measure the 
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intensity of channel error. Upon each packet arrival at the receiver, it calculates the above four 

metrics, estimate the network state and send the state information to the sender with every 

ACK packet so the sender can take the appropriate reaction.  

 

3.2 Router-assisted Approach 

On the other hand, an approach based on the translated feedback of network information from 

routers is proposed by several research groups [17][23][26][28][35]to provide a guideline of 

adjusting sender behaviors. For instance, the sender is able to respond to different network 

conditions such as frequent packet loss due to either random loss or congestion according to 

router feedback and prevents unnecessary decrease of the congestion window. There are 

various proposals based on such approach with router assistance. Two router-assisted 

approaches have already standardized: ECN[9] and RED[10]. But these two mechanisms 

provide only explicit (packet marking) or implicit (packet dropping) single-bit 

congestion-status information (congestion or no congestion) as feedback to the TCP senders. 

The lack of more sophisticated information about the router status limits the way in which a 

TCP sender react on the current router condition adequately. Also, these two simple 

mechanisms are designed to enable TCP senders to response faster to congestion in router. 

Their performance gain is limit since ECN and RED are not able to signal information about 

the available bandwidth to the TCP senders. More appropriate router-assisted approaches for 

future IP-based network should provide the ability to adapt the sending window of TCP 

connections both in the case of impending congestion and in the case of available bandwidth.  

 

Other proposal, such as TCP RoVegas[17], is an enhanced version of TCP Vegas by 

router-assist approach. The main target of this protocol is to solve unreliable reception of 
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ACK under asymmetric network. In a regular TCP, if an ACK is blocked due to the backward 

link congestion, TCP senders would determine the forward link congestion occurred and 

trigger congestion control mechanism to result unnecessary throughput degradation. In 

RoVegas, the latency that a packet passing through routers are accumulated and marked in IP 

header so that the sender could use this information to determine whether the lost of ACK is 

caused by forward or backward path. Thus, it can ignore the congestion on the backward path 

and keep the data rate on the forward path unchanged.  

 

TCP Jersey[23] is another variant based on router-assisted approach. It develops two key 

components in its schemes, congestion warning (CW) and available bandwidth estimation 

(ABE). CW is packet marking scheme that is different from explicit congestion notification 

(ECN) in the following ways: First, ECN marks packets probabilistically when the average 

queue length lies between minth and maxth, whereas, CW marks all the packets when the 

average queue length exceeds a threshold. This non-probabilistic marking scheme leaves the 

TCP sender, which receives the marks, to decide its window adjustment strategy rather than 

being influenced by the probabilistic marking of the packet in ECN. Second, CW inherits the 

same information bits used in the original ECN implementation but with simpler parameter 

setting. So, CW is not as sensitive as ECN to convey a simple image to the bottleneck queue 

to the sender. TCP Jersey adopts slow start and congestion avoidance from TCP NewReno, 

but implements the rate-based congestion window control procedure based on ABE.  

 

As mentioned in the pervious chapter, TCP doesn’t have real-time information about 

network condition so that it has to estimate the available bandwidth. However accuracy and 

the promptness of bandwidth estimation depend on many factors such as the stability of 
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network traffic and the length of path. Therefore most TCP versions are suffering performance 

degradations due to the lack of precise resource control and accurate network information. It 

is not easy to enhance their performance unless routers can provide assistances. Due to the 

special characteristics of wireless ad hoc network such as hybrid roles (end host and router) 

for each node and ease of routers modification, if the routers are able to provide assistance for 

both end hosts regarding to sending rate and deal with random loss, the unnecessary 

throughput degradation can be avoided and performance of TCP can be significantly 

improved over wireless ad hoc network.  

. 

 



 - 21 -

 

CHAPTER 4  

TCP Muzha 

 

Most of the TCP protocols are not aware of network condition such that they may not be able 

to control congestion preciously and promptly resulting in unstable bandwidth utilization. Due 

to the dynamic environment of wireless ad hoc network, each host has even more critical task 

to control the limited resource such as bandwidth and deal with random loss due to lossy link. 

However if the routers can share the responsibility of control congestion with end hosts and 

deal with the unexpected packet loss, the congestion control between two end hosts can be 

executed more efficiently and preciously.  

 

With respective to a path, congestion usually occurs in the bottleneck point which has the 

minimum available bandwidth. If the sender can adjust data rate dynamically according to the 

status of the bottleneck without causing packet loss, the congestion should be avoided or 

dissolved efficiently. Random loss such as packet loss due to link error or link failure would 

mis-trigger our proposed congestion control mechanism or under-estimate the available 

bandwidth. Therefore our proposed protocol has to react to these scenarios and satisfy the 

objectives as listed below.  
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4.1 Design Objectives 

1. Reducing the occurrence of congestion 

Congestion is always the main target of current existing TCP protocols in both wired and 

wireless network. Our proposed protocol aims to prevent and dissolve the congestion 

problem.  

2. Maximize throughput and improve overall performance 

The bandwidth in wireless ad hoc network seems more valuable than in wired network. 

The nature of TCP has weakness in controlling limited resource due to frequent overshoot 

of congestion window size, thus under-utilization of network bandwidth. Therefore the 

major goal of our proposed protocol is to maximize throughput in wireless ad hoc 

network.  

3. Dealing with the random loss 

This is a critical part of any TCP protocol because in wireless ad hoc network, random 

loss is a common phenomenon due to the nature of the air medium. However it is always a 

major concern while using conventional TCP protocols such as TCP NewReno because 

TCP tends to decrease the congestion window while facing the event of random loss. In 

our proposed protocol, a simple approach based on packet marking is proposed to deal 

with this problem. 

4. Provide reasonable fairness for different incoming flows 

When Reno-style TCP and Vegas perform head-to-head, Reno-style TCP generally steals 

bandwidth from Vegas. Therefore our proposed mechanism must to provide certain level 

of fairness to ensure the fair sharing of bandwidth while coexisting with other TCP 

variants. 
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4.2 Design Issues 

The design issues are how to estimate the available bandwidth along the path periodically; 

how to dynamically adjust the sending rate of senders according the router information in 

order to better utilize network resources; and how to dealing with random loss.  

 

4.3 Estimation of the Available Bandwidth 

The available residual bandwidth in each host depends on many factors such as the length of 

the queue, queueing time, buffer size and length of the spare queue. In wireless ad hoc 

network, each host plays hybrid role such as sender/receiver and router. Therefore we assume 

each host is able to estimate the available bandwidth by itself and then feedback to sender by 

an index called Data Rate Adjustment Index (DRAI), which will be explained later. 

 

4.4 Use of Available Bandwidth 

TCP Muzha defines a new IP option named AVBW-S (Available Bandwidth Status) in IP 

packet header. The sender of a TCP Muzha connection sets the AVBW-S to a maximum value 

for every packet it sends. Each node compares its own DARI with this value and replaces it if 

its value is smaller. The receiver notices the minimum value of DRAI and sends this 

information back to the sender by acknowledgement (ACK). The sender can then use this 

information to adjust its data rate, i.e. the size of its congestion window.  

 

Because of the following reason, each node publishes a DRAI value instead of the 

original available bandwidth. If there is more than one TCP Muzha connection passing 

through a router, which is very likely, most of them may try to adjust their transmitting data 

rates up to the level they are informed. Disseminating the original residual bandwidth directly 
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to all TCP senders will lead to an immediate traffic burst. Therefore, a router must smartly 

share its residual bandwidth to all the TCP connections that pass through it. Unfortunately, 

routers are usually not aware of the types of transport protocols that control the packets which 

they are forwarding. They cannot simply divide their residual bandwidth by the total number 

of TCP connections. Although a router may be able to peek into the content of packets to 

determine their controlling transport protocols, we do not take this approach because it may 

consume a significant part of node capacity. Furthermore, violating protocol independence 

principle may induce unexpected reliability problems. 

 

4.5 Design of DRAI 

Because of the difficulties mentioned above, TCP Muzha takes the following approach: 

instead of publishing available bandwidth, routers make recommendation to the passing 

traffic flows to increase or to decrease their data rates. Each node determines a DRAI value, 

which is a quantified data rate adjustment recommendation, according to its own network 

status and publishes this information. With respect to each TCP connection, there is a 

minimum DRAI value called Minimum data Rate Adjustment Index (MRAI). Senders can 

refer to this value to increase or decrease its data rate (i.e. window size). By this approach, the 

decision of data rate adjustment is no longer the sole responsibility of senders. Routers which 

have knowledge of network status can participate in the decision of data rate adjustment. The 

sender will be able to adjust its data rate according to the MRAI and doesn't rely on the actual 

occurrence of congestion to trigger congestion control.   
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4.6 Multi-Level Data Rate Adjustment  

The most critical design issue in TCP Muzha is the determination of DRAI. Currently, there 

doesn't exist any theoretical formula for this. We take empirical approach to design the DRAI 

formula. Due to a lack of mature knowledge, we choose a coarse grain multi-level 

quantization formula that defines the data rate adjustment recommendation into levels such as 

aggressive acceleration / deceleration, moderate acceleration / deceleration, and stabilizing. 

Further empirical research is needed to find a formula for routers to determine their DRAIs 

based on their bandwidth utilization. 

 

In fact, ECN is the perfect example of router-assisted and it can be viewed as an extreme 

case of multi-level DRAI. But this approach is too brief for sender to gain further network 

status. Therefore, only passive approach such as AIMD is used for congestion avoidance 

under such scenario. That is why the binary approach of ECN still has drawbacks on 

controlling flow and date rate. If more information can be provided by routers, the congestion 

control mechanism is able to work more efficiently and precisely. Therefore we proposed a 

fuzzy multilevel date adjustment approach as a guideline for routers and end hosts.  

 

4.7 Dealing with Random Loss 

Unlike wired links, wireless links that use the air as a transmission medium suffer from high 

error rates, whether from stationary obstacles, moving objects, interference, weather 

conditions, or other causes. Bit error rates in wireless communications of over 1 percent are 

typical, and the errors occur in bursts. This causes the sender to retransmit, timeout, and 

unnecessary decrease of congestion window which leads to the reduction of throughput even 

though there is no congestion. Two link layer solutions available that hide random losses are 
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forward error correction (FEC) and automatic repeat request (ARQ).  

FEC sends redundant data so that corrupted packets can be recovered, and introduces a 

constant delay and bandwidth overhead. However it cannot correct all forms of corruption. 

ARQ allows resending of corrupted data, but this may lead to incorrect RTT estimated by 

TCP or timeouts and resending of the same data. These methods seem inadequate, so a TCP 

level solution may be necessary.  

 

Since our proposal is aimed to solve congestion problem by router-assisted approach, the 

random loss can also be distinguished by our packet marking scheme which is different from 

explicit congestion notification (ECN) [9]. When a marked duplicated ACK with a data rate 

deceleration index is received, the sender notices that the loss was caused by congestion. 

Otherwise, the loss can be classified into random loss and sender is able to retransmit the loss 

packets without unnecessary congestion window reduction.  

 

4.8 TCP Muzha Congestion Control Mechanism 

Unlike other TCP versions that need to "probe" network bandwidth by increasing their data 

rates carefully using Slow Start and AIMD, TCP Muzha is able to adjust data rate based on 

the recommendation given by routers. Thus, TCP Muzha simplifies the three phases of TCP 

NewReno into two phases; CA (Congestion Avoidance) phase and FF (Fast Recovery & Fast 

Retransmit) phase.  

 

While TCP session initiated, it directly enters the CA phase. After receiving the new 

ACK, sender adjusts the CWND size according to the MRAI. After congestion occurs, TCP 

Muzha inherits most of the congestion control mechanisms from the traditional TCP 
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NewReno in order to response to congestion immediately. If three marked duplicate ACKs are 

received by the sender, TCP Muzha enters the FF phase and reduces CWND to one half 

because the sender treats such indication the sigh of congestion. However if sender receives 

three unmarked duplicated ACKs, it simply retransmit the loss packets without reduction of 

congestion window because the loss is treated as random. If transmission timer expires, the 

sender would reset CWND to 1 and return to CA phase.  

 

Table 4.1: Congestion control mechanism of TCP Muzha  

 

Event Status Behavior of TCP Sender Note 

Receive the 

ACK of the 

pervious 

packet 

Congestion 

Avoidance 

(CA) 

Dynamically adjust CWND according 

to the returning rate adjustment index 

 

Adjust CWND 

in every RTT 

Receiving 

marked three 

duplicate 

ACKs  

Congestion 

Avoidance 

(CA) 

(1)CWND = CWND * (1/2) 

(2) Enter FF phase 

Fast respond and 

half the CWND 

 

Receiving 

three duplicate 

ACKs 

Congestion 

Avoidance 

(CA) 

(1) Enter FF phase without change of 

CWND 

Retransmit the 

loss packets  

Timeout Congestion 

Avoidance 

(CA) 

(1)CWND = 1 

(2)Re-enter CA phase 

Re-enter the 

congestion 

avoidance phase 
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CHAPTER 5  

Performance Evaluation 

In this section, we evaluate and compare the performance of our proposed congestion control 

mechanism, TCP Muzha with TCP NewReno, TCP SACK and TCP Vegas in different 

designed network environments by using the network simulator NS2 [25]. We also observe 

and show the behavior and performance while TCP Muzha coexists with TCP NewReno and 

its throughput dynamics for different incoming flows.  

5.1 Parameters 

The results reported in this work are based on NS2 network simulator version 2.29. The link 

layer of the simulator implements the complete IEEE 802.11 standard MAC protocol DCF in 

order to accurately model the contention of nodes for the wireless medium. All nodes 

communicate with half duplex wireless radio with a bandwidth of 2Mbps and a nominal 

transmission radius of 250m. We also choose the most common parameter for our simulation 

setup. Each node has a queue (called IFQ) for packets awaiting transmission by the network 

interface that holds up to 50 packets and is managed in a drop tail fashion. AODV routing 

protocol is used.  

 

We use two types of network topologies: a chain topology and a cross topology with 

h-hops which h is varied from 4 to 32. The chain topology is a good example for multihop 

connectivity. The distance between any two neighboring nodes is equal to 250m, which 

allows a node to connect only to its neighboring nodes. Nodes are static because we don’t 
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consider the link failure problem caused by mobility in this work. Our target network is a 

wireless multihop network, which is the basis of wireless mobile ad hoc network (MANET).  

 

5.2 Evaluation Metric 

The metrics of performance evaluation are as follows. 

1. Change of CWND (congestion window size )  

2. Throughput under different setting of advertised window (window_ ) 

3. Retransmission rate 

4. Fairness and throughput dynamics 

 

The general parameters are listed in Table 1 and the DRAI formula used by TCP Muzha is 

shown in Table 2.  

Table 5.1: Simulation Parameters 

Parameter Range 

Number of Nodes     4~32 

Link Bandwidth 2Mbps 

Transmission 

Range 
250 m 

MAC 802.11 

Routing AODV 
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Table 5.2 : DRAI Formula 

DRAI Meaning Change of CWND 

5 
Aggressive 

Acceleration 
CWND = CWND *2 

4 
Moderate 

Acceleration 
CWND = CWND+1 

3 Stabilizing CWND = CWND 

2 
Moderate 

Deceleration 
CWND = CWND -1 

1 
Aggressive 

Deceleration 
CWND =CWND *1/2 

 

Our simulations are executed to evaluate the overall performance of TCP Muzha over 

wireless multihop network by several observations as listed below: 

1. Observe the change of CWND for TCP Muzha under a chain topology with 4 , 8 and 16 

hops respectively.  

2. Observe the performance of TCP Muzha under different setting of advertised window 

size. 

3. Observe the behavior regarding to fairness while coexisting with TCP Muzha itself and 

others.  

4. Observe the throughput dynamics of three TCP Muzha flows.   
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5.3 Simulation 1: Change of Congestion Window Size 

In this subsection, we investigate the change of CWND for TCP Muzha under a 4, 8, 16 hop 

chain topology. An example of the first network topology for the simulation is shown in 

Figure 5.1. This topology includes source, destination and different numbers of routers only 

have a single TCP session. The bandwidth between each hop is 2Mbps and the queuing 

management of routers is in drop tail fashion. The packet size is set to 1460 bytes. We observe 

the behavior and the CWND change of TCP Muzha and compared it to other TCP variants.  

 

 

Figure 5.1: 4-hop chain topology with a single flow 

 

The results are shown in Figure 5.2 to 5.7 respectively. TCP Muzha is capable to adjust 

its CWND size up to the network bandwidth promptly and maintain its CWND while facing 

the event of random loss. TCP Vegas remains its CWND steadily but due to its conservative 

nature in congestion control. The CWND size is not able to keep up to the network bandwidth 

with increase of hop number. TCP NewReno and SACK tend to trigger its congestion control 

mechanism more frequently due to periodic packet loss and random loss in wireless ad hoc 

networks. 
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Figure 5.2: Change of Congestion Window Size (4-hop, 0~10 sec) 

 

Figure 5.3: Change of Congestion Window Size (4-hop, 0-2 sec) 
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Figure 5.4: Change of Congestion Window Size (8-hop, 0~10 sec) 

 

Figure 5.5: Change of Congestion Window Size (8-hop, 0~2 sec) 
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Figure 5.6: Change of Congestion Window Size (16-hop, 0~10 sec) 

 

Figure 5.7: Change of Congestion Window Size (16-hop, 0~2 sec) 
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However when the length of path is increased, the packet loss rate raises tremendously 

due to frequent contentions and link failures. From Figure 5.4 and Figure 5.6, we found that 

TCP Muzha can’t avoid the effect of contentions and link failures but the dynamic adjustment 

mechanism can stabilizes the change of the CWND Immediately. On the other hand, the 

CWND of TCP NewReno and Sack fluctuate extremely due to the frequent packet loss caused 

by contention and link failure. TCP Vegas still controls its CWND conservatively. 
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5.4 Simulation 2: Comparison of Throughput and Retransmission  

The network topology and parameters used in the simulation 2 is same as simulation 1 which 

is considered an equally spaced chain comprising of h+1 nodes (h hops) with a single flow. 

However we have different setting of advertised window size which is the limit of the real 

transmission window size in a TCP connection. Because the advertised window size has the 

influence on TCP instability problem [31], we would like to investigate the influence of this 

parameter on our proposed protocol and other TCP variants. The overall simulation time is 30 

sec. The TCP session is the only traffic in that network; no background traffic exits. Hence 

there are no network condition changes in the whole life time of this experiment. In this 

simulation, we consider TCP Muzha, TCP NewReno, TCP SACK and TCP Vegas for h-hop 

chain with varying hop count. As measures, we consider throughput, number of 

retransmissions as function of chain length. The bandwidth is kept fixed to 2Mbps.  Figures 

5.8 to 5.13 show the simulation results.  
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Figure 5.8: Throughout vs. Number of Hops in the h-hop chain ( window_= 4) 
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Figure 5.9: Throughout vs. Number of Hops in the h-hop chain (window_= 8) 



 - 38 -

Throughput vs. number of hops (window_ = 32)
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Figure 5.10: Throughout vs. Number of Hops in the h-hop chain (window_= 32) 

 

From Figure 5.8 to 5.10, we observe that TCP Vegas has higher throughput than other 

TCP protocols including TCP Muzha as the hop count is less than 8 due to its fine-controlled 

congestion mechanism. However TCP Vegas no longer performs well with the longer path 

because TCP Vegas keeps its congestion window size too small (about 3 packets). On the 

other hand, TCP Muzha has better performance than TCP NewReno and TCP SACK about 

5% ~ 10%. The main reason is that the aggressive window growth of TCP NewReno and TCP 

SACK cause network overloaded and periodic packet drops which leads to more frequent 

timeouts in transport layer and more contentions and link failures in MAC layers. TCP Muzha 

tends to avoid the periodic packet loss in slow-start phase and controls the congestion window 

size more precisely according to router feedbacks. Furthermore TCP Muzha provides more 

stable throughput than TCP NewReno and SACK with longer forwarding path. 
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Figure 5.11: Retransmission vs. Number of Hops in the h-hop chain (window_= 4) 
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Figure 5.12: Retransmission vs. Number of Hops in the h-hop chain (window_= 8) 
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Figure 5.13: Retransmission vs. Number of Hops in the h-hop chain (window_= 32) 

 

Figure 5.11 to 5.13 show that TCP Vegas causes much less retransmission than other 

TCP variants. In fact, the number of retransmission maintains very low for TCP Vegas for any 

number of hops. Oppositely, the number of retransmission of TCP NewReno and TCP SACK 

is much greater than TCP Vegas. This is because during the slow start phase, TCP NewReno 

increases the congestion window size aggressively and we have noticed that TCP NewReno 

operates during more than 40% of connection in slow start. Such behavior causes periodic 

packet loss which has to be retransmitted and thus, a great number of retransmission. The 

inappropriate window growth mechanism of TCP NewReno also results more packet drop on 

the link layer and thus more route failures. TCP Muzha has less number of retransmission 

than TCP NewReno and TCP SACK at h < 8 while the advertised window size is equal to 4 

and 8. This is due to the precise control of congestion window size and furthermore the 
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avoidance to TCP overshooting problem as we mentioned before. With increase number of 

hop count, the number of retransmission are all increasing for all three window-based 

congestion control protocols (NewReno, SACK and Muzha) but TCP Muzha still has the 

smallest number of retransmission among three of them. However while the advertised 

window size is greater, the number of retransmission among TCP NewReno, SACK and 

Muzha are almost the same. The reason for this result is the link layer contention increased 

with increasing size of advertised window since packets in flight are not able to distribute 

evenly among nodes, leading to more packet drops and thus, to more number of 

retransmission. 
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5.5 Simulation 3: Fairness Test 

5.5.1 Simulation 3A: Coexistence with other TCP NewReno 

In simulation 3A, we investigate the fairness issue of TCP Muzha while coexisting with  

TCP NewReno and the performance of TCP Muzha. First, we consider a h-hop cross topology 

with two flows as shown in Figure 5.15. h is 4, 6 and 8 respectively. Each flow is a single FTP 

session using different TCP protocols. One travels vertically and the other travels horizontally. 

The simulation time is 50 seconds and the bandwidth is fixed to 2Mbps. We run two sets of 

simulation: TCP Vegas vs. TCP NewReno and TCP Muzha vs. TCP NewReno. The results of 

throughput and fairness are showed in Figure 5.16 to 5.18. The fairness results are computed 

using the fairness index as defined in [38] as shown in Figure 5.14.  

∑∑
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Figure 5.14: Jain’s Fairness Index 

 

Figure 5.15: 4-hop Cross Topology with 9 Nodes and 2 TCP flows 
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Figure 5.16: Throughput for Coexisting flows of TCP NewReno and Vegas  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.17: Throughput for Coexisting flows of TCP NewReno and Muzha  
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Figure 5.18: Fairness Index for Coexisting flows  

 

TCP Vegas adopts a proactive congestion control avoidance scheme. It reduces its 

congestion window before an actual packet loss occurs. Reno-style TCP, on the other hand, 

employs a reactive congestion control mechanism. It keeps increasing its congestion window 

until a packet loss is detected. Many researchers [42] [43] [44] have found that when 

Reno-style TCP and Vegas perform head-to-head, NewReno generally steals bandwidth from 

Vegas. From our simulation results, we have discovered the similar behavior while TCP 

NewReno and TCP Vegas coexist. Figure 5.16 shows that TCP NewReno consumes most of 

the bandwidth and results the low throughput of TCP Vegas. While our proposed protocol 

coexists with TCP NewReno, Figure 5.17 shows the fair bandwidth sharing has been achieved 

between TCP NewReno and TCP Muzha because TCP Muzha is able to control bandwidth 
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usage precisely according to periodic router feedback of available bandwidth. This not only 

guarantees the fairness requirement but also provides higher aggregate throughput. The 

fairness index from Figure 5.18 also provides evidence of fairness achievement by our 

proposed protocol.  
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5.5.2 Simulation 3B: Throughput Dynamics 

In simulation 3B, we consider a simple chain topology consisting of a four-hop linear chain 

with three flows. Each flow enters the network at 0 sec, 10 sec and 20 sec respectively. We 

investigate the throughput dynamic to observe if our protocol itself is able to achieve fair 

utilization among different flows. The throughput dynamic for different TCP variants are 

presented from Figure 5.19 to 5.22. As can be seem, three flows converge the fair utilization 

of available bandwidth with our proposed protocol. However the convergence of fair 

bandwidth utilization for three flows by other TCP variants is slow and oscillatory. 
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Fig 5.19: Throughout Dynamics [three flows] – TCP Muzha 
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Throughput Dynamic (NewReno)
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Figure 5.20: Throughout Dynamics [three flows] – TCP NewReno 

Throughput Dynamics (SACK)
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Figure 5.21: Throughout Dynamics [three flows] – TCP SACK 
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Throughput Dynamic (Vegas)
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Figure 5.22: Throughout Dynamics [three flows] – TCP Vegas 
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CHAPTER 6  

Conclusions and Future Work 

From the results shown from a series of simulations, we conclude that TCP Muzha can 

resolve congestion efficiently and has higher average throughput than TCP NewReno. TCP 

Muzha performs better than TCP NewReno and TCP SACK due to its dynamic data rate 

adjustment mechanism and the ability to deal with random loss. While coexisting with TCP 

NewReno, TCP Muzha remains stable throughput and fair share of available bandwidth 

compared with other major TCP variants.  

 

The concept of multi-level data rate adjustment and the details of how to control the size 

of CWND are still required to be investigated. For instance, improvement of the vibrating 

behavior of CWND of TCP Muzha, consideration of queue size, RTT as part of DRAI 

formula and support of mobility are essential. The mechanism of using ACKs as congestion 

indicator still has drawbacks, especially in the erroneous environment such as wireless 

network. For example, while different sessions pass through the same link, the sender with 

large link delay would have weakness while competing bandwidth due to the delayed ACKs.  

 

Fairness is still important problem which needs to pay extra attention on except 

throughput. TCP Vegas suffers seriously in multi-protocols environment because it can’t 

utilize bandwidth fairly and this drives to difficulties of real-world implementation of TCP 

Vegas. Therefore how to enhance TCP Muzha to meet such demands will be our future task.
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