
 i

TABLE OF CONTENTS

1 Introduction ……………………………………………………………………...1

1.1 Switching Network Technologies .. 2

1.1.1 Circuit-Switching Networks ... 2

1.1.2 Packet-Switching Networks .. 4

1.1.3 Network Convergence and ALL-IP Networks 7

1.2 Delay Time Analysis .. 10

1.2.1 One Trip Delay Time .. 11

1.2.2 Categories of Delay Time Components .. 11

1.2.3 Myth of Bandwidth ... 15

1.2.4 Possible Delay in Routers ... 16

1.3 Motivation and Research Objective. .. 18

1.4 Solution Approaches .. 19

1.5 Performance Evaluation ... 20

2 Related Works …………………………………………………………………21

2.1 Routing Approaches ... 21

2.1.1 Shortest Path Routing ... 21

2.1.2 Flooding .. 22

2.1.3 Flow-Based Routing ... 22

2.1.4 Distance Vector Routing ... 23

2.1.5 Link State Routing .. 24

2.2 Delay Sensitive Routing .. 24

2.2.1 Resource Reservation.. 25

2.2.2 Probes Flooding .. 25

2.2.3 Classified Queues.. 26

2.2.4 Delay Time Estimation ... 27

2.2.5 Miscellaneous ... 27

2.3 Summary .. 28

3 Routing With Node Delay ………………………………………………………..29

3.1 An Illustration Example ... 29

3.2 Routing Problem Model ... 31

3.2.1 Traffic Model .. 31

3.2.3 Objective Function .. 33

3.3 Iterative Solution Algorithm .. 34

 ii

3.3.1 Intra Iteration Procedures .. 35

3.3.2 Termination Conditions... 37

3.2.3 Estimation of Path Delay Time....……………………………………38

3.3.4 Node Delay to Link Delay Conversion ... 41

3.4 KLONE Algorithm Detail .. 43

3.4.2 Pseudo Codes .. 44

3.4.3 Complexity Analysis ... 47

3.5 Summary .. 47

4 Performance Evaluation ………………………………………………………..49

4.1 Performance Evaluation Metrics.. 49

4.1.1 Convergence of KLONE Algorithm ... 50

4.1.2 Performance of KLONE Algorithm .. 50

4.2 Design of Experiments ... 51

4.2.1 Test Instance Generation ... 51

4.2.2 Experiments .. 53

4.3 Experiments and Results .. 54

4.3.1 Exp-1: Convergence Test .. 56

4.3.2 Exp-2: Sensitivity to Connectivity .. 61

4.3.3 Exp-3: Sensitivity to BP Ratio .. 63

4.3.4 Exp-4: Sensitivity to Number of Nodes .. 65

4.3.5 Comparison with Optimal Solution .. 64

4.3.6 Weakness of KLONE Algorithm .. 65

4.4 Analysis and Summary .. 67

5 Concluding Remark and Future Work ………………………………………68

 iii

LIST OF FIGURES

Figure 1.1: A circuit-switching network. .. 3

Figure 1.2: Sending a message over a network as a series of packets. 5

Figure 1.3: One trip delay time. .. 11

Figure 1.4: Growth rate of network and processing speed in past few years. .. 16

Figure 1.5: A Label Switched Path(LSP) in MPLS. ... 18

Figure 2.1: RSVP reserves resources backward from receiver to sender. 25

Figure 2.2: Collecting delay time information by flooding probes from source to

destination. .. 26

Figure 2.3: A DiffServ network. ... 27

Figure 3.1: Reducing total delay time by considering node delay in routing. 30

Figure 3.2: Outgoing traffic equals to incoming traffic in a closed network. 40

Figure 3.3: Transformation of node delay to link delay. 43

Figure 4.1: Relationship bettern convergence speed and performance metrics. . 57

Figure 4.2: KLONE behaviors within iteration processes. 59

Figure 4.3: Relationship between connectivity and improvement in average path

delay time. ... 60

Figure 4.4: Relationship between delay bound and goodput ratio. 61

Figure 4.5: Relationship between BP ratio and average path delay time. 62

Figure 4.6: Relationship between BP ratio and goodput ratio 62

Figure 4.7: Relationship between improvement in average path delay time and

number of nodes. ... 63

Figure 4.8: Relationship between number of nodes and goodput ratio. 64

Figure 4.9: Comparison with optimal solution. .. 65

Figure 4.10: An example of KLONE weakness in low delay bound.................. 67

 iv

LIST OF TABLES

Table 1.1: Circuit-switching Networks v.s. Packet-switching Networks. 7

Table 1.2: Comparison of PSTN, Internet and ALL-IP Network. 10

Table 3.1: Notation of Input Parameters. .. 32

Table 3.2: Notation of Derived Parameters and Routing Results. 33

Table 4.1: Parameters and Ranges for Test Instances ... 53

Table 4.2: List of Experiments .. 54

 1

Chapter 1

Introduction

Ever since the ancient time, people have known how to communicate in a preliminary

way. To facilitate and improve ways of communication, our ancestors built up

systems of communication, and the first postal service, for instance, is one of the great

improvements in communications before Warring States (403-221 B.C.) Through

the message delivery system, distant messages could be exchanged in a certain way so

that it has replaced the face-to-face communication. However, with the development

of human civilizations, the message transmission system in postal service has also

evolved from the preliminary dove to circuits and finally to the present

circuit-switching network, packet-switching network and the upcoming ALL-IP

network[1]. All-IP network is a network that uses Internet Protocol (IP) to transport

of all user data and signaling. In order to carry time sensitive communication

services, the transmission delay time in an ALL-IP network has to be controlled. To

provide controlled delay time, we need proper mechanisms to measure delay time and

select paths for request traffics. Routing is a critical task of a packet-switching

network to decide the path to deliver a packet. However, most routing approaches

are not for time sensitive services.

Only a few are designed for time sensitive services. These time sensitive

 2

routing algorithms are designed at the time when the link bandwidth is the scarcest

resource. As the link bandwidth grows rapidly in recent years due to the advance of

optical communication technologies, link bandwidth is no longer the only scarce

resource. The processing speed of nodes, e.g. routers, becomes another critical

source of delay time. Thus, we hypothesize that node delay is a significant part in

time sensitive routing for high-speed packet-switching network. In this paper, we

show the importance of node delay time and developed an algorithm to provide

controlled delay time in high-speed packet-switching networks.

1.1 Switching Network Technologies

Current communication networks can be categorized into two types:

circuit-switching networks to support time sensitive services, such as voice, and

packet-switching networks to support other types of services, mainly non-time

sensitive data services.

1.1.1 Circuit-Switching Networks

Since the first invention of telephone by Alexander Graham Bell in about 100

years ago, the development of tele-communication networks has become the

foundation of the build-up of circuit-switching network. At first, telephone

connections require operators who manually switched phone lines into correct

positions so that the connection could be built up. After years of development,

instead of manual services, such complicated and tiresome jobs are done

 3

automatically by private branch exchanges (PBXs), as in Figure 1.1. This system is

very reliable (try to think how rarely the system fails to connect the receiver when you

dialed the numbers correctly). Furthermore, circuit-switching network operates with

very few overheads in transmitting datas, so it provides good quality, such as low

delay and jitter, in real-time communications. However, it is also extremely

inefficient and expensive because the connection is made at the beginning of a session;

no matter it is a conversation, a fax transmission, a modem session or whatever based

on the voice transfer. The connection is maintained until being terminated, that

means a certain portion of the network is reserved exclusively for that connection

whether something (voice) is taking place at the moment or not. If one party puts

down the phone or remain silent, or if a fax machine is sending or receiving data for a

period of time, the line(the circuit) between the two terminal devices is still

unavailable for other activities even though it is not being used at the moment. In a

conversation, while one is speaking and another is usually listening. There might be

up to 50% of a typical voice conversation being actually silence. A tremendous

network capacity is thus wasted.

Figure 1.1: A circuit-switching network.

PBX

PBX

Circuit-switching

Network (PSTN)

 4

Although the system is inefficient and expensive, people still enjoy and get used

to the convenience of circuit-switching system. With the rapid improvements in

communication technologies, people of today can talk over the phone easily and

inexpensively even they are apart by oceans. It provides high quality services to

real-time voice communications that other networks hardly have. The word

―Circuit-Switching Network‖ equaled to ―Communications‖ in so many years. It

was not until late 1960’s that this domination started loosening, when

packet-switching networks were introduced to the world.

1.1.2 Packet-Switching Networks

In 1960’s, a new transmission approach was invented—packet-switching. It

breaks the rules made by circuit-switching networks. Instead of occupying a line for

the entire connection time, packet-switching networks break the digital stream of 1s

and 0s into pieces of the some specific length. These pieces, or we may call them

―packets‖, are then put in the so-called ―header‖ envelopes with some information.

In other words, when the packet is originated, a serial number and error correction

messages are created and attached to the packet to indicate the sequence number of

the packets. Similar to the role of switching connected and disconnected circuits in

circuit-switching network, routers or computers in packet-switching networks take the

functions. They read the address of a packet and forward it to another router closer

to the destination. At the destination, a few hundreds of milliseconds or some

seconds later, the packets are received, reassembled in correct order, and converted

 5

back into the original message. We show an example of how packet-switching

works in Figure 1.2.

Figure 1.2: Sending a message over a network as a series of packets.

The main difference between circuit-switching network and packet-switching

network is the improvement of link utilization. Although the session in

packet-switching (4 links) may use more links than circuit-switching network (2

links), the links between A and B are not occupied when the session proceeds. It

implies that the links could be released earlier for other sessions in packet-switching

network than in circuit-switching network.

In some aspects, we may view a packet-switching network as a network of

queues. Each node contains queues where incoming packets are queued before they

are sent out on an outgoing link. If the rate of certain packets arrive at a switch point

exceeds the rate a packets can be transmitted, the queues grow. When it happens, the

queuing mechanism causes delay, and if the queues overflow, packets thus lost. It is

A B

 6

so called congestion. Loss of data generally causes retransmissions that may either

add to the congestion or result in less-effective utilization of the network.

In 1990’s, Internet, which evolutes from ARPANET, bursts. ARPANET is a

packet-switching network using Internet Protocol(IP)[23] as it’s major communication

protocol. With the popularity of Internet, IP becomes the most popular

communication protocol to transmit data communication services. Researchers in

packet-switching area focus on the bandwidth utilization, which is a method that may

maximize bandwidth utilization but sacrifice packet delay time. The inherent packet

delay time caused by the signal propagation, router processing, and packet transmitted

over slow transmission links, is naturally ignored in the packet-switching network

researches.

A brief comparison between circuit-switching and packet-switching networks is

shown in Table 1.1.

 7

1.1.3 Network Convergence and ALL-IP Network

In so many years, these two types of switching techniques have built up high

capacity networks in the real world. The cost of co-managing two types of

networks is huge but the applications are usually not integrated well. For example,

if someone wants to contact the customer service of a company, he/she has to look up

the company web page for the customer service numbers. He/she cannot contact the

customer service just via a mouse click, as surfing on the web. Even if the user

applies ISDN, xDSL or other broadband services using the same line, he/she still

cannot achieve it easily, because the services still are not integrated well.

It was not until recently that service providers have been required to deploy

different networks for different applications, such as voice, video, private data, and

Table 1.1: Circuit-switching Networks v.s. Packet-switching Networks.

Resource Circuit-switching Packet-switching

Dedicated path Yes No

Available bandwidth Fixed Dynamic

Reliability Yes No

In order delivery Yes No

Store-and-forward

transmission

No Yes

Call setup Required Not required

When congestion occurs At setup time On every packet

Charge Per time unit Per packet or per time unit

 8

etc. Each of these networks evolved independently as separate networks, so it was

technically impossible to run all of these applications across a common infrastructure.

Due to the existent technological limitations, each of these incredibly expensive

parallel infrastructures was built to support different application requirements.

Internet was just another example of a separate network that was designed to provide

connections among various researchers, military and educational institutions. In

general, users prefer an application independent network, which can serve for all

purposes, not just for certain purposes. People really need to build an application

independent network, a network with no specific application purpose. This network

is built for the general purpose capable to carry all the traditional services on their

own networks and to move them onto this common infrastructure.

The deployment of global IP infrastructure, as well as the recent technological

advances, makes the integration possible. For service providers and their customers,

they can get a better return on their assets, lower operational cost, and bring new

services to a worldwide market. Therefore, the network convergence emerges. In

response to the network usage explosion, huge bandwidth growth, multiple services

and mutual connectivity of network, IP is chosen to be the common network layer

protocol of next generation networks. An All-IP network uses a packet-switching

network to carry all the traffics that were delivered by both packet-switching and

circuit-switching networks. The delay requirement of real-time applications, such as

VoIP, Video Conference, and even on-line games, etc, must be fulfilled on the ALL-IP

networks. These time sensitive services can be easily served by a circuit-switching

network, which connects end hosts via real circuits. Once the connections are set

properly discarding the previous call set up time, the users only suffer little delay in

communications. On the other hand, the delay time requirement of time sensitive

services is a big challenge to the ALL-IP network. The inherit packet delay time

 9

becomes an important issue in managing an ALL-IP network.

Traditional researches in packet-switching network management field only take

into account the packet transmission time over transmission links but the nodes. It is

because the line prices were expensive and the bandwidth was poor in the past years.

Link delay was the dominating factor in the traditional "slow" packet-switching

networks. As the link bandwidth grows rapidly in recent years due to the advance of

optical communication technologies, link bandwidth is no longer the only scarce

resource. The processing speed of a node, e.g. a router, becomes another critical

source of delay time. A network management mechanism must take node delay into

account to achieve a better performance.

 10

1.2 Delay Time Analysis

In this section, we will to illustrate the categories of delays, and explain why

they happen and what we can do to improve them.

Table 1.2: Comparison of PSTN/IN, Internet and ALL-IP Network.

 Circuit-Switching

(PSTN/IN)

Packet-Switching

(Internet)
ALL-IP Network

Multimedia services No Yes Yes

QoS-enabled Yes (voice only) No Yes

Network intelligence Yes No Yes

Intelligent CPE No Yes Yes

Underlying transport

network

Circuit-switching

Network

Packet-switching

Network

Packet-switching

Network

Integrated control and

management

No Yes Yes

Service reliability High Low High

Service creation Complex Ad-hoc Systematic

Ease of use of service Medium High High

Modularity Low Medium High

Architecture openness Low High High

 11

1.2.1 One Trip Delay Time

One trip delay time is the accumulation of delay time along a transmitting path.

It is usually an important metric to measure the quality of a transmission. An

example of the one trip delay is shown in Figure 1.3.

Figure 1.3: One trip delay time.

1.2.2 Categories of Delay Time Components

The components of the delay time in a path are categorized into the following

three categories: link delay, node delay and end-host delay.

 12

1.2.2.1 Link Delay

 The first place that catches the developer’s sight is the delays on links. This

contains three types of delays, the queuing delay, the propagation delay and the

transmission delay. Link delay was a major concern when people searches a path for

time sensitive services.

1.2.2.1.1 Propagation Delay

Propagation delay is the time of an electrical or optical signal transmitted along a

specific link. The propagation delay of a link is the length of the link divided by the

propagation speed, which depends on the physical characteristics of the media and the

signal. For the same link, the propagation delay is a constant if the length and the

media keep unchanged.

For example, the propagation delay time of an xDSL line is the same as that of a

voice line, because the transmission media is still a copper wire with the same length.

1.2.2.1.2 Transmission Delay

Transmission delay is the time of a data unit being transmitted alone a specific

link with the propagation delay time ignored. For example, we may need 82ms to

transmit a 128kb data, and 41ms to transmit a 64kb data along the T1 link. The

transmission delay time is a measure of the link bandwidth. Users can reduce the

transmission time by either reducing the data size or increasing link bandwidth.

 13

1.2.2.1.3 Queueing Delay for a Link

Queueing delay for a link is defined as the time of a packet waiting in a queue,

before it is being transmitted. It could be improved by using different queueing

policy, such as changing the queue policy from FIFO to RED[2,3].

1.2.2.2 Node Delay

Node delay is the delay time occurs within a node. It contains two types of

delays: the processing delay and the queuing delay for a processor. With link

bandwidth gets closer to node processing capacity, node delay increases its share in

one trip delay time. We may recall the impact caused by the Code-Red worm in

2001. Like the first Internet worm in 1988, the code-red worm invaded numerous of

computers, and most of the invaded hosts were not aware of it. However, unlike

other worms, this worm did not cause a very heavy traffic loading to the hosts, but

generated many small-sized packets such that the mediate routers and switches cannot

process them all instantaneously. These short packets did not occupy too much link

bandwidth. Instead, they caused heavy loads on routers and switches and hence

increased packet delay time tremendously. The routers and switches spent much

time finding routes for numerous short worm packets but transferring real data traffics.

The link loading was not heavy because the traffic was small.

This situation might be repeated when the tasks carried by routers are more and

more complex. Then, node delay becomes a dominant part when choosing a path for

a delay sensitive service in a high-speed network.

 14

1.2.2.2.1 Processing Delay

Router’s processing power determines processing speed and processing delay

time. For simplicity, we call it ―node processing capacity‖. The more data a

processor handles, the longer processing delay will be. Furthermore, applying faster

processor could reduce the processing delay.

1.2.2.2.2 Queueing Delay for a Node

Similar to the queueing delay for a link, it is defined as the time of a packet

waiting in a queue before being processed. It could be improved by using different

scheduling policy, such as changing policy from FIFO to Weighted Round-Robin

(WRR.)

1.2.2.3 End-Host Delay

End-host delay is defined as the delay occurred at the hosts of both ends,

including codec delay, packetiztion delay, and etc. Although it is a component of total

delay time, it is independent of the path it travels. Thus, it is generally ignored in the

design of routing algorithms.

1.2.2.3.1 Packetization Delay

Packetization delay is the time to construct and format a packet. Some real

time applications sends packets periodically. For example, some VoIP applications

 15

use G.729.1[4] as their communication protocol, sending packets every 30ms. That

implies that there is an inevitable 30ms packetization delay at both sender end

receiver end. The packetization delay can’t be reduced unless the communication

protocol or the periodical parameters are changed.

1.2.3 The Myth of Bandwidth

 In the beginning of router algorithm development, the tasks performed by a

router are simple and the power of the processor within a router is much faster than

the links in terms of processing or transmitting packets. The link delay was the

major concern in designing a routing algorithm. In 1998, fiber optic networks with

DWDM technique started to be deployed. It causes a dramatic increase in network

bandwidth. Figure 1.4 shows the growth in bandwidth and node processing capacity.

This faster growth in bandwidth makes link bandwidth closer to the node processing

capacity and results in the increase of relative weigh of node delay. Therefore, both

link and node delay time must be taken into account in designing a delay sensitive

routing algorithm.

 16

Figure 1.4: The growth rate in past few years:

(a) x86 CPU power capacity and (b) fiber bandwidth.

1.2.4 Possible Delay in Routers

The basic function of a router are routing and forwarding packets. As dot com

(a)

2001

(a)

Ratio

Year

2200

(b)

Ratio

Year

 17

fever outbroke in last decade, new data-communication applications and routing

technologies emerge like waves. Being a critical component on the network, a

router has to carry much more tasks than before, such as packet filtering and flow

management. Hence, a router may not work as efficiently as it claims and may

become a potential bottleneck in Internet.

1.2.4.1 MPLS Traffic Engineering (MPLS TE)

 Label switching becomes a new approach to reduce node delay. A label

switching router forwards packets according to labels instead of packet headers.

This will increase processing speed in forwarding packets. The hottest example is

MPLS Traffic Engineering(MPLS TE)[5, 6, 7]. It is originated from Cisco

Tag-Switching. It coordinates routers to switch packets by labels, which is a

20bit-length header added to the front of a packet. Routers transmit packets by

packet labels. A path selected by labels in MPLS network is called Label Switched

Paths(LSP), shown in Figure 1.5.

 The corresponding routing protocol routes packets based on a single end-to-end

routing decision uniformly applied to all packets bound for the same destination. A

single physical path between source and destination that delivers streaming packets

in-sequence with uniform latency.

 18

Figure 1.5: A Label Switched Path(LSP) in MPLS.

LSP technique reduces the routing table look up time as compared to the

traditional header processing. Traffic Engineering (TE) is concerned with

performance optimization of operational networks. In general, it measures, models,

characterizes and controls the applications run on a specific network to achieve

specific performance objectives. MPLS Traffic Engineering is the way to implement

TE within MPLS domain. It aggregates all possible resources and prepares for

potential failures to achieve the optimization descried above. The disadvantage of

MPLS TE is the real-life of MPLS. In practice, routers that claim being with MPLS

functions usually only support IP Label, but not other functions. These poor

supports in functions may not speed up the routing when applying MPLS, but will

certainly decrease the efficiency, just as the extra load balancing jobs do.

1.3 Motivation and Research Objectives

Routing is a critical task of a packet-switching network to decide the paths to

deliver a packet. Most traditional routing algorithms do not treat the delay time as

 19

their major concern, because most packet-switching networks are not designed to

support time sensitive services. To maximize the utilization of link bandwidth, the

delay time is usually sacrificed.

Only a few are designed for time sensitive services. However, these time

sensitive routing algorithms are designed at the time when the link bandwidth is the

scarcest resource. As the link bandwidth grows rapidly in recent years due to the

advance of optical communication technologies, link bandwidth is no longer the only

scarce resource. The processing speed of nodes, e.g. routers, becomes another

critical source of delay time. Thus, we hypothesize that node delay is a significant

part in time sensitive routing for high-speed packet-switching networks. In this

paper, we will show that considering with node delay time in routing algorithm for

high-speed packet-switching network could provide a better performance to time

sensitive services as compared to those only consider link delay.

1.4 Solution Approaches

In chapter 3, we will model the problem as a flow-based routing problem with

link and node delay dependent on their loads. An iterative approach is taken to cope

with the problem of load dependent delay time on links and nodes. We use a

transformation to convert node delay and link delay such that each intermediate

problem in each iteration can be solved by using traditional routing algorithm. The

above algorithm is called the ―KLONE‖ algorithm.

 20

1.5 Performance Evaluation

To evaluate the performance of KLONE algorithm, we use the average path

delay time and goodput ratio as our performance metrics and compare with OSPF

algorithm in Chapter 4.

 21

Chapter 2

Related Work

The main function of the network layer is to route packets form the source machine to

the destination machine. In most subnets, packets require multiple hops to make the

journey. The only notable exception is for broadcast network, but even here routing

is an issue if the source and destination are not on the same network. The algorithms

that choose the routes and the data structures that they use are a major area of network

layer design. The categories of routing algorithms are illustrated in this chapter.

2.1 Routing Approaches

 Variable routing approaches[8] are summarized in this section.

2.1.1 Shortest Path Routing

Shortest path routing is to build up a shortest path tree to present the network

topology, so then routes each of request traffics to its destination. The Dijkstra’s

shortest path algorithm[9] is a very famous example of shortest path routing, and it

discovers a node’s shortest paths to other nodes in O(n ㏒ n) with maintaining

 22

complete information about the network topology. For the knowledge of whole

network topology, it is centralized in nature. Resulting from this centralized nature,

it has a privilege, the loop-free feature.

2.1.2 Flooding

 Another routing algorithm is flooding, in which every incoming packet is sent

out on every outgoing line except the one it arrived on. It obviously generates vast

numbers of duplicate packets, in fact, and infinite number unless some measures are

taken to damp the process. It is not practical in most applications, but it does have

some uses. For example, in military applications, where large numbers of routers

may be blown to bits at any instant, the tremendous robustness of flooding is highly

desirable.

2.1.3 Flow-Based Routing

Unlike other categories of routing approaches, flow-based routing considers both

the network topology and load. The basic idea is that for a given line, if the capacity

and average flow are known, it is possible to compute the mean packet delay on that

line from queueing theory. From the mean delays on all the lines, it is

straightforward to calculate a flow-weighted average to get the mean packet delay for

the subnet. The routing problem then reduces to finding the routing algorithm that

produces the minimum average delay for the subnet.

 23

2.1.4 Distance Vector Routing

 Distance vector routing estimates the distance from source to destination by

certain approaches. The distance vector protocols are often referred to as

―Bellman-Ford‖ protocols because they are based on a shortest path computation

algorithm. Distance vector routing protocols have been widely used since the early

ARPANET[10] to nowadays Internet. For example, hop count is generally used for

this issue. RIP[11] is a routing protocol in the family. Distance vector routing

protocols periodically send information to its neighbor nodes. Each node could

estimate the distance to other nodes according to the number of intermediate passed

nodes. If the network is fixed, the nodes will compute a converged result. The

updated messages are only periodically sent to their neighbors, and the update

messages do not cause a heavy load to the network compared to other protocols. A

weakness of distance vector routing is the convergence time. The convergence is

delayed of the period update message, so RIP is constrained in a network under 16

nodes. However, RIP is still widely used in small-scaled network because of its very

little configuration, management overhead and easy to implement.

 24

2.1.5 Link State Routing

On the other hand, link state routing focuses on the states of links. Link state

routing transforms the link states into some mathematical expressions to choose

proper paths. Open Shortest Path First (OSPF[12]) is a widely used example of link

state routing, and is parallelly used with RIP, which is a distance vector routing.

2.1.6 Hierarchical Routing

As networks grow in size, the router’s routing tables grow proportionally. Not

only is router memory consumed by ever increasing tables, but more CPU time is

needed to scan them and more bandwidth is needed to send status reports about them.

At a certain point the network may grow to the point where it is no longer feasible for

every router to have an entry for every other router, so the routing will have to be

done hierarchically, as it is in the telephone network.

2.2 Delay Sensitive Routing

 To perform delay sensitive routing, people apply these following methods:

resource reservation, probes flooding, classified queues, delay estimation and

miscellaneous.

 25

2.2.1 Resource Reservation

 Resource reservation is an intuitional approach, delay time naturally decreased

with bandwidth increases. Therefore, to deliver traffics from sender to receiver that

is behind several routers, source host asks the intermediate routers to reserve resource

for it. In practice, RSVP[15] is a famous example of resource reservation and it

carries the request through the network, visiting each node the network uses to carry

the stream. At each node, RSVP attempts to make a resource reservation for the

stream backward from receiver to sender, as shown in Figure 2.1.

Figure 2.1: RSVP reserves resources backward from receiver to sender.

2.2.2 Probes Flooding

 An approach to deal with unknown delay time in networks is sending probes

 26

through the network and measures its traveling time to estimate the delay time of a

path. Christophe Beaujean[13] proposed an method that floods probes to deicide the

shortest delay path, as shown in Figure 2.2. However, the characteristics of the

probe may be much different from the request traffic, for example: size, and it might

lead to incorrect information and then sender may make a sub-optimal route.

Figure 2.2: Collecting path-delay information by flooding probes.

2.2.3 Classified Queues

Classified queues are used in routers to provide QoS in transmission. Routers

with classified queues forward packets according to the class information on the

packets. Type of Service(ToS) field is used for a simple classification in the past,

and DiffServ[16] provide more complex classification to provide QoS, as shown in

Figure 2.3.

 27

Figure 2.3: A DiffServ network.

2.2.4 Delay Estimation

 People also could know the delay time via estimation. Networks are treated as

queues, once people know the operating mechanisms of links and routers, they could

estimate delay time. This approach is related with the flow-based problem, the

delay on links and routers are dependent to not only the topology but also the load.

The estimation may be difficult until the load is clearly known.

2.2.5 Miscellaneous

Douglas S. Reeves and Hussein F. Salama[14] proposed a distributed

 28

algorithm to get a path that below the delay bound while the link delay time is

reported by a node connected on it. However, their approaches neither consider

node delay time nor propose a mechanism to measure the delay time.

2.3 Summary

Therefore, we developed an algorithm that consider node delay time, which is

important in a high-speed packet-switching network, and propose a mechanism to

measure the delay time on links and nodes. The detail of our algorithm is illustrated

in the next chapter.

 29

Chapter 3

Routing With Node Delay

3.1 An Illustration Example

To maintain the QoS of an All-IP network, the delay time of packet transmission

must be controlled. If node delay time were not taken into account in network

management such as routing, it may take longer time to transmit packets. In the

following example, discovering a minimal delay path with and without taking node

delay into account will be compared. The network presented is composed of eight

nodes, A, B, C, …, H, and eight directed links,
→
AD,

→
AE,

→
BE,

→
CE ,

→
DF,

→
EF ,

→
EG,

→
EH.

The delay time of link
→
AD is 2, and all the other links is 1. We assume that the

delay time caused by a node is proportional to the traffic passing that node. There is

a unit traffic demand form A to F, from B to G and from C to H. Without

considering node delay, the best routing algorithm will route all three traffic flows

through node E, as shown in Figure 3.1(b). This will result the delay time of 6 for

each flow.

Figure 3.1(c) shows the result of another possible routing that takes node delay

time into account. One traffic flow will pass node D, instead of node E. The delay

time is then 5 for each flow.

 30

Figure 3.1: Reducing total delay time by considering node delay in routing.

(a) an example network, (b) routing result without node delay consideration, and

(c) routing result with node delay consideration.

Source Destination Volume

A F 1

B G 1

C H 1

Source Destination Path Delay

A F AEF 6

B G BEG 6

C H CEH 6

Source Dest. Path Delay

A F ADF 5

B G BEG 5

C H CEH 5

Request Traffic Demand

Path Table

Path Table

 31

Above example shows that, for high-speed networks, a routing algorithm that

takes node delay time into account may obtain a better result as compared to the

traditional routing algorithms that consider link delay time only.

3.2 Routing Problem Model

Given a directed graph G(V, E), with |V| nodes and |E| links, the propagation

delay time and bandwidth of each link, and the processing capacity of each node, the

problem is to find a set of paths for a given set of traffic demands such that the total

delay time is minimized. Given and derived parameters are listed in Table 3.1 and

3.2 respectively.

3.2.1 Traffic Model

Most traditional algorithms for graph related problems assume the weights of

links are all fixed constants. However, the delay time occurred in the components of

a real network really depends on the stochastic behavior of the traffic and routing

process. In reality, it is extremely difficult to solve a routing problem that takes

stochastic behavior into account. Therefore, we take a compromised approach by

relaxing the stochastic property of traffic and routing process as follows.

To reduce the stochastic behavior, we assume all traffics are of Constant Bit Rate

(CBR) type and all resources (processing and link bandwidth) are proportionally

shared by all traffic flows passing through. In this way, the load of each resource

 32

can be computed based on the total amount of traffics passing through that resource.

Although this is a compromised model, it is more realistic as compared to the

traditional fixed weight model. We hope it is a good approximation of a real

network.

G(V,E) a directed graph, G, containing |V| nodes and |E| directed links; V

denotes the set of all nodes, and E denotes the set of all links

vi a node; vi V

ek a directed link ek = (vx ,vy) E , vx is the start node, vy is the end

node of link ek.; also denoted as exy

λij traffic requests volume from vi to vj

Λk traffic requests volume from vk to all other nodes. Λk={λki ,|

i=1,…,|v|}

Λ set ofλij ,Λ={λij , |vi, vjV}

D allowable delay time of a packet transmitted from a source node to a

destination node

b(ek) bandwidth of link ek

t(ek) propagation delay of link ek

p(vk) processing capacity of node vk

Table 3.1: Notation of Input Parameters.

 33

Mk 
||

1

V

ki , summation of requested traffics starting from node vk; the

traffic volume of |Λk|

)(n

kS the selected routing path set(slice) of iteration n, corresponding to

the request Λk

P
(n)

 the selected routing path set(pasta) of iteration n, set of)(n

kS . P
(n)

= {)(n

kS | k=1,…,|V|}

μh volume of traffics passing through link eh, starting from vx, and

ending at vy, also denoted asμxy

σk volume of traffic passing trough node vk

U set of μh , U={μh }

φij the path for λij, selected by the routing algorithm;

φij=vi,eii+1,vi+1,ei+1 i+2,…,ej-1j,vj

Ф set of φij

d(vk) delay time caused by node vk

d(eh) delay time caused by link eh

d(φij) total delay time along path set φij, 



ijij ve

ij vdedd


)()()(

3.2.3 Objective Function

For a given traffic pattern and a network, the problem is set to find a set of

routing paths for the requested traffic demand, with the delay time of each traffic flow

bounded to D, such that the total delay time is minimized:

Table 3.2: Notation of Derived Parameters and Routing Results.

 34

,)(min



ij

ijd




Find Ф

s.t.  ijij Dd  ,)(. (3-7)

The delay bound of each traffic flow, D, could be variant without incurring a

significant impact to the model.

In E.q.3-7, d(φij) is the total delay time for a traffic flow; it is an accumulation

of the delay time on all links and nodes along all the selected paths.

The problem can be reduced to a 0-1 knapsack problem; therefore it is a

NP-Hard problem, and we do not expect to find a polynomial-time optimal algorithm

for it. Instead, we designed a heuristic algorithm to find sub-optimal solutions.

Furthermore, both objective and constraints are not simple functions of given

parameters (delay time). Instead, they are result dependent variables. This makes

the problem much more complicated.

3.3 Iterative Solution Approach

Because delay times of nodes and links are not constant, and are dependent on

the traffic passing through that node or link, traditional algorithms are not appropriate

to solve the problem. Therefore, we choose to use iterative approach. In an

iteration, the delay time of all network components can be fixed and computed based

 35

on the result obtained in the previous iteration. Initially, the delay time of all

nodes(links) are set to zero and propagation delay time respectively to compute the

input for next iteration.

For convenience, the result obtained in an iteration is called a pasta. In each

iteration, the problem is still too complicated to solve. Thus, we divide the problem

into some number of sub-problems, and solve each of them incrementally.

Theoretically, each routing solution (pasta) can be divided into a number of single

root flow trees, named a slice. In such a tree, the root node is any node and the tree

presents the flows generated from that root node and are forwarded to all other nodes.

In each incremental step within an iteration, a new single root flow tree is recomputed

to replace the old one rooted at the same node and was computed in the previous

iteration.

After some number of iterations, hopefully, the delay time of each network

component will be stabilized, and the routing solution obtained will be a good

solution. When the results obtained in two consecutive iterations are close enough

or the number of iterations exceeds a given number, the process stops.

3.3.1 Intra Iteration Procedures

Theoretically, if each of |Λ| requested flows travel along only one path, there are

|Λ | corresponding paths needed. However, it is not necessary to solve an

independent routing problem for each of the |Λ| requests. Instead, we group all

those requests started from the same node, says vk, into a subset; then solve the

 36

sub-problem as a single-source shortest path routing problem. If we solve the

sub-problem using an algorithm similar to Dijkstra's, we can obtain a single root flow

tree (slice) rooted from vk. A pasta, the result of an iteration, is recomputed

incrementally slice by slice. In each incremental step, a slice corresponding to a

request set |Λk| is removed from the pasta; the delay time of all network components

is then estimated based on the remaining of the pasta.; a new slice for |Λk| is then

computed, and is superimposed back to the pasta. A pasta is actually the

superposition of all slices obtained in an iteration. The iterative procedure is

summarized in the followings. We denote the result (pasta) obtained in the n-th

iteration as P
(n)

. A single root path tree (slice) corresponding to the Λk in the n-th

iteration is denoted as)(n

kS , and }{)()(

2

)(

1

)(n

k

nnn SSSP  , where ⊕ denotes a

superposition.

 (I) Initial condition

 for all nodes and links, σ=0, μ=0, d(v)=0, d(e)=t(e);

)0(

1S =)0(

2S =)0(

3S ,…, =)0(

||VS ={}; //empty set

)0(P =)0(

1S ⊕)0(

2S ⊕ …)0(

||VS ;

//⊕ denotes superimposing a traffic flow tree into a pasta

//Θ denotes removing a single root flow tree from a pasta

(II) First iteration

)1(P ={};

route Λ1 based on (
)0(P Θ)0(

1S), to obtain)1(

1S ;

)1(P =

)1(P ⊕)1(

1S ;

 37

routeΛ2 based on ()0(P Θ)0(

1S Θ)0(

2S ⊕)1(

1S), to obtain)1(

2S ;

)1(P =)1(P ⊕)1(

2S ;

‧

‧

‧

routeΛ|V| based on ()0(P Θ)0(

1S …Θ)0(

||VS ⊕ …⊕)1(

1|| VS), to obtain)0(

||VS ;

)1(P =)1(P ⊕)1(

||VS ;

(III) On the k-th iteration:

)(kS ={};

for j←1 to |V|

{

routeΛj based on (
)1(kP Θ…)1(

2

kS …Θ)1(k

jS ⊕… ⊕)(

1

k

jS ), to obtain)(k

jS ;

)(kP =
)(kP ⊕)(k

jS ;

}

(IV) Termination Conditions

 when
)1()( MM PP or number of iteration >|Λ|, terminate;

3.3.2 Termination Conditions

Termination is triggered in these two conditions: when average path delay of two

consecutive iteration are close within the predetermined value ε; or the number of

iterations is greater than the number of sets, |Λ|. In the first condition, ε is

 38

defined as the difference of two consecutive iteration divided to the total path delay

time of previous iteration. εis defined in Eq. 3-8:

)(

1

)(,
)(

])()([n

klm

n

kij
ij

lmij
SS

d

dd






 





 . (3-8)

On the other hand, we terminate the iteration process after |Λ| PASTAs(result of

an iteration) are computed.

3.3.3 Estimation of Path Delay Time

The delay time of a path is the accumulation of the delay time occurred on all

network components along that path, the delay time of path φij , d(φij), consists of the

delay time on all nodes and links in a path, which is d(vi)+d(ei i+1)+d(vi+1)+d(ei+1

i+2)+ … +d(ej-1 j)+d(vj).

μh and σk, are defined as the total volume of traffic flows passing through a

link eh and a node vk, respectively in E.q. 3-1, and 3-2:








ijh

ij

e

ij




h , and (3-1)











jk

ijk

ij

vv

v

ijk




 . (3-2)

 39

3.3.3.1 Estimation of Link Delay Time

d(eh) is the delay time of a flow of packets passing through link ek, including

transmission delay and propagation delay. The propagation delay t(eh) is a given

constant, determined by the distance and the type of transmitting media, e.g. fiber or

satellite. μh is the total flows passing through eh. As mentioned in Section 3.2.1,

we assume every traffic flow is a CBR and the bandwidth of a link is shared by all the

traffic flows passing through that link. The queuing delay on the link, thus, can be

ignored. Therefore, the transmission time of a link for a flow is approximately the

total traffic flows divided by the bandwidth of that link, as shown in E.q. 3-3.

The transmission delay time of link eh is then

)(/)()(/ h

e

ijhh ebeb

ijh

ij











 . (3-3)

After adding the propagation delay time, the delay time for a flow of traffic

passing through a link is then

)()(/)()()(/)(hh

e

ijhhhh etebetebed

ijh

ij

 







 . (3-4)

Notice that the delay time of a link, d(eh), is independent of the size of the flow

passing that link. All traffic flows passing a link are delayed by the same amount of

time.

 40

3.3.3.2 Estimation of Node Delay Time

d(vk) is the delay time caused by a node, vk. Again, to simplify the delay time

model, we assume all traffic flows passing a node are processed in each node in

time-sharing fashion, such that the d(vk) can be estimated as the total volume of

traffics divided by the processing capacity of that node, as shown in E.q. 3-5:

d(vk)=)(/)()(/ k

vv

v

ijkk vpvp

jk

ijk

ij














 . (3-5)

Thus, the delay time of a path φij is





ijkijh

v

k

e

hij vdedd


)()()(. (3-6)

Each node and the traffics passing through that node can be treated as a closed

network, which does not generate or absolve traffics, as shown in Figure 3.2.

Figure 3.2: Outgoing traffic equals to incoming traffic in a closed network.

λcd

λef

λef

λab+λcd

ek

λab

 41

3.3.4 Node Delay to Link Delay Conversion

We need an efficient algorithm to solve a single-source shortest path routing

problem to obtain a slice. Unfortunately, current shortest path algorithms all assume

zero weight on nodes such that they are not adequate for this problem even though the

delay time of network components are all constant within each iteration.

There are two approaches to solve this problem. The first one is to develop a

new algorithm that considers both node and link delay together; the second one is to

convert node delays into link delays, and then apply a conventional shortest path

algorithm to solve this problem. Because to develop a new algorithm that considers

node and link delays together may take much time, we choose the second approach

such that we can solve this problem using existing shortest path algorithms.

Dijkstra and Bellman-Ford are two famous algorithms for the shortest path

problem. Both algorithms only take link delay time into consideration. Dijkstra’s

is centralized while Bell-Ford’s is distributed. Because we are designing a

centralized algorithm, we choose to use Dijkstra shortest path algorithm.

We show how to convert the node weight into link weight. The transformed

graph will be equivalent to the given graph in the sense of path delay time.

The delay time of a node is computed based on E.q. 3-5 in Section 3.2.2.2, where

the total traffic passing through a node is obtained by the summation of its outgoing

traffic flows. Node delay time is added to propagation delay time of each incoming

 42

link. By doing so, we obtain another graph that has weights on its links only and is

equivalent to the original graph with respect to the path delay time, as shown in the

remaining of this section.

Given a node with a weight of m, who has two incoming links of weight w1 and

w2, as well as two outgoing links of weight w3 and w4, as shown in Figure 3.3(a).

We can transform the graph by connecting the incoming links to the outgoing links,

with four internal links of weight m. When a traffic flow passes this node, no matter

which incoming link it comes from or which outgoing link it selects to leave, it should

suffer from the delay caused by a delay time (weight) of m, as shown in Figure 3.3(b)

Consider a traffic flow passing through the node, the total weight sum is either

w1 + m+w3, w1 + m+w4, or w2+m+w4, w2 + m+w3. Since weight m appears in all

possible paths, it can be treated as a common link, where the incoming and outgoing

links connect. This is shown in Figure 3.3(c). Finally, we shift the node weight (m)

to incoming links. The weights of incoming links are then changed to w1+m and

w2+m respectively. The node is then transformed into Figure 3.3(d), where the

weight of node is shifted to links. The minimum weight paths can be obtained by

applying the original Dijkstra’s shortest path algorithm.

 43

Figure 3.3: Transformation of node delay to link delay.

(a) a node in original graph,

(b) have new links from cross connecting the incoming and outgoing

links,

(c) use a single link to present, since any path suffer the same m, and

(d) shift m to the each of the incoming links.

3.4 KLONE Algorithm

KLONE algorithm is an abbreviation of ―Kenex aLgorithm Obtaining

Node-delay Estimation‖. In KLONE, we compute slices, and we compose each

consecutive |Λ| slices into a pasta. Traffic volume on each node and link are

estimated within a pasta. and A slice is computed with fixed amount of traffic on links

and nodes. The estimation of node and link delay is introduced in Section 3.2.2.2 and

 (c)

w4

w1
w3

m

w2

(a)

m

w4

w1

w3

w2

 (b)

w4

m

w3

m

w1

w2

m

m

(d)

w4

w1+m
w3

w2+m

a node without

weight

 44

we modify the update method in Dijkstra’s shortest path algorithm, to Eq. 3-9:

when each routing path started from different node is chosen once, and propose

temporal nodes and links delays to precede the next pasta. While pasta computing is

being processed, we estimate the influence caused by traffic initiating from previous

node and convert the nodes delays into links delays. Therefore, we can apply

Dijkstra’s shortest path algorithm to find a shortest path tree for current target node.

When all nodes are visited once in a slice, we say a slice is computed. With the

computation of every slice, we have a set of paths to be the result set, and we hope it

could be closer to the optimal solution iteration by iteration. We take it as a process

of making a statue by clay. Each time the slice creates, like we shape the statue to be

closer to the result we expect. The slice creation (statue making process) will be

terminated when the results converge.

3.4.2 Pseudo Codes

KLONE(G,Λ)

{

for k = 1 to |V|

{

)(kP ← NIL;

for j ← 1 to |V|

 {

P.tmp ←
)1(kP Θ)1(

1

kS … Θ)1(k

jS , and ⊕)(

1

kS ⊕)(

2

kS ⊕… ⊕)(

1

k

jS  ;

 U←TVC(P.tmp, Λj); //traffics volume calculation on nodes and links,

 //P.tmp contains the propositional traffics on network,

 //while Λj is the new incoming traffic

 45

 G.tmp← NLC(U); //Node-Link Conversion, get weight of each link

 Dijkstra.shortest.path(G.tmp, vj); // get shortest path tree)(k

jS ;

)(kP ← }{)(k

j

k SP  ;

 }

 if)()1(kk PP 

return)(kS ;

}

return
|)(|VS ;

}

TVC(S, Λi , G) // Traffic Volume Calculation

{

for all λij in Λi

 Get φij (corresponding to λij) from S;

 Add λij to all nodes and links that composeφij, get σ-s and μ-s of all nodes

and links;

 Get and μ-s;

return;

}

Dijkstra.shortest.path(G, Λk)

{

Initialized.Single.Source(G, k)

S <-- NIL;

Q <-- All vertex in G;

predecessors← NIL;

 46

while Q is not NIL

 do vx <-- Extract-Min(Q);

 S <-- S union {vx};

 for each vertex vy <-- Adj[vx]

 do relax(vx,vy,U) // δ-s and μ-s are stored in G;

return predecessors; //return the shortest path tree;

}

Initialize-Single-Source(G, s)

{

for each vertex vk <-- V[G]

 do distance[vk] <-- unlimited; //d[vk]: the distance from vs to vk;

 predessors[vk] <-- NUL;

 distance[vk] <-- 0;

}

Relax(x,y,G)

{

 if distance[y] > distance[x]+ Weight(vx,vy)

 then distance[v]← distance[u] + Weight(vx,vy);

 predecessors[v] ← u;

}

Node-Link Conversion(U, Λk)

 47

for all links exy in U

{

Weight(vx,vy)=d(exy)+d(vy)=(μx+Mk)/b(ex)+t(ex)+(σy+Mk)/p(vy);

}

3.4.3 Complexity Analysis

 KLONE algorithm groups the |Λ| traffic requests into |V| sets each set is

corresponding to one shortest path tree. The shortest path algorithm we apply is the

Dijkstra’s shorstest path algorithm, so the time complexity of this part is N
2 ㏒ N.

Within an iteration (pasta), we create |V| path trees (slice), so it takes N*N
2 ㏒ N = N

3

㏒ N. And at most we repeat |V| iterations, the time complexity will be bounded

under N*N
3 ㏒ N=N

4 ㏒ N in worst case. On the other hand, in the intensive

evaluation process in Chapter 4, we know the complexity could be 2*N
3 ㏒ N, that is ,

O(N
3 ㏒ N) in general cases.

3.5 Summary

The influence of considering nodes delay in a delay sensitive routing is

illustrated in Section 3.1. We modeled the routing problem into a flow-based routing

problem and proposed KLONE algorithm to solve the variable nodes and links delay

time problem iteratively. In Section 3.2 and 3.3, the detail of KLONE algorithm is

explained. And then we analyzed the time complexity and found that it could run at

O(N
3 ㏒), as shown in Section 3.4. We will evaluate the performance of KLONE

 48

algorithm and OSPF algorithm in Chapter 4.

 49

Chapter 4

Performance Evaluation

We used numerical simulation to evaluate KLONE algorithm including its

convergence, average path delay time, and goodput ratio. We demonstrate that node

delay time in time sensitive packet routing for high-speed packet-switching network is

important by comparing our algorithm with the traditional OSPF routing algorithm.

4.1 Performance Evaluation Metrics

The followings are performance evaluation metrics:

1. Convergence speed: evaluated by two different values: the number of

iterations when the convergence occurs divided by the total number of nodes.

and the total number of slices when the convergence occurs divided by the

total number of nodes.

2. Average path delay time: the average time for a unit of request traffic passing

through the network.

3. Goodput ratio: The ratio of satisfied traffic requests.

 50

4.1.1 Convergence of KLONE Algorithm

Since KLONE algorithm is an iterative algorithm, we first evaluated its

convergence speed, and observed its behaviors within the iteration process. The

convergence of KLONE algorithm occurs when the average path delay time, which

will be defined later, of two consecutive PASTAs(result of an iteration in KLONE

algorithm) differ by a predefined value, ε. The convergence speed is evaluated by

K1/N and K2/N, where the convergence occurs at the K1-th iteration and the K2-th slice

and N is the number of nodes respectively.

4.1.2 Performance of KLONE Algorithm

We compared the performance of KLONE and OSPF, in terms of average path

delay time and goodput ratio.

4.1.2.1 Average Path Delay Time

Both algorithms select paths for the test instances, and in each evaluation process,

we forced all traffic pass through the paths selected by either KLONE or OSPF

routing algorithm. The delay time of each path is computed by accumulating the

delay time on all links and all nodes composing that path. Finally, the average path

delay time is computed by the summation of the size of a traffic multiplied by the

delay time on the selected path and then divided by the size of total traffic, as

 51

 





ij

ijij d



)(*

.

4.1.2.2. Goodput Ratio

Goodput is defined as the total satisfied traffic requests that can find a

corresponding path with a delay time less than the given upper bound. Goodput

ratio is defined as L/|Λ| where L is the number of goodput and |Λ| is the number of

request traffics. The higher the ratio is, the better the routing algorithm will be. In

general, larger delay bound, D, allows higher goodput ratio under the same routing

algorithm.

4.2 Design of Experiments

We compared KLONE algorithm and OSPF algorithm in 64,000 different test

instances, in the combinations of different number of nodes, network connectivity

ratio, and different link bandwidth/processing capacity ratio. This section explains

the experiments we conducted.

4.2.1 Test Instance Generation

Test instances include random networks and random traffic. The parameters of

a network instance include number of nodes, link bandwidth, connectivity, link

propagation delay time, and node processing capacity. The parameters of a request

 52

traffic instance include the traffic requests and the delay bound, D.

4.2.1.1 Network Instances

The range of link bandwidth was set from 0 to 400 Gbps, and propagation delays

stayed below 20 ms. Number of nodes was set from 10 to 100 with a processing

capacity in the range of Gbps. Connectivity is defined as
)1(* NN

P , where P is

the number of links, and N is the number of nodes. The range of connectivity was

set from 0 to 100 percents. The BP ratio is defined as b(e)/p(v), where b(e) is the

link bandwidth and p(v) is the node processing capacity and we varied it from 1/300

to 1/1.

4.2.1.2 Traffic Request Instances

The traffic coming into an edge node is assumed in an aggregated form. For a

graph of N nodes, there are N*(N-1) requests, one from each node to every other node.

The upper bound of delay time of all paths is set to D and D varies from 100 to 2000

ms.

 53

4.2.2 Experiments

The followings are the experiments we conducted:

 Experiment Exp-1 is to evaluate the convergence in two aspects, the speed

of convergence and the behavior within the iteration process.

 Experiment Exp-2 is to evaluate how the connectivity affects the

performance of KLONE algorithm.

 Experiment Exp-3 is to evaluate how the BP ratio affects the performance of

KLONE algorithm.

 Experiment Exp-4 is to evaluate how the number of nodes affects the

performance of KLONE algorithm.

They are summarized in Table 4.2.

Table 4.1: Parameters and Ranges for Test Instances.

Parameters Range of values

number of nodes 10,20, … , 100

link bandwidth 0~400 Gbps

node connectivity 40%, 60%, 80%, 100%

link propagation delay time 1~20 ms

node processing capacity 0~400 Gbps

traffic requests 0~1000 Mbps

delay bound (D) 100~2000 ms

 54

Experiments Objective

Exp-1: Convergence Test (a) Observing the speed of convergence

(b) Studying the behaviors within the

convergence process

Exp-2: Sensitivity to connectivity Observing the performance using two metrics:

(a) average path delay time, and

(b) goodput ratio.

Exp-3: Sensitivity to BP Ratio

Exp-4: Sensitivity to number of

nodes

4.3 Experiments and Results

 The experiments and results will be presented in this section. Due to the limit

of the space, only few portions of the figures are shown. Most of the figures shown

in this section are for the networks of size 50. Other parameters will be specified in

the figures.

4.3.1 Exp-1: Convergence Test

 The first experiment is to evaluate the convergence. We studied the

convergence speed and the behavior within the iteration process.

4.3.1.1 Convergence Speed

We adjusted the following three parameters in the experiment to study their

impact to the convergence speed: the BP ratio, the number of nodes and the

connectivity. The connectivity is defined as
)1(* NN

P , where P is the number

Table 4.2: List of Experiments.

 55

of links, and N is the number of nodes. Figure 4.3(a) and (b) show that neither BP

ratio nor the number of nodes has any impact to the convergence speed. On the

other hand, we found that the convergence speed is dependent on the connectivity.

This may be caused by two different reasons. First, higher connectivity may make a

request easier to find a very good satisfied path, and then there is a higher opportunity

to choose the same path in the succeeding iteration, as shown in Figure 4.3 (c). On

the other hand, lower connectivity may make a request having fewer paths to choose,

so that the solution domain is much smaller and thus the convergence speed is faster.

The dependency between εvalue and the convergence speed is shown in Figure 4.1

(d).

 56

Convergence speed at different BP ratio

(50 nodes)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

1/5 1/20 1/40 1/60 1/80 1/100
BP ratio

K 1 /N

5% connectivity

40% connectivity

80% connectivity

Convergence speed at different number of nodes

(connectivity at 20%)

0.10

0.15

0.20

0.25

0.30

0.35

0.40

10 20 30 40 50 60 70
number of nodes

K 1 /N

BP ratio at 1/300

BP ratio at 1/100

BP ratio at 1/80

BP ratio at 1/60

BP ratio at 1/30

Convergence speed at different connecrtivity

(50 nodes)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0+% 5% 10% 20% 40% 60% 80% 90% 100%
connectivity

K 1 /N

BP ratio at 1/5

BP ratio at 1/30

BP ratio at 1/60

BP ratio at 1/100

BP ratio at 1/300

(a)

(b)

(c)

 57

Converge speed at different epislon value

(50 nodes, BP ratio at 1/20)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0
.0

0
%

0
.0

1
%

0
.0

2
%

0
.0

3
%

0
.0

4
%

0
.0

5
%

0
.0

6
%

0
.0

7
%

0
.0

8
%

0
.0

9
%

0
.1

0
%

0
.1

1
%

0
.1

2
%

0
.1

3
%

3
.9

9
%

5
.0

3
%

5
.8

6
%

7
.9

0
%

Epislon

K 1 /N

0+% connectivity

20% connectivity

40% connectivity

80% connectivity

Figure 4.1: Relationship between the convergence speed and the performance metrics.

 (a) BP ratio , (b) number of nodes, (c) connectivity, and (d) ε value.

4.3.1.2 Behaviors within Iteration Process

In addition to the understanding of the convergence speed of KLONE algorithm,

we also have to study the behavior within its iteration process.

In more than 90% of the test instances, we found that the lines of both average

path delay time and goodput ratio become smooth after the K1=2/N and K2=2.

Figure 4.2(a) and (b) shows the average path delay time and the goodput ratio at the

convergence point K1. The convergence occurs at the second iteration. On the

other hand, Figure 4.2(c) and (d) shows that K2 occurs at 2N-th iteration.

(d)

 58

Goodput ratio within iteration process

(50 nodes, BP ratio at 1/20, D=200ms)

0%

20%

40%

60%

80%

100%

0.02 0.06 0.1 0.14 0.18 0.22 0.26 0.3 0.34 0.38
K 1 /N

goodput

ratio

connectivity at 20%

connectivity at 40%

connectivity at 60%

connectivity at 80%

Average path delay time at different iteration

(50 nodes, BP ratio at 1/20)

0

100

200

300

400

500

600

700

0.01 0.04 0.07 0.1 0.13 0.16 0.19 0.21 0.24
K 1 /N

delay time

(ms)

20% connectivity

40% connectivity

60% connectivity

80% connectivity

Average delay time at different slice

100

200

300

400

500

600

700

1.02 1.52 2.02 2.52 3.02 3.52 4.02 4.52 5.02 5.52 6.02 6.52

K 2 /N

delay time

(ms)

20% connectivity

40% connectivity

60% connectivity

80% connectivity

(a)

(b)

(c)

 59

Goodput ratio with iteration process

0%

20%

40%

60%

80%

100%

1.02 2.06 3.1 4.14 5.18 6.22

K 2 /N

goodput ratio

connectivity 20%

connectivity 40%

connectivity 60%

connectivity 80%

Figure 4.2: KLONE behaviors within iteration processes.

(a) the goodput ratio and (b) the average path delay time at K1, and

(c) the goodput ratio and (d) the average path delay time at K2.

4.3.2 Exp-2: Sensitivity to Connectivity

Intuitively, higher connectivity implies more available path between nodes. But,

how does connectivity influence KLONE algorithm? We studied the dependency

between the connectivity and the two performance metrics: average path delay time

and goodput ratio. We varied connectivity from 0% to 100% to see how average

path delay time and goodput ratio are influenced.

4.3.2.1 Connectivity and Average Path Delay Time

Higher connectivity implies more available paths and more bandwidth within the

network. We found that, at the same number of nodes, the average path delay time

(d)

 60

becomes smaller as the connectivity increases, as shown in Figure 4.3. We

compared the average path delay in KLONE algorithm and in OSPF algorithm. The

average path delay time improvement is defined as (T2-T1)/T2, where T2 is the average

path delay time of OSPF algorithm, and T1 is of KLONE algorithm. The larger the

value, the better KLONE algorithm.

Improvement in average path delay time time at

different connectivity (50 nodes)

0%

5%

10%

15%

20%

25%

30%

35%

0+% 20% 40% 60% 80% 100%

connectivity

improvement

BP ratio at 1/300

BP ratio at 1/100

BP ratio at 1/60

BP ratio at 1/30

BP ratio at 1/5

Figure 4.3: Relationship between connectivity and improvement

in average path delay time.

4.3.2.2 Connectivity and Goodput Ratio

In Figure 4.4, we show that at higher connectivity, KLONE algorithm has a

higher goodput ratio than OSPF algorithm.

 61

Improvement in goodput ratio at different connectivity

(50 nodes, BP ratio at 1/20)

-10%

-5%

0%

5%

10%

15%

20%

25%

30%

35%

20% 40% 60% 80%

connectivity

improvement D=200ms

D=300ms

D=400ms

D=500ms

D=600ms

D=800ms

D=2000ms

Figure 4.4: Relationship between delay bound and goodput ratio.

4.3.3 Exp-3: Sensitivity to BP Ratio

We varied the BP ratio from 1/300 to 1 to see the dependency between the BP

ratio and the two performance metrics.

4.3.3.1 BP ratio and Average Path Delay Time

We found that when the BP ratio increases, the improvement of average path

delay time increases, as shown in Figure 4.5. This is consistent with our hypothesis

that when the speed of links increases, an algorithm that concerns both link and node

delay times might have a better performance than OSPF, which only concerns links

delay times.

 62

Improvement in average path delay time at different BP

ratio (50 nodes)

0%

5%

10%

15%

20%

25%

30%

35%

1/300 1/100 1/80 1/60 1/40 1/20 1/5
BP ratio

improvement

connectivity at 0+%

connectivity at 20%

connectivity at 40%

connectivity at 60%

connectivity at 80%

Figure 4.5: Relationship between BP ratio and average path delay time.

4.3.3.2 BP Ratio and Goodput Ratio

We also compared the goodput ratio of KLONE algorithm and OSPF algorithm.

And we found that at different BP ratios, goodput ratio in KLONE algorithm usually

gets better than OSPF algorithm, as shown in Figure 4.6.

Inprovement in goodput ratio at different BP ratio

(50 nodes, connectivity at 80%)

-10%

-5%

0%

5%

10%

15%

20%

25%

30%

1/300 1/100 1/80 1/60 1/40 1/20 1/5

BP ratio

improvement

D=100ms

D=400ms

D=800ms

D=1000ms

D=1500ms

D=2000ms

Figure 4.6: Relationship between BP ratio and goodput improvement.

 63

4.3.4 Exp-4: Sensitivity to Number of Nodes

The number of nodes is varied from 20 to 70 in this experiment to see how it

affects the performance.

4.3.4.1 Number of Nodes and Average Path Delay Time

This experiment studies the dependency between the number of nodes and the

delay time improvement. The performance improvement, which is defined in

Section 4.3.2.1, is shown in Figure 4.7, in which the connectivity is 20%. The

improvement increases as the number of nodes increases.

Improvement in the average path delay time at

different number of nodes(connectivity at 20%)

0%

5%

10%

15%

20%

25%

10 20 30 40 50 60 70

number of nodes

improvemen

t

BP ratio at 1/300

BP ratio at 1/100

BP ratio at 1/60

BP ratio at 1/30

BP ratio at 1/5

Figure 4.7: Relationship between the improvement in the average

path delay time and the number of nodes.

4.3.4.2 Number of Nodes and Goodput Ratio

Increasing the number of nodes will increase the goodput ratio at same delay

bound, D. We study the differece in goodput ratio between KLONE algorithm and

 64

OSPF algorithm, as shown in Figure 4.8. At different number of nodes, KLONE

algorithm has a better goodput ratio than OSPF algorithm.

Difference in goodput ratio at

different number of nodes

-5%

0%

5%

10%

15%

20%

25%

30%

20 30 40 50 60 70

number of nodes

difference
D=100ms

D=400ms

D=800ms

D=1000ms

D=1500ms

D=2000ms

Figure 4.8: Relationship between number of node and goodput ratio.

4.3.5 Comparison with The Optimal Solution

In order to estimate the absolute performance of KLONE algorithm, we made a

comparison between OSPF algorithm, KLONE algorithm and the optimal solution in

a very small scale test instance, as shown in Figure 4.9, where the number of nodes is

set to 10, connectivity is set to 20%, BP ratio is at 1/10. Figure 4.9 shows the

comparison in the average path delay time. This toy-type study may not be a good

representation of any algorithm. However, it still gives us a sense to the distance

between KLONE algorithm and the optimal solution.

 65

Relative average path delay time

0%

40%

80%

120%

160%

200%

Optimal OSPF KLONE

ratio

average path delay

time

Goodput ratio

0%

20%

40%

60%

80%

100%

120%

Optimal OSPF KLONE

ratio

goodput ratio

Figure 4.9: Comparison with the optimal solution:

(a) average path delay time, and (b) goodput ratio.

4.3.6 Weakness of KLONE Algorithm

(a)

(b)

 66

4.3.6.1 The Complexity

 The complexity is a weakness of KLONE algorithm. The time complexity of

KLONE algorithm is O(N
3 ㏒ N), while it may be not good enough for general use.

4.3.6.2 The Exceptions in Low Delay Bound

In the comparison of goodput ratio at different delay bound D, KLONE

algorithm is generally better than OSPF algorithm. However, at some special range,

such as small D, OSPF algorithm may have a better performance. It may be caused

by that OSPF algorithm may gather up traffics on some specific links and nodes.

The rest of traffics could be delivered on links and nodes those are slightly loaded and

so they could be delivered within short delay time. However, when considering

about the all paths delay time, OSPF algorithm is outperformed by KLONE algorithm.

This s shown in Figure 4.10 in which the number of nodes is 30, the connectivity is

60%, and the BP ratio is 1/5. In such instances, OSPF algorithm performs better

than KLONE algorithm.

Goodput ratio for different delay bound D

0%

20%

40%

60%

80%

100%

100 300 500 800 1500

delay bound, D

goodput ratio

KLONE

OSPF

(a)

 67

Goodput difference of the KLONE and OSPF algorithm

at different delay bound, D

-10%

-5%

0%

5%

10%

15%

20%

25%

30%

100 300 500 800 1500
delay bound, D

difference

Difference

4.4 Analysis and Conclusion

 The Exp-1, convergence test, shows us KLONE algorithm gets advances from

the iteration process. Furthermore, the Exp-2, Exp-3, and Exp-4 shows us that the

performance improvement between KLONE algorithm and OSPF algorithm is

influenced by the two parameters, connectivity and BP ratio. And the comparison

with the optimal solution shows that the performance of KLONE algorithm is

between the optimal solution and OSPF algorithm.

Figure 4.10: An example of KLONE weakness in low delay bound

(a) goodput ratio curve and (b) difference in goodput.

(b)

 68

Chapter 5

Concluding Remark and Future Work

With the intensive testing instances, we demonstrated the importance of the nodes

delay in the routing path for high-speed packet-switching networks. We

hypothesized that an routing algorithm considering both the nodes and links delay

time could have a better performance than that only considers with links delay time in

delay sensitive services. We developed a flow-based routing algorithm, KLONE

algorithm, which considers both link delay time and node delay time. In our

intensive evaluation, KLONE algorithm could outperform OSPF algorithm which

only considers link delay time. The results of the experiments show that KLONE

algorithm could have a better performance than OSPF algorithm in most cases, with

only a few exceptions. Our hypothesis that considering with node delay is important

in high-speed packet-switching network is thus demonstrated.

This algorithm still has some weak points. First, KLONE algorithm may have

worse goodput than OSPF algorithm when the delay bound is very low. Secondly, it

does not support multi-paths routing for the same traffic stream yet. On the other

hand, there are some future works to be done. For example, the estimation of traffic

delay time may be not precise because the under layers, MAC, and PHY, might have

various approaches to transmit data. Different transmission methods may result in

different delay time. Furthermore, KLONE algorithm is a centralized algorithm. If

 69

we want to apply it onto real networks, we need to develop a distributed version in the

future. The traffic model should also estimated in different type, such as from CBR

to VBR, and it should be able to deal with difference priorities.

Reference

【1】 3rd Generation Partnership Project, ``Technical Specification Group Services and

Systems Aspects; Architecture for an All IP network'', 3GPP TR 23.922 version 1.0.0.,

October 1999.

【2】 S. Floyd, and V. Jacobson, ``Random Early Detection Gateways for Congestion

Avoidance'', IEEE/ACM Transactions on Networking, vol. 1, no. 4, August 1993, pp.

397-413.

【3】 A. Demers, S. Keshav and S. Shenker, ``Design and Analysis of a Fair Queueing

Algorithm'', Proc. SIGCOMM'89, ACM, September 1989, pp. 1-12.

【4】 International Communication Union, ``Coding of Speech at 8kb/s Using

Conjugate-Structure Algebraic-code-Excited Linear-Prediction (CS-ACELP)'', ITU-T.

G.729.1, March 1996.

【5】 D. Awduche, J. Malcolm, J. Agogbua, M. O'Dell and J. McManus, ``Requirements for

Traffic Engineering Over MPLS'', RFC 2702, September 1999.

【6】 D. Ooms, B. Sales, W. Livens, A. Acharya, F. Griffoul and F. Ansari, ``Overview of IP

Multicast in a Multi-Protocol Label Switching (MPLS) Environment'', RFC 3553,

August 2002.

【7】 E. Rosen and Y. Rekhter, ``BGP/MPLS VPN'', RFC 2547, March 1999.

【8】 A. S. Tanenbaum, ``Computer Networks, Third Edition'', Prentice Hall, March 1996,

pp. 345-366.

【9】 Dijkstra, E.W., ``A Note on Two Problems in Connection with Graphs'', Numerische

Math, vol. 1, March 1959, pp. 269-271.

【10】C. Hedrick, ``Routing Information Protocol'', RFC 1058, June 1988.

【11】J. Moy, ``OSPF version 2'', RFC 1583, March 1994.

【12】Christophe Beaujean, ``Delay-Based Routing Issues in IP Networks'', contact

GRADIENT CR/98/148, May 2000.

【13】Douglas S.Reeves and Hussein F. Salama, ``A Distributed Algorithm for

Delay-Constrained Unicast Routing'', IEEE Transaction on Network, April 2000.

【14】R. Braden, L. Zhang, S. Berson, S. Herzog and S. Jamin, ``Resource Reservation

Protocol (RSVP) – Version 1 Functional Specification'', RFC 2205, September 1997.

【15】K. Chan, R. Sahita, S. Hahn and K. McCloghrie, ``Differentiated Services Quality of

Service Policy Information Base '', RFC 3317, March 2003.

【16】Bill Goodman, ``Internet Telephony and Modem Delay'', IEEE Network, May 1999,

pp. 8-16.

【17】J. Garcia-Luna-Aceves and J. Behrens, ``Distributed scalable routing based on vectors

of link states'', IEEE J. Select on Communication, October 1995.

【18】Jon Postel, ``Internet Protocol'', RFC 791, September 1981.

【19】Mark A. Sportack, ``IP Routing Fundamentals'', Cisco ISBN: I-57870-071-x, May

1999.

【20】R. Wideyono, ``The Design and Evaluation of Routing Algorithms for Real-Time

Channels'', International Computer Science Institute, Univ. of California at Berkeley,

Tech Rep. ISCI TR-94-024, June 1994.

【21】S. Rampal and D. Reeves, ``An evaluation of routing and admission control

algorithms for multimedia traffic'', Proc. of the 5th IFIP Conf. on High Performance

Networks, October 1995.

【22】S. Lavenberg, ``Mean Value Analysis of Closed Multichain Queuing Networks'',

Journal of the Association for Computing Machinery, vol. 27, no. 2, April 1980, pp.

313-322.

【23】Z. Wang and J. Crowcroft, ``Quality of Service Routing for Supporting Multimedia

Applications'', IEEE Select on Communication, September 1996.

