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Chapter 1 

Introduction 

 

Ever since the ancient time, people have known how to communicate in a preliminary 

way.  To facilitate and improve ways of communication, our ancestors built up 

systems of communication, and the first postal service, for instance, is one of the great 

improvements in communications before Warring States (403-221 B.C.)  Through 

the message delivery system, distant messages could be exchanged in a certain way so 

that it has replaced the face-to-face communication.  However, with the development 

of human civilizations, the message transmission system in postal service has also 

evolved from the preliminary dove to circuits and finally to the present 

circuit-switching network, packet-switching network and the upcoming ALL-IP 

network[1].  All-IP network is a network that uses Internet Protocol (IP) to transport 

of all user data and signaling.  In order to carry time sensitive communication 

services, the transmission delay time in an ALL-IP network has to be controlled.  To 

provide controlled delay time, we need proper mechanisms to measure delay time and 

select paths for request traffics.  Routing is a critical task of a packet-switching 

network to decide the path to deliver a packet.  However, most routing approaches 

are not for time sensitive services.   

 

Only a few are designed for time sensitive services.  These time sensitive 
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routing algorithms are designed at the time when the link bandwidth is the scarcest 

resource.  As the link bandwidth grows rapidly in recent years due to the advance of 

optical communication technologies, link bandwidth is no longer the only scarce 

resource.  The processing speed of nodes, e.g.  routers, becomes another critical 

source of delay time.  Thus, we hypothesize that node delay is a significant part in 

time sensitive routing for high-speed packet-switching network.  In this paper, we 

show the importance of node delay time and developed an algorithm to provide 

controlled delay time in high-speed packet-switching networks. 

 

1.1 Switching Network Technologies 

 

Current communication networks can be categorized into two types: 

circuit-switching networks to support time sensitive services, such as voice, and 

packet-switching networks to support other types of services, mainly non-time 

sensitive data services.   

 

1.1.1 Circuit-Switching Networks 

 

Since the first invention of telephone by Alexander Graham Bell in about 100 

years ago, the development of tele-communication networks has become the 

foundation of the build-up of circuit-switching network.  At first, telephone 

connections require operators who manually switched phone lines into correct 

positions so that the connection could be built up.  After years of development, 

instead of manual services, such complicated and tiresome jobs are done 
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automatically by private branch exchanges (PBXs), as in Figure 1.1.  This system is 

very reliable (try to think how rarely the system fails to connect the receiver when you 

dialed the numbers correctly).  Furthermore, circuit-switching network operates with 

very few overheads in transmitting datas, so it provides good quality, such as low 

delay and jitter, in real-time communications.  However, it is also extremely 

inefficient and expensive because the connection is made at the beginning of a session; 

no matter it is a conversation, a fax transmission, a modem session or whatever based 

on the voice transfer.  The connection is maintained until being terminated, that 

means a certain portion of the network is reserved exclusively for that connection 

whether something (voice) is taking place at the moment or not.  If one party puts 

down the phone or remain silent, or if a fax machine is sending or receiving data for a 

period of time, the line(the circuit) between the two terminal devices is still 

unavailable for other activities even though it is not being used at the moment.  In a 

conversation, while one is speaking and another is usually listening.  There might be 

up to 50% of a typical voice conversation being actually silence.  A tremendous 

network capacity is thus wasted.   

 

 

 

 

  

 

 

 

Figure 1.1: A circuit-switching network. 

PBX 

PBX 

 

Circuit-switching 

Network (PSTN) 
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Although the system is inefficient and expensive, people still enjoy and get used 

to the convenience of circuit-switching system.  With the rapid improvements in 

communication technologies, people of today can talk over the phone easily and 

inexpensively even they are apart by oceans.  It provides high quality services to 

real-time voice communications that other networks hardly have.  The word 

―Circuit-Switching Network‖ equaled to ―Communications‖ in so many years.  It 

was not until late 1960’s that this domination started loosening, when 

packet-switching networks were introduced to the world.   

 

1.1.2 Packet-Switching Networks 

 

In 1960’s, a new transmission approach was invented—packet-switching.  It 

breaks the rules made by circuit-switching networks.  Instead of occupying a line for 

the entire connection time, packet-switching networks break the digital stream of 1s 

and 0s into pieces of the some specific length.  These pieces, or we may call them 

―packets‖, are then put in the so-called ―header‖ envelopes with some information.   

In other words, when the packet is originated, a serial number and error correction 

messages are created and attached to the packet to indicate the sequence number of 

the packets.  Similar to the role of switching connected and disconnected circuits in 

circuit-switching network, routers or computers in packet-switching networks take the 

functions.  They read the address of a packet and forward it to another router closer 

to the destination.  At the destination, a few hundreds of milliseconds or some 

seconds later, the packets are received, reassembled in correct order, and converted 
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back into the original message.  We show an example of how packet-switching 

works in Figure 1.2. 

 

 

 

 

Figure 1.2: Sending a message over a network as a series of packets. 

  

The main difference between circuit-switching network and packet-switching 

network is the improvement of link utilization.  Although the session in 

packet-switching (4 links) may use more links than circuit-switching network (2 

links), the links between A and B are not occupied when the session proceeds.  It 

implies that the links could be released earlier for other sessions in packet-switching 

network than in circuit-switching network. 

 

In some aspects, we may view a packet-switching network as a network of 

queues.  Each node contains queues where incoming packets are queued before they 

are sent out on an outgoing link.  If the rate of certain packets arrive at a switch point 

exceeds the rate a packets can be transmitted, the queues grow.  When it happens, the 

queuing mechanism causes delay, and if the queues overflow, packets thus lost.  It is 

A B 
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so called congestion.  Loss of data generally causes retransmissions that may either 

add to the congestion or result in less-effective utilization of the network. 

In 1990’s, Internet, which evolutes from ARPANET, bursts.  ARPANET is a 

packet-switching network using Internet Protocol(IP)[23] as it’s major communication 

protocol.  With the popularity of Internet, IP becomes the most popular 

communication protocol to transmit data communication services.  Researchers in 

packet-switching area focus on the bandwidth utilization, which is a method that may 

maximize bandwidth utilization but sacrifice packet delay time.  The inherent packet 

delay time caused by the signal propagation, router processing, and packet transmitted 

over slow transmission links, is naturally ignored in the packet-switching network 

researches.   

 

A brief comparison between circuit-switching and packet-switching networks is 

shown in Table 1.1. 
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1.1.3 Network Convergence and ALL-IP Network 

 

In so many years, these two types of switching techniques have built up high 

capacity networks in the real world.   The cost of co-managing two types of 

networks is huge but the applications are usually not integrated well.   For example, 

if someone wants to contact the customer service of a company, he/she has to look up 

the company web page for the customer service numbers.  He/she cannot contact the 

customer service just via a mouse click, as surfing on the web.  Even if the user 

applies ISDN, xDSL or other broadband services using the same line, he/she still 

cannot achieve it easily, because the services still are not integrated well.   

 

It was not until recently that service providers have been required to deploy 

different networks for different applications, such as voice, video, private data, and 

Table 1.1: Circuit-switching Networks v.s. Packet-switching Networks. 

Resource Circuit-switching Packet-switching 

Dedicated path Yes No 

Available bandwidth Fixed Dynamic 

Reliability Yes No 

In order delivery Yes No 

Store-and-forward 

transmission 

No Yes 

Call setup Required Not required 

When congestion occurs At setup time On every packet 

Charge Per time unit Per packet or per time unit 
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etc.  Each of these networks evolved independently as separate networks, so it was 

technically impossible to run all of these applications across a common infrastructure.   

Due to the existent technological limitations, each of these incredibly expensive 

parallel infrastructures was built to support different application requirements.   

Internet was just another example of a separate network that was designed to provide 

connections among various researchers, military and educational institutions.  In 

general, users prefer an application independent network, which can serve for all 

purposes, not just for certain purposes.  People really need to build an application 

independent network, a network with no specific application purpose.  This network 

is built for the general purpose capable to carry all the traditional services on their 

own networks and to move them onto this common infrastructure. 

The deployment of global IP infrastructure, as well as the recent technological 

advances, makes the integration possible.  For service providers and their customers, 

they can get a better return on their assets, lower operational cost, and bring new 

services to a worldwide market.  Therefore, the network convergence emerges.   In 

response to the network usage explosion, huge bandwidth growth, multiple services 

and mutual connectivity of network, IP is chosen to be the common network layer 

protocol of next generation networks.  An All-IP network uses a packet-switching 

network to carry all the traffics that were delivered by both packet-switching and 

circuit-switching networks.  The delay requirement of real-time applications, such as 

VoIP, Video Conference, and even on-line games, etc, must be fulfilled on the ALL-IP 

networks.  These time sensitive services can be easily served by a circuit-switching 

network, which connects end hosts via real circuits.  Once the connections are set 

properly discarding the previous call set up time, the users only suffer little delay in 

communications.  On the other hand, the delay time requirement of time sensitive 

services is a big challenge to the ALL-IP network.  The inherit packet delay time 
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becomes an important issue in managing an ALL-IP network. 

 

Traditional researches in packet-switching network management field only take 

into account the packet transmission time over transmission links but the nodes.  It is 

because the line prices were expensive and the bandwidth was poor in the past years.  

Link delay was the dominating factor in the traditional "slow" packet-switching 

networks.  As the link bandwidth grows rapidly in recent years due to the advance of 

optical communication technologies, link bandwidth is no longer the only scarce 

resource.  The processing speed of a node, e.g. a router, becomes another critical 

source of delay time.  A network management mechanism must take node delay into 

account to achieve a better performance.   
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1.2 Delay Time Analysis 

  

In this section, we will to illustrate the categories of delays, and explain why 

they happen and what we can do to improve them.   

 

 

 

Table 1.2: Comparison of PSTN/IN, Internet and ALL-IP Network. 

 Circuit-Switching 

(PSTN/IN) 

Packet-Switching 

(Internet) 
ALL-IP Network 

Multimedia services No Yes Yes 

QoS-enabled Yes (voice only) No Yes 

Network intelligence Yes No Yes 

Intelligent CPE No Yes Yes 

Underlying transport 

network 

Circuit-switching 

Network 

Packet-switching 

Network 

Packet-switching 

Network 

Integrated control and 

management 

No Yes Yes 

Service reliability High Low High 

Service creation Complex Ad-hoc Systematic 

Ease of use of service Medium High High 

Modularity Low Medium High 

Architecture openness Low High High 
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1.2.1 One Trip Delay Time 

 

One trip delay time is the accumulation of delay time along a transmitting path.  

It is usually an important metric to measure the quality of a transmission.  An 

example of the one trip delay is shown in Figure 1.3. 

 

 

Figure 1.3: One trip delay time. 

 

1.2.2 Categories of Delay Time Components 

 

The components of the delay time in a path are categorized into the following 

three categories: link delay, node delay and end-host delay.   
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1.2.2.1 Link Delay 

 

 The first place that catches the developer’s sight is the delays on links.  This 

contains three types of delays, the queuing delay, the propagation delay and the 

transmission delay.  Link delay was a major concern when people searches a path for 

time sensitive services. 

 

1.2.2.1.1 Propagation Delay  

 

Propagation delay is the time of an electrical or optical signal transmitted along a 

specific link.  The propagation delay of a link is the length of the link divided by the 

propagation speed, which depends on the physical characteristics of the media and the 

signal.  For the same link, the propagation delay is a constant if the length and the 

media keep unchanged.   

 

For example, the propagation delay time of an xDSL line is the same as that of a 

voice line, because the transmission media is still a copper wire with the same length. 

 

1.2.2.1.2 Transmission Delay  

 

Transmission delay is the time of a data unit being transmitted alone a specific 

link with the propagation delay time ignored.  For example, we may need 82ms to 

transmit a 128kb data, and 41ms to transmit a 64kb data along the T1 link.  The 

transmission delay time is a measure of the link bandwidth.  Users can reduce the 

transmission time by either reducing the data size or increasing link bandwidth. 
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1.2.2.1.3 Queueing Delay for a Link 

 

Queueing delay for a link is defined as the time of a packet waiting in a queue, 

before it is being transmitted.  It could be improved by using different queueing 

policy, such as changing the queue policy from FIFO to RED[2,3]. 

 

1.2.2.2 Node Delay  

 

Node delay is the delay time occurs within a node.  It contains two types of 

delays: the processing delay and the queuing delay for a processor.  With link 

bandwidth gets closer to node processing capacity, node delay increases its share in 

one trip delay time.  We may recall the impact caused by the Code-Red worm in 

2001.  Like the first Internet worm in 1988, the code-red worm invaded numerous of 

computers, and most of the invaded hosts were not aware of it.  However, unlike 

other worms, this worm did not cause a very heavy traffic loading to the hosts, but 

generated many small-sized packets such that the mediate routers and switches cannot 

process them all instantaneously.  These short packets did not occupy too much link 

bandwidth. Instead, they caused heavy loads on routers and switches and hence 

increased packet delay time tremendously.  The routers and switches spent much 

time finding routes for numerous short worm packets but transferring real data traffics.  

The link loading was not heavy because the traffic was small.   

 

This situation might be repeated when the tasks carried by routers are more and 

more complex.  Then, node delay becomes a dominant part when choosing a path for 

a delay sensitive service in a high-speed network. 
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1.2.2.2.1 Processing Delay  

 

Router’s processing power determines processing speed and processing delay 

time.  For simplicity, we call it ―node processing capacity‖.  The more data a 

processor handles, the longer processing delay will be.  Furthermore, applying faster 

processor could reduce the processing delay. 

 

1.2.2.2.2 Queueing Delay for a Node 

 

Similar to the queueing delay for a link, it is defined as the time of a packet 

waiting in a queue before being processed.  It could be improved by using different 

scheduling policy, such as changing policy from FIFO to Weighted Round-Robin 

(WRR.) 

 

1.2.2.3 End-Host Delay 

 

End-host delay is defined as the delay occurred at the hosts of both ends, 

including codec delay, packetiztion delay, and etc. Although it is a component of total 

delay time, it is independent of the path it travels.  Thus, it is generally ignored in the 

design of routing algorithms. 

  

1.2.2.3.1 Packetization Delay  

 

Packetization delay is the time to construct and format a packet.  Some real 

time applications sends packets periodically.  For example, some VoIP applications 
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use G.729.1[4] as their communication protocol, sending packets every 30ms.  That 

implies that there is an inevitable 30ms packetization delay at both sender end 

receiver end. The packetization delay can’t be reduced unless the communication 

protocol or the periodical parameters are changed.  

 

1.2.3 The Myth of Bandwidth 

 

 In the beginning of router algorithm development, the tasks performed by a 

router are simple and the power of the processor within a router is much faster than 

the links in terms of processing or transmitting packets.  The link delay was the 

major concern in designing a routing algorithm.  In 1998, fiber optic networks with 

DWDM technique started to be deployed.  It causes a dramatic increase in network 

bandwidth.  Figure 1.4 shows the growth in bandwidth and node processing capacity.  

This faster growth in bandwidth makes link bandwidth closer to the node processing 

capacity and results in the increase of relative weigh of node delay.  Therefore, both 

link and node delay time must be taken into account in designing a delay sensitive 

routing algorithm. 
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Figure 1.4: The growth rate in past few years: 

(a) x86 CPU power capacity and (b) fiber bandwidth. 

 

1.2.4 Possible Delay in Routers 

 

The basic function of a router are routing and forwarding packets. As dot com 
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fever outbroke in last decade, new data-communication applications and routing 

technologies emerge like waves.  Being a critical component on the network, a 

router has to carry much more tasks than before, such as packet filtering and flow 

management.  Hence, a router may not work as efficiently as it claims and may 

become a potential bottleneck in Internet.   

 

1.2.4.1 MPLS Traffic Engineering (MPLS TE) 

 

 Label switching becomes a new approach to reduce node delay.  A label 

switching router forwards packets according to labels instead of packet headers.  

This will increase processing speed in forwarding packets.  The hottest example is 

MPLS Traffic Engineering(MPLS TE)[5, 6, 7].  It is originated from Cisco 

Tag-Switching.  It coordinates routers to switch packets by labels, which is a 

20bit-length header added to the front of a packet.  Routers transmit packets by 

packet labels.  A path selected by labels in MPLS network is called Label Switched 

Paths(LSP ), shown in Figure 1.5.   

 

 The corresponding routing protocol routes packets based on a single end-to-end 

routing decision uniformly applied to all packets bound for the same destination.  A 

single physical path between source and destination that delivers streaming packets 

in-sequence with uniform latency. 
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Figure 1.5: A Label Switched Path(LSP) in MPLS. 

 

LSP technique reduces the routing table look up time as compared to the 

traditional header processing.  Traffic Engineering (TE) is concerned with 

performance optimization of operational networks.  In general, it measures, models, 

characterizes and controls the applications run on a specific network to achieve 

specific performance objectives.  MPLS Traffic Engineering is the way to implement 

TE within MPLS domain.  It aggregates all possible resources and prepares for 

potential failures to achieve the optimization descried above.  The disadvantage of 

MPLS TE is the real-life of MPLS.  In practice, routers that claim being with MPLS 

functions usually only support IP Label, but not other functions.  These poor 

supports in functions may not speed up the routing when applying MPLS, but will 

certainly decrease the efficiency, just as the extra load balancing jobs do. 

 

1.3 Motivation and Research Objectives 

 

Routing is a critical task of a packet-switching network to decide the paths to 

deliver a packet.  Most traditional routing algorithms do not treat the delay time as 
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their major concern, because most packet-switching networks are not designed to 

support time sensitive services.  To maximize the utilization of link bandwidth, the 

delay time is usually sacrificed. 

Only a few are designed for time sensitive services.  However, these time 

sensitive routing algorithms are designed at the time when the link bandwidth is the 

scarcest resource.  As the link bandwidth grows rapidly in recent years due to the 

advance of optical communication technologies, link bandwidth is no longer the only 

scarce resource.  The processing speed of nodes, e.g. routers, becomes another 

critical source of delay time.  Thus, we hypothesize that node delay is a significant 

part in time sensitive routing for high-speed packet-switching networks.  In this 

paper, we will show that considering with node delay time in routing algorithm for 

high-speed packet-switching network could provide a better performance to time 

sensitive services as compared to those only consider link delay. 

 

1.4 Solution Approaches 

 

In chapter 3, we will model the problem as a flow-based routing problem with 

link and node delay dependent on their loads. An iterative approach is taken to cope 

with the problem of load dependent delay time on links and nodes. We use a 

transformation to convert node delay and link delay such that each intermediate 

problem in each iteration can be solved by using traditional routing algorithm. The 

above algorithm is called the ―KLONE‖ algorithm. 
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1.5 Performance Evaluation 

 

To evaluate the performance of KLONE algorithm, we use the average path 

delay time and goodput ratio as our performance metrics and compare with OSPF 

algorithm in Chapter 4. 
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Chapter 2 

Related Work 

The main function of the network layer is to route packets form the source machine to 

the destination machine.  In most subnets, packets require multiple hops to make the 

journey.  The only notable exception is for broadcast network, but even here routing 

is an issue if the source and destination are not on the same network.  The algorithms 

that choose the routes and the data structures that they use are a major area of network 

layer design.  The categories of routing algorithms are illustrated in this chapter. 

 

2.1 Routing Approaches 

 

 Variable routing approaches[8] are summarized in this section. 

 

2.1.1 Shortest Path Routing 

 

Shortest path routing is to build up a shortest path tree to present the network 

topology, so then routes each of request traffics to its destination.  The Dijkstra’s 

shortest path algorithm[9] is a very famous example of shortest path routing, and it 

discovers a node’s shortest paths to other nodes in O(n ㏒ n) with maintaining 
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complete information about the network topology.  For the knowledge of whole 

network topology, it is centralized in nature.  Resulting from this centralized nature, 

it has a privilege, the loop-free feature. 

 

2.1.2 Flooding 

 

 Another routing algorithm is flooding, in which every incoming packet is sent 

out on every outgoing line except the one it arrived on.  It obviously generates vast 

numbers of duplicate packets, in fact, and infinite number unless some measures are 

taken to damp the process.  It is not practical in most applications, but it does have 

some uses.  For example, in military applications, where large numbers of routers 

may be blown to bits at any instant, the tremendous robustness of flooding is highly 

desirable.   

 

2.1.3 Flow-Based Routing 

 

Unlike other categories of routing approaches, flow-based routing considers both 

the network topology and load.  The basic idea is that for a given line, if the capacity 

and average flow are known, it is possible to compute the mean packet delay on that 

line from queueing theory.  From the mean delays on all the lines, it is 

straightforward to calculate a flow-weighted average to get the mean packet delay for 

the subnet.  The routing problem then reduces to finding the routing algorithm that 

produces the minimum average delay for the subnet. 
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2.1.4 Distance Vector Routing 

 

 Distance vector routing estimates the distance from source to destination by 

certain approaches.  The distance vector protocols are often referred to as 

―Bellman-Ford‖ protocols because they are based on a shortest path computation 

algorithm.  Distance vector routing protocols have been widely used since the early 

ARPANET[10] to nowadays Internet.  For example, hop count is generally used for 

this issue.  RIP[11] is a routing protocol in the family.  Distance vector routing 

protocols periodically send information to its neighbor nodes.  Each node could 

estimate the distance to other nodes according to the number of intermediate passed 

nodes.  If the network is fixed, the nodes will compute a converged result.  The 

updated messages are only periodically sent to their neighbors, and the update 

messages do not cause a heavy load to the network compared to other protocols.  A 

weakness of distance vector routing is the convergence time.  The convergence is 

delayed of the period update message, so RIP is constrained in a network under 16 

nodes.  However, RIP is still widely used in small-scaled network because of its very 

little configuration, management overhead and easy to implement. 
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2.1.5 Link State Routing 

 

On the other hand, link state routing focuses on the states of links.  Link state 

routing transforms the link states into some mathematical expressions to choose 

proper paths.  Open Shortest Path First (OSPF[12]) is a widely used example of link 

state routing, and is parallelly used with RIP, which is a distance vector routing. 

 

2.1.6 Hierarchical Routing 

 

As networks grow in size, the router’s routing tables grow proportionally.  Not 

only is router memory consumed by ever increasing tables, but more CPU time is 

needed to scan them and more bandwidth is needed to send status reports about them.  

At a certain point the network may grow to the point where it is no longer feasible for 

every router to have an entry for every other router, so the routing will have to be 

done hierarchically, as it is in the telephone network.   

 

2.2 Delay Sensitive Routing 

 To perform delay sensitive routing, people apply these following methods: 

resource reservation, probes flooding, classified queues, delay estimation and 

miscellaneous. 
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2.2.1 Resource Reservation  

 Resource reservation is an intuitional approach, delay time naturally decreased 

with bandwidth increases.  Therefore, to deliver traffics from sender to receiver that 

is behind several routers, source host asks the intermediate routers to reserve resource 

for it.  In practice, RSVP[15] is a famous example of resource reservation and it 

carries the request through the network, visiting each node the network uses to carry 

the stream.  At each node, RSVP attempts to make a resource reservation for the 

stream backward from receiver to sender, as shown in Figure 2.1.   

 

 

 

Figure 2.1: RSVP reserves resources backward from receiver to sender. 

 

 

2.2.2 Probes Flooding 

 

 An approach to deal with unknown delay time in networks is sending probes 
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through the network and measures its traveling time to estimate the delay time of a 

path.  Christophe Beaujean[13] proposed an method that floods probes to deicide the 

shortest delay path, as shown in Figure 2.2.  However, the characteristics of the 

probe may be much different from the request traffic, for example: size, and it might 

lead to incorrect information and then sender may make a sub-optimal route. 

 

 

 

Figure 2.2: Collecting path-delay information by flooding probes. 

 

2.2.3 Classified Queues 

 

Classified queues are used in routers to provide QoS in transmission.  Routers 

with classified queues forward packets according to the class information on the 

packets.  Type of Service(ToS) field is used for a simple classification in the past, 

and DiffServ[16] provide more complex classification to provide QoS, as shown in 

Figure 2.3. 
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Figure 2.3: A DiffServ network. 

 

2.2.4 Delay Estimation 

 

 People also could know the delay time via estimation.  Networks are treated as 

queues, once people know the operating mechanisms of links and routers, they could 

estimate delay time.  This approach is related with the flow-based problem, the 

delay on links and routers are dependent to not only the topology but also the load.  

The estimation may be difficult until the load is clearly known.   

 

2.2.5 Miscellaneous 

 

Douglas S.  Reeves and Hussein F.  Salama[14] proposed a distributed 
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algorithm to get a path that below the delay bound while the link delay time is 

reported by a node connected on it.  However, their approaches neither consider 

node delay time nor propose a mechanism to measure the delay time.   

 

2.3 Summary  

 

Therefore, we developed an algorithm that consider node delay time, which is 

important in a high-speed packet-switching network, and propose a mechanism to 

measure the delay time on links and nodes.  The detail of our algorithm is illustrated 

in the next chapter. 
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Chapter 3 

Routing With Node Delay 

3.1 An Illustration Example  

 

To maintain the QoS of an All-IP network, the delay time of packet transmission 

must be controlled.  If node delay time were not taken into account in network 

management such as routing, it may take longer time to transmit packets.  In the 

following example, discovering a minimal delay path with and without taking node 

delay into account will be compared.  The network presented is composed of eight 

nodes, A, B, C, …, H, and eight directed links, 
→ 
AD,

→ 
AE,

→ 
BE,

→ 
CE ,

→ 
DF,

→ 
EF ,

→ 
EG,

→ 
EH.  

The delay time of link 
→ 
AD is 2, and all the other links is 1.  We assume that the 

delay time caused by a node is proportional to the traffic passing that node.  There is 

a unit traffic demand form A to F, from B to G and from C to H.  Without 

considering node delay, the best routing algorithm will route all three traffic flows 

through node E, as shown in Figure 3.1(b).  This will result the delay time of 6 for 

each flow. 

 

Figure 3.1(c) shows the result of another possible routing that takes node delay 

time into account.  One traffic flow will pass node D, instead of node E.  The delay 

time is then 5 for each flow.   
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Figure 3.1: Reducing total delay time by considering node delay in routing. 

(a) an example network, (b) routing result without node delay consideration, and 

(c) routing result with node delay consideration. 

 

 

Source Destination Volume 

A F 1 

B G 1 

C H 1 

Source Destination Path Delay 

A F AEF 6 

B G BEG 6 

C H CEH 6 

Source Dest. Path Delay 

A F ADF 5 

B G BEG 5 

C H CEH 5 

Request Traffic Demand 

Path Table 

Path Table 
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Above example shows that, for high-speed networks, a routing algorithm that 

takes node delay time into account may obtain a better result as compared to the 

traditional routing algorithms that consider link delay time only. 

 

3.2 Routing Problem Model 

 

Given a directed graph G(V, E), with |V| nodes and |E| links, the propagation 

delay time and bandwidth of each link, and the processing capacity of each node, the 

problem is to find a set of paths for a given set of traffic demands such that the total 

delay time is minimized.  Given and derived parameters are listed in Table 3.1 and 

3.2 respectively. 

 

3.2.1 Traffic Model 

 

Most traditional algorithms for graph related problems assume the weights of 

links are all fixed constants.  However, the delay time occurred in the components of 

a real network really depends on the stochastic behavior of the traffic and routing 

process.  In reality, it is extremely difficult to solve a routing problem that takes 

stochastic behavior into account.  Therefore, we take a compromised approach by 

relaxing the stochastic property of traffic and routing process as follows.   

 

To reduce the stochastic behavior, we assume all traffics are of Constant Bit Rate 

(CBR) type and all resources (processing and link bandwidth) are proportionally 

shared by all traffic flows passing through.  In this way, the load of each resource 
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can be computed based on the total amount of traffics passing through that resource. 

 

Although this is a compromised model, it is more realistic as compared to the 

traditional fixed weight model.  We hope it is a good approximation of a real 

network.   

 

G(V,E)  a directed graph, G, containing |V| nodes and |E| directed links; V 

denotes the set of all nodes, and E denotes the set of all links 

vi   a node; vi V 

ek a directed link ek = ( vx ,vy ) E , vx is the start node, vy is the end 

node of link ek.; also denoted as exy 

λij traffic requests volume from vi to vj   

Λk traffic requests volume from vk to all other nodes.  Λk={λki ,| 

i=1,…,|v|}  

Λ set ofλij ,Λ={λij ,  |vi, vjV}   

D allowable delay time of a packet transmitted from a source node to a 

destination node   

b(ek) bandwidth of link ek 

t(ek) propagation delay of link ek 

p(vk) processing capacity of node vk 

 

Table 3.1: Notation of Input Parameters. 
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Mk 
||

1

V

ki , summation of requested traffics starting from node vk; the 

traffic volume of |Λk| 

)(n

kS  the selected routing path set(slice) of iteration n, corresponding to 

the request Λk 

P
(n)

 the selected routing path set(pasta) of iteration n, set of )(n

kS .  P
(n)

 

= { )(n

kS  | k=1,…,|V|} 

μh volume of traffics passing through link eh, starting from vx, and 

ending at vy, also denoted asμxy   

σk volume of traffic passing trough node vk 

U set of μh , U={μh } 

φij the path for λij, selected by the routing algorithm; 

φij=vi,eii+1,vi+1,ei+1 i+2,…,ej-1j,vj 

Ф  set of φij  

d(vk)  delay time caused by node vk  

d(eh) delay time caused by link eh 

d(φij) total delay time along path set φij, 



ijij ve

ij vdedd


 )()()(  

 

3.2.3 Objective Function 

 

For a given traffic pattern and a network, the problem is set to find a set of 

routing paths for the requested traffic demand, with the delay time of each traffic flow 

bounded to D, such that the total delay time is minimized:  

Table 3.2: Notation of Derived Parameters and Routing Results. 



 34 

,)(min



ij

ijd




 

Find Ф 

 

s.t.   ijij Dd  ,)( .                                            (3-7) 

 

The delay bound of each traffic flow, D, could be variant without incurring a 

significant impact to the model. 

 

In E.q.3-7, d(φij) is the total delay time for a traffic flow; it is an accumulation 

of the delay time on all links and nodes along all the selected paths.   

 

The problem can be reduced to a 0-1 knapsack problem; therefore it is a 

NP-Hard problem, and we do not expect to find a polynomial-time optimal algorithm 

for it.  Instead, we designed a heuristic algorithm to find sub-optimal solutions.   

 

Furthermore, both objective and constraints are not simple functions of given 

parameters (delay time).  Instead, they are result dependent variables.  This makes 

the problem much more complicated. 

 

3.3 Iterative Solution Approach 

 

Because delay times of nodes and links are not constant, and are dependent on 

the traffic passing through that node or link, traditional algorithms are not appropriate 

to solve the problem.  Therefore, we choose to use iterative approach.  In an 

iteration, the delay time of all network components can be fixed and computed based 
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on the result obtained in the previous iteration.  Initially, the delay time of all 

nodes(links) are set to zero and propagation delay time respectively to compute the 

input for next iteration. 

 

For convenience, the result obtained in an iteration is called a pasta.  In each 

iteration, the problem is still too complicated to solve.  Thus, we divide the problem 

into some number of sub-problems, and solve each of them incrementally.  

Theoretically, each routing solution (pasta) can be divided into a number of single 

root flow trees, named a slice.  In such a tree, the root node is any node and the tree 

presents the flows generated from that root node and are forwarded to all other nodes.  

In each incremental step within an iteration, a new single root flow tree is recomputed 

to replace the old one rooted at the same node and was computed in the previous 

iteration.   

 

After some number of iterations, hopefully, the delay time of each network 

component will be stabilized, and the routing solution obtained will be a good 

solution.  When the results obtained in two consecutive iterations are close enough 

or the number of iterations exceeds a given number, the process stops.   

 

3.3.1 Intra Iteration Procedures  

 

Theoretically, if each of |Λ| requested flows travel along only one path, there are 

|Λ | corresponding paths needed.  However, it is not necessary to solve an 

independent routing problem for each of the |Λ| requests.  Instead, we group all 

those requests started from the same node, says vk, into a subset; then solve the 
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sub-problem as a single-source shortest path routing problem.  If we solve the 

sub-problem using an algorithm similar to Dijkstra's, we can obtain a single root flow 

tree (slice) rooted from vk.  A pasta, the result of an iteration, is recomputed 

incrementally slice by slice.  In each incremental step, a slice corresponding to a 

request set |Λk| is removed from the pasta; the delay time of all network components 

is then estimated based on the remaining of the pasta.; a new slice for |Λk| is then 

computed, and is superimposed back to the pasta.  A pasta is actually the 

superposition of all slices obtained in an iteration.  The iterative procedure is 

summarized in the followings.  We denote the result (pasta) obtained in the n-th 

iteration as P
(n)

.  A single root path tree (slice) corresponding to the Λk in the n-th 

iteration is denoted as )(n

kS , and }{ )()(

2

)(

1

)( n

k

nnn SSSP  , where ⊕ denotes a 

superposition. 

 

 (I) Initial condition 

 for all nodes and links, σ=0, μ=0, d(v)=0, d(e)=t(e); 

 )0(

1S = )0(

2S = )0(

3S ,…, = )0(

||VS ={};  //empty set 

 
)0(P = )0(

1S ⊕ )0(

2S ⊕ … )0(

||VS ; 

//⊕ denotes superimposing a traffic flow tree into a pasta 

//Θ denotes removing a single root flow tree from a pasta  

 

(II) First iteration  

  
)1(P ={}; 

route Λ1 based on (
)0(P Θ )0(

1S ), to obtain )1(

1S ; 

 
)1(P =

)1(P ⊕ )1(

1S ; 
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routeΛ2 based on ( )0(P Θ )0(

1S Θ )0(

2S ⊕ )1(

1S ), to obtain )1(

2S ; 

)1(P = )1(P ⊕ )1(

2S ; 

‧ 

‧ 

‧ 

routeΛ|V| based on ( )0(P Θ )0(

1S …Θ )0(

||VS ⊕ …⊕ )1(

1|| VS ), to obtain )0(

||VS ; 

 )1(P = )1(P ⊕ )1(

||VS ; 

(III) On the k-th iteration: 

)(kS ={}; 

for j←1 to |V| 

{ 

routeΛj based on (
)1( kP Θ… )1(

2

kS …Θ )1( k

jS ⊕… ⊕ )(

1

k

jS  ), to obtain )(k

jS ; 

)(kP =
)(kP ⊕ )(k

jS ; 

} 

( IV ) Termination Conditions 

 when 
)1()(  MM PP  or number of iteration >|Λ|, terminate; 

 

3.3.2 Termination Conditions 

 

Termination is triggered in these two conditions: when average path delay of two 

consecutive iteration are close within the predetermined value ε; or the number of 

iterations is greater than the number of sets, |Λ|.  In the first condition, ε is 
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defined as the difference of two consecutive iteration divided to the total path delay 

time of previous iteration. εis defined in Eq. 3-8: 

 

)(

1

)( ,
)(

])()([ n

klm

n

kij
ij

lmij
SS

d

dd






 





 .              (3-8) 

 

On the other hand, we terminate the iteration process after |Λ| PASTAs(result of 

an iteration) are computed.  

 

3.3.3 Estimation of Path Delay Time 

 

The delay time of a path is the accumulation of the delay time occurred on all 

network components along that path, the delay time of path φij , d(φij), consists of the 

delay time on all nodes and links in a path, which is d(vi)+d(ei i+1)+d(vi+1)+d(ei+1 

i+2)+ … +d(ej-1 j)+d(vj).   

 

μh and σk, are defined as the total volume of traffic flows passing through a 

link eh and a node vk, respectively in E.q. 3-1, and 3-2:  

 








ijh

ij

e

ij




h , and                                                (3-1) 











jk

ijk

ij

vv

v

ijk




 .                                                   (3-2) 
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3.3.3.1 Estimation of Link Delay Time 

 

d(eh) is the delay time of a flow of packets passing through link ek, including 

transmission delay and propagation delay.  The propagation delay t(eh) is a given 

constant, determined by the distance and the type of transmitting media, e.g.  fiber or 

satellite.  μh is the total flows passing through eh.  As mentioned in Section 3.2.1, 

we assume every traffic flow is a CBR and the bandwidth of a link is shared by all the 

traffic flows passing through that link.  The queuing delay on the link, thus, can be 

ignored.  Therefore, the transmission time of a link for a flow is approximately the 

total traffic flows divided by the bandwidth of that link, as shown in E.q. 3-3.   

 

The transmission delay time of link eh is then  

)(/)()(/ h

e

ijhh ebeb

ijh

ij











 .                                      (3-3) 

 

After adding the propagation delay time, the delay time for a flow of traffic 

passing through a link is then 

 

)()(/)()()(/)( hh

e

ijhhhh etebetebed

ijh

ij

 







 .                    (3-4) 

 

Notice that the delay time of a link, d(eh), is independent of the size of the flow 

passing that link.  All traffic flows passing a link are delayed by the same amount of 

time. 
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3.3.3.2 Estimation of Node Delay Time 

 

d(vk) is the delay time caused by a node, vk.  Again, to simplify the delay time 

model, we assume all traffic flows passing a node are processed in each node in 

time-sharing fashion, such that the d(vk) can be estimated as the total volume of 

traffics divided by the processing capacity of that node, as shown in E.q. 3-5:   

 

d(vk)= )(/)()(/ k

vv

v

ijkk vpvp

jk

ijk

ij














 .                                (3-5) 

 

Thus, the delay time of a path φij is  

 





ijkijh

v

k

e

hij vdedd


 )()()( .                                    (3-6) 

 

Each node and the traffics passing through that node can be treated as a closed 

network, which does not generate or absolve traffics, as shown in Figure 3.2. 

 

 

 

 

 

 

 

Figure 3.2: Outgoing traffic equals to incoming traffic in a closed network. 
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3.3.4 Node Delay to Link Delay Conversion 

 

We need an efficient algorithm to solve a single-source shortest path routing 

problem to obtain a slice.  Unfortunately, current shortest path algorithms all assume 

zero weight on nodes such that they are not adequate for this problem even though the 

delay time of network components are all constant within each iteration.   

 

There are two approaches to solve this problem.  The first one is to develop a 

new algorithm that considers both node and link delay together; the second one is to 

convert node delays into link delays, and then apply a conventional shortest path 

algorithm to solve this problem.  Because to develop a new algorithm that considers 

node and link delays together may take much time, we choose the second approach 

such that we can solve this problem using existing shortest path algorithms.   

 

Dijkstra and Bellman-Ford are two famous algorithms for the shortest path 

problem.  Both algorithms only take link delay time into consideration.  Dijkstra’s 

is centralized while Bell-Ford’s is distributed.  Because we are designing a 

centralized algorithm, we choose to use Dijkstra shortest path algorithm. 

 

We show how to convert the node weight into link weight.  The transformed 

graph will be equivalent to the given graph in the sense of path delay time. 

 

The delay time of a node is computed based on E.q. 3-5 in Section 3.2.2.2, where 

the total traffic passing through a node is obtained by the summation of its outgoing 

traffic flows.  Node delay time is added to propagation delay time of each incoming 
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link.  By doing so, we obtain another graph that has weights on its links only and is 

equivalent to the original graph with respect to the path delay time, as shown in the 

remaining of this section.   

 

Given a node with a weight of m, who has two incoming links of weight w1 and 

w2, as well as two outgoing links of weight w3 and w4, as shown in Figure 3.3(a).  

We can transform the graph by connecting the incoming links to the outgoing links, 

with four internal links of weight m.  When a traffic flow passes this node, no matter 

which incoming link it comes from or which outgoing link it selects to leave, it should 

suffer from the delay caused by a delay time (weight) of m, as shown in Figure 3.3(b)  

 

Consider a traffic flow passing through the node, the total weight sum is either 

w1 + m+w3, w1 + m+w4, or w2+m+w4, w2 + m+w3.  Since weight m appears in all 

possible paths, it can be treated as a common link, where the incoming and outgoing 

links connect.  This is shown in Figure 3.3(c).  Finally, we shift the node weight (m) 

to incoming links.  The weights of incoming links are then changed to w1+m and 

w2+m respectively.  The node is then transformed into Figure 3.3(d), where the 

weight of node is shifted to links.  The minimum weight paths can be obtained by 

applying the original Dijkstra’s shortest path algorithm. 
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Figure 3.3: Transformation of node delay to link delay. 

(a) a node in original graph, 

(b) have new links from cross connecting the incoming and outgoing 

links, 

(c) use a single link to present, since any path suffer the same m, and 

(d) shift m to the each of the incoming links.   

 

 

 

3.4 KLONE Algorithm 

 

KLONE algorithm is an abbreviation of ―Kenex aLgorithm Obtaining 

Node-delay Estimation‖.  In KLONE, we compute slices, and we compose each 

consecutive |Λ| slices into a pasta. Traffic volume on each node and link are 

estimated within a pasta. and A slice is computed with fixed amount of traffic on links 

and nodes. The estimation of node and link delay is introduced in Section 3.2.2.2 and 
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we modify the update method in Dijkstra’s shortest path algorithm, to Eq. 3-9: 

when each routing path started from different node is chosen once, and propose 

temporal nodes and links delays to precede the next pasta.  While pasta computing is 

being processed, we estimate the influence caused by traffic initiating from previous 

node and convert the nodes delays into links delays.  Therefore, we can apply 

Dijkstra’s shortest path algorithm to find a shortest path tree for current target node.  

When all nodes are visited once in a slice, we say a slice is computed.  With the 

computation of every slice, we have a set of paths to be the result set, and we hope it 

could be closer to the optimal solution iteration by iteration.  We take it as a process 

of making a statue by clay.  Each time the slice creates, like we shape the statue to be 

closer to the result we expect.  The slice creation (statue making process) will be 

terminated when the results converge.   

 

3.4.2 Pseudo Codes 

  

KLONE(G,Λ) 

{ 

for k = 1 to |V| 

{ 

)(kP  ← NIL; 

for j ← 1 to |V| 

 { 

P.tmp ←
)1( kP Θ )1(

1

kS … Θ )1( k

jS , and ⊕ )(

1

kS ⊕ )(

2

kS ⊕… ⊕ )(

1

k

jS  ; 

   U←TVC(P.tmp, Λj); //traffics volume calculation on nodes and links,  

        //P.tmp contains the propositional traffics on network,   

     //while Λj is the new incoming traffic  
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 G.tmp← NLC(U); //Node-Link Conversion, get weight of each link 

   Dijkstra.shortest.path(G.tmp, vj); // get shortest path tree )(k

jS ; 

  )(kP ← }{)( k

j

k SP  ; 

 } 

 if )()1( kk PP    

return )(kS ; 

} 

return 
|)(|VS ; 

} 

 

 

TVC(S, Λi , G) // Traffic Volume Calculation 

{ 

for all λij in Λi  

 Get φij (corresponding to λij) from S; 

 Add λij to all nodes and links that composeφij, get σ-s and μ-s of all nodes 

and links; 

   Get and μ-s;  

return; 

} 

 

Dijkstra.shortest.path(G, Λk) 

{ 

Initialized.Single.Source(G, k) 

S <-- NIL; 

Q <-- All vertex in G; 

predecessors← NIL; 
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while Q is not NIL 

      do vx <-- Extract-Min(Q); 

              S <-- S union {vx}; 

              for each vertex vy <-- Adj[vx] 

                      do relax(vx,vy,U) // δ-s and μ-s are stored in G; 

return predecessors; //return the shortest path tree;   

} 

 

Initialize-Single-Source(G, s) 

{ 

for each vertex vk <-- V[G] 

      do distance[vk] <-- unlimited; //d[vk]: the distance from vs to vk; 

         predessors[vk] <-- NUL; 

 distance[vk] <-- 0; 

} 

 

 

Relax(x,y,G) 

{ 

 if  distance[y] > distance[x]+ Weight(vx,vy)  

     then distance[v]← distance[u] + Weight(vx,vy); 

      predecessors[v] ← u; 

} 

 

Node-Link Conversion(U, Λk) 
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for all links exy in U 

{ 

Weight(vx,vy)=d(exy)+d(vy)=(μx+Mk )/b(ex)+t(ex)+(σy+Mk)/p(vy); 

} 

 

3.4.3 Complexity Analysis 

 

 KLONE algorithm groups the |Λ| traffic requests into |V| sets each set is 

corresponding to one shortest path tree.  The shortest path algorithm we apply is the 

Dijkstra’s shorstest path algorithm, so the time complexity of this part is N
2 ㏒ N.  

Within an iteration (pasta), we create |V| path trees (slice), so it takes N*N
2 ㏒ N = N

3

㏒ N.  And at most we repeat |V| iterations, the time complexity will be bounded 

under N*N
3 ㏒ N=N

4 ㏒ N in worst case.  On the other hand, in the intensive 

evaluation process in Chapter 4, we know the complexity could be 2*N
3 ㏒ N, that is , 

O(N
3 ㏒ N) in general cases.  

 

3.5 Summary 

 

The influence of considering nodes delay in a delay sensitive routing is 

illustrated in Section 3.1.  We modeled the routing problem into a flow-based routing 

problem and proposed KLONE algorithm to solve the variable nodes and links delay 

time problem iteratively.  In Section 3.2 and 3.3, the detail of KLONE algorithm is 

explained.  And then we analyzed the time complexity and found that it could run at 

O(N
3 ㏒), as shown in Section 3.4.  We will evaluate the performance of KLONE 
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algorithm and OSPF algorithm in Chapter 4. 
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Chapter 4 

Performance Evaluation 

 

We used numerical simulation to evaluate KLONE algorithm including its 

convergence, average path delay time, and goodput ratio.  We demonstrate that node 

delay time in time sensitive packet routing for high-speed packet-switching network is 

important by comparing our algorithm with the traditional OSPF routing algorithm.   

 

4.1 Performance Evaluation Metrics 

 

The followings are performance evaluation metrics: 

1. Convergence speed: evaluated by two different values: the number of 

iterations when the convergence occurs divided by the total number of nodes.  

and the total number of slices when the convergence occurs divided by the 

total number of nodes.   

2. Average path delay time: the average time for a unit of request traffic passing 

through the network. 

3. Goodput ratio: The ratio of satisfied traffic requests. 
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4.1.1 Convergence of KLONE Algorithm 

 

Since KLONE algorithm is an iterative algorithm, we first evaluated its 

convergence speed, and observed its behaviors within the iteration process.  The 

convergence of KLONE algorithm occurs when the average path delay time, which 

will be defined later, of two consecutive PASTAs(result of an iteration in KLONE 

algorithm) differ by a predefined value, ε.  The convergence speed is evaluated by 

K1/N and K2/N, where the convergence occurs at the K1-th iteration and the K2-th slice 

and N is the number of nodes respectively.   

 

4.1.2 Performance of KLONE Algorithm 

 

We compared the performance of KLONE and OSPF, in terms of average path 

delay time and goodput ratio.   

 

4.1.2.1 Average Path Delay Time 

 

Both algorithms select paths for the test instances, and in each evaluation process, 

we forced all traffic pass through the paths selected by either KLONE or OSPF 

routing algorithm.  The delay time of each path is computed by accumulating the 

delay time on all links and all nodes composing that path.  Finally, the average path 

delay time is computed by the summation of the size of a traffic multiplied by the 

delay time on the selected path and then divided by the size of total traffic, as 
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4.1.2.2.  Goodput Ratio 

 

Goodput is defined as the total satisfied traffic requests that can find a 

corresponding path with a delay time less than the given upper bound.  Goodput 

ratio is defined as L/|Λ| where L is the number of goodput and |Λ| is the number of 

request traffics.  The higher the ratio is, the better the routing algorithm will be.  In 

general, larger delay bound, D, allows higher goodput ratio under the same routing 

algorithm. 

 

4.2 Design of Experiments 

 

We compared KLONE algorithm and OSPF algorithm in 64,000 different test 

instances, in the combinations of different number of nodes, network connectivity 

ratio, and different link bandwidth/processing capacity ratio.  This section explains 

the experiments we conducted. 

 

4.2.1 Test Instance Generation 

 

Test instances include random networks and random traffic.  The parameters of 

a network instance include number of nodes, link bandwidth, connectivity, link 

propagation delay time, and node processing capacity.  The parameters of a request 
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traffic instance include the traffic requests and the delay bound, D.   

 

4.2.1.1 Network Instances 

 

The range of link bandwidth was set from 0 to 400 Gbps, and propagation delays 

stayed below 20 ms.  Number of nodes was set from 10 to 100 with a processing 

capacity in the range of Gbps.  Connectivity is defined as 
)1(* NN

P , where P is 

the number of links, and N is the number of nodes.  The range of connectivity was 

set from 0 to 100 percents.  The BP ratio is defined as b(e)/p(v), where b(e) is the 

link bandwidth and p(v) is the node processing capacity and we varied it from 1/300 

to 1/1. 

 

4.2.1.2 Traffic Request Instances 

 

The traffic coming into an edge node is assumed in an aggregated form.  For a 

graph of N nodes, there are N*(N-1) requests, one from each node to every other node.  

The upper bound of delay time of all paths is set to D and D varies from 100 to 2000 

ms. 
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4.2.2 Experiments 

 

The followings are the experiments we conducted: 

 Experiment Exp-1 is to evaluate the convergence in two aspects, the speed 

of convergence and the behavior within the iteration process. 

 Experiment Exp-2 is to evaluate how the connectivity affects the 

performance of KLONE algorithm. 

 Experiment Exp-3 is to evaluate how the BP ratio affects the performance of 

KLONE algorithm. 

 Experiment Exp-4 is to evaluate how the number of nodes affects the 

performance of KLONE algorithm. 

They are summarized in Table 4.2.   

 

 

Table 4.1: Parameters and Ranges for Test Instances. 

Parameters Range of values 

number of nodes 10,20, … , 100 

link bandwidth 0~400 Gbps 

node connectivity 40%, 60%, 80%, 100% 

link propagation delay time 1~20 ms 

node processing capacity 0~400 Gbps 

traffic requests 0~1000 Mbps 

delay bound (D) 100~2000 ms 
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Experiments Objective 

Exp-1: Convergence Test (a) Observing the speed of convergence 

(b) Studying the behaviors within the 

convergence process 

Exp-2: Sensitivity to connectivity Observing the performance using two metrics: 

(a) average path delay time, and  

(b) goodput ratio. 

 

Exp-3: Sensitivity to BP Ratio 

Exp-4: Sensitivity to number of 

nodes  

  

4.3 Experiments and Results 

 

 The experiments and results will be presented in this section.  Due to the limit 

of the space, only few portions of the figures are shown.  Most of the figures shown 

in this section are for the networks of size 50.  Other parameters will be specified in 

the figures. 

 

4.3.1 Exp-1: Convergence Test 

 

 The first experiment is to evaluate the convergence.  We studied the 

convergence speed and the behavior within the iteration process. 

 

4.3.1.1 Convergence Speed 

 

We adjusted the following three parameters in the experiment to study their 

impact to the convergence speed: the BP ratio, the number of nodes and the 

connectivity.  The connectivity is defined as 
)1(* NN

P , where P is the number 

Table 4.2: List of Experiments. 
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of links, and N is the number of nodes.  Figure 4.3(a) and (b) show that neither BP 

ratio nor the number of nodes has any impact to the convergence speed.  On the 

other hand, we found that the convergence speed is dependent on the connectivity.  

This may be caused by two different reasons.  First, higher connectivity may make a 

request easier to find a very good satisfied path, and then there is a higher opportunity 

to choose the same path in the succeeding iteration, as shown in Figure 4.3 (c).  On 

the other hand, lower connectivity may make a request having fewer paths to choose, 

so that the solution domain is much smaller and thus the convergence speed is faster.  

The dependency between εvalue and the convergence speed is shown in Figure 4.1 

(d). 
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Converge speed at different epislon value
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Figure 4.1: Relationship between the convergence speed and the performance metrics. 

     (a) BP ratio , (b) number of nodes, (c) connectivity, and (d) ε value. 

 

 

4.3.1.2 Behaviors within Iteration Process 

 

In addition to the understanding of the convergence speed of KLONE algorithm, 

we also have to study the behavior within its iteration process.   

 

In more than 90% of the test instances, we found that the lines of both average 

path delay time and goodput ratio become smooth after the K1=2/N and K2=2.  

Figure 4.2(a) and (b) shows the average path delay time and the goodput ratio at the 

convergence point K1.  The convergence occurs at the second iteration.  On the 

other hand, Figure 4.2(c) and (d) shows that K2 occurs at 2N-th iteration. 

 

(d)  
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Goodput ratio within iteration process
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Goodput ratio with iteration process
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Figure 4.2: KLONE behaviors within iteration processes. 

(a) the goodput ratio and (b) the average path delay time at K1, and 

(c) the goodput ratio and (d) the average path delay time at K2. 

 

4.3.2  Exp-2: Sensitivity to Connectivity 

 

Intuitively, higher connectivity implies more available path between nodes.  But, 

how does connectivity influence KLONE algorithm? We studied the dependency 

between the connectivity and the two performance metrics: average path delay time 

and goodput ratio.  We varied connectivity from 0% to 100% to see how average 

path delay time and goodput ratio are influenced.   

 

4.3.2.1 Connectivity and Average Path Delay Time 

 

Higher connectivity implies more available paths and more bandwidth within the 

network.  We found that, at the same number of nodes, the average path delay time 

(d) 
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becomes smaller as the connectivity increases, as shown in Figure 4.3.  We 

compared the average path delay in KLONE algorithm and in OSPF algorithm.  The 

average path delay time improvement is defined as (T2-T1)/T2, where T2 is the average 

path delay time of OSPF algorithm, and T1 is of KLONE algorithm.  The larger the 

value, the better KLONE algorithm.   
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Figure 4.3: Relationship between connectivity and improvement  

in average path delay time. 

 

 

4.3.2.2 Connectivity and Goodput Ratio 

 

In Figure 4.4, we show that at higher connectivity, KLONE algorithm has a 

higher goodput ratio than OSPF algorithm.   
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Improvement in goodput ratio at different connectivity
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Figure 4.4: Relationship between delay bound and goodput ratio. 

 

4.3.3 Exp-3: Sensitivity to BP Ratio 

 

We varied the BP ratio from 1/300 to 1 to see the dependency between the BP 

ratio and the two performance metrics. 

 

4.3.3.1 BP ratio and Average Path Delay Time 

 

We found that when the BP ratio increases, the improvement of average path 

delay time increases, as shown in Figure 4.5.  This is consistent with our hypothesis 

that when the speed of links increases, an algorithm that concerns both link and node 

delay times might have a better performance than OSPF, which only concerns links 

delay times. 
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Figure 4.5: Relationship between BP ratio and average path delay time. 

 

4.3.3.2 BP Ratio and Goodput Ratio 

 

We also compared the goodput ratio of KLONE algorithm and OSPF algorithm.  

And we found that at different BP ratios, goodput ratio in KLONE algorithm usually 

gets better than OSPF algorithm, as shown in Figure 4.6. 
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Figure 4.6: Relationship between BP ratio and goodput improvement.  
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4.3.4 Exp-4: Sensitivity to Number of Nodes 

 

The number of nodes is varied from 20 to 70 in this experiment to see how it 

affects the performance. 

 

4.3.4.1 Number of Nodes and Average Path Delay Time 

 

This experiment studies the dependency between the number of nodes and the 

delay time improvement.  The performance improvement, which is defined in 

Section 4.3.2.1, is shown in Figure 4.7, in which the connectivity is 20%.  The 

improvement increases as the number of nodes increases. 
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Figure 4.7: Relationship between the improvement in the average  

path delay time and the number of nodes. 

 

4.3.4.2 Number of Nodes and Goodput Ratio  

 

Increasing the number of nodes will increase the goodput ratio at same delay 

bound, D.  We study the differece in goodput ratio between KLONE algorithm and 
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OSPF algorithm, as shown in Figure 4.8.  At different number of nodes, KLONE 

algorithm has a better goodput ratio than OSPF algorithm.   
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Figure 4.8: Relationship between number of node and goodput ratio. 

 

4.3.5 Comparison with The Optimal Solution 

 

In order to estimate the absolute performance of KLONE algorithm, we made a 

comparison between OSPF algorithm, KLONE algorithm and the optimal solution in 

a very small scale test instance, as shown in Figure 4.9, where the number of nodes is 

set to 10, connectivity is set to 20%, BP ratio is at 1/10.  Figure 4.9 shows the 

comparison in the average path delay time.  This toy-type study may not be a good 

representation of any algorithm.  However, it still gives us a sense to the distance 

between KLONE algorithm and the optimal solution.   
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Figure 4.9: Comparison with the optimal solution:  

(a) average path delay time, and (b) goodput ratio. 

 

4.3.6 Weakness of KLONE Algorithm 

 

(a) 

(b) 
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4.3.6.1 The Complexity 

 

 The complexity is a weakness of KLONE algorithm.  The time complexity of 

KLONE algorithm is O(N
3 ㏒ N), while it may be not good enough for general use. 

 

4.3.6.2 The Exceptions in Low Delay Bound 

 

In the comparison of goodput ratio at different delay bound D, KLONE 

algorithm is generally better than OSPF algorithm.  However, at some special range, 

such as small D, OSPF algorithm may have a better performance.  It may be caused 

by that OSPF algorithm may gather up traffics on some specific links and nodes.  

The rest of traffics could be delivered on links and nodes those are slightly loaded and 

so they could be delivered within short delay time.  However, when considering 

about the all paths delay time, OSPF algorithm is outperformed by KLONE algorithm.  

This s shown in Figure 4.10 in which the number of nodes is 30, the connectivity is 

60%, and the BP ratio is 1/5.  In such instances, OSPF algorithm performs better 

than KLONE algorithm. 
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4.4 Analysis and Conclusion 

 

 The Exp-1, convergence test, shows us KLONE algorithm gets advances from 

the iteration process.  Furthermore, the Exp-2, Exp-3, and Exp-4 shows us that the 

performance improvement between KLONE algorithm and OSPF algorithm is 

influenced by the two parameters, connectivity and BP ratio.  And the comparison 

with the optimal solution shows that the performance of KLONE algorithm is 

between the optimal solution and OSPF algorithm.

Figure 4.10: An example of KLONE weakness in low delay bound 

(a) goodput ratio curve and (b) difference in goodput. 

(b) 
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Chapter 5 

Concluding Remark and Future Work 

With the intensive testing instances, we demonstrated the importance of the nodes 

delay in the routing path for high-speed packet-switching networks.  We 

hypothesized that an routing algorithm considering both the nodes and links delay 

time could have a better performance than that only considers with links delay time in 

delay sensitive services.  We developed a flow-based routing algorithm, KLONE 

algorithm, which considers both link delay time and node delay time.  In our 

intensive evaluation, KLONE algorithm could outperform OSPF algorithm which 

only considers link delay time.  The results of the experiments show that KLONE 

algorithm could have a better performance than OSPF algorithm in most cases, with 

only a few exceptions.  Our hypothesis that considering with node delay is important 

in high-speed packet-switching network is thus demonstrated. 

 

This algorithm still has some weak points.  First, KLONE algorithm may have 

worse goodput than OSPF algorithm when the delay bound is very low.  Secondly, it 

does not support multi-paths routing for the same traffic stream yet.  On the other 

hand, there are some future works to be done.  For example, the estimation of traffic 

delay time may be not precise because the under layers, MAC, and PHY, might have 

various approaches to transmit data.  Different transmission methods may result in 

different delay time.  Furthermore, KLONE algorithm is a centralized algorithm.  If 
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we want to apply it onto real networks, we need to develop a distributed version in the 

future.  The traffic model should also estimated in different type, such as from CBR 

to VBR, and it should be able to deal with difference priorities. 
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