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My original expertise is Semantic Web for privacy protection
in the Cloud.

Here, we are exploiting the structured machine learning for big
data analytics.

. We hope this might be helpful for the security intrusion

detection problem.

. So we intend to apply the structured machine learning for

intelligent security and other domains.
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My original expertise is Semantic Web for privacy protection

in the Cloud.

2. Here, we are exploiting the structured machine learning for big
data analytics.

3. We hope this might be helpful for the security intrusion

detection problem.
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How to apply the structured machine learning for big data?

. Why collecting the security big datasets is hard?
. What is the big data analytics lifecycle for intelligent security?

How do we extract the security features to model, classify,
and detect the malicious (or outlier) behaviors?

. Which modelling and analytics paradigms for recognizing

intrusion patterns?

. What are the possible core technologies?

» Knowledge representation and discovery (or query)?

Machine learning algorithms?

How to combine structured knowledge with machine learning?
Which big data analytics platform? Spark vs. Hadoop
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Which modelling and analytics paradigms for recognizing
intrusion patterns?
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How do we extract the security features to model, classify,
and detect the malicious (or outlier) behaviors?
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Which modelling and analytics paradigms for recognizing
intrusion patterns?
6. What are the possible core technologies?

» Knowledge representation and discovery (or query)?

Machine learning algorithms?

How to combine structured knowledge with machine learning?
Which big data analytics platform? Spark vs. Hadoop .
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Machine learning algorithms in inductive reasoning

Logic programming in deductive reasoning

Inductive with deductive reasoning? e.g. (probabilistic)
inductive logic programming (ILP), statistical relational
learning (SRL), structured machine learning.

. Composite Big Data Analytics and Modelling (CBDAM)
. Establishing CBDAM framework on Spark.
. Verifying CBDAM for intelligent security and other domains.
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Big Data 6-Dimension Taxonomy

Security & Compute
Privacy Infrastructure

Visualization Storage
Infrastructure

Analytics

—Big Data Taxonomy, Big Data Working Group, CSA, Sep. 2014
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Possible Data Domains for Analytics

Intrustion
Detection

Sentiment
ELELNER

Social graphs
Visual media
Scene analysis

Bi Image/audi
I
g Data domains Sensor data understanding
Data
Retail Anomaly
detection
Behavioral
analysis
ance
High frequency
science
h energy
physics

—Big Data Taxonomy, Big Data Working Group, CSA, Sep. 2014
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Mapping the Big Data Verticals

VISUAL MEDIA
(Video scene detection, image understanding)

NETWORK SECURITY
(Intrusion detection, APTs, malware, virus
attacks)

SENSOR DATA
(Intrusion detection, long term trends,
weather)

RUCTURED  UNSTRUCTURED

SEMI

SOCIAL NETWORKING
(Trend analysis, query processing)

a

= RETAIL

= (Sentiment analysis, behavior

Q -

=] LARGE SCALE SCIENCE analysis) FINANCIAL

= (High-frequency

= : e trading)
icinformatics) ading

—Big Data Taxonomy, Big Data Working Group, CSA, Sep. 2014 < @
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Big Data Computing Infrastructure

Hadoop
MapReduce

Bulk
Synchronous

Parallel .
i Giraph
Big Compute
Data infrastructure

Pregel

©»
£

Infosphere

S

Spark

—Big Data Taxonomy, Big Data Working Group, CSA, Sep. 2014 g/ @
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Spark in the Hadoop 2.0

Hbase PIG HIVE [Lucene
Column
Oriented

nosQL

database
MapReduce

File Data
Shark
(sQL)

Streaming
GraphX
MLlib

Mesos

VM

HDFS (Distributed File System)

O.

Hypervisor

Hardware

—Big Data Taxonomy, Big Data Working Group, CSA, Sep. 2014 < @
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Possible Machine Learning Algorithms

Big
Data

Regrssion

Supervised Classification

Clustering
Unsupervised
Dimenstionality
reduction
Maching
Learining
Algorithms

Semisupervised

Re-
enforcement

—Big Data Taxonomy, Big Data Working Group, CSA, Sep. 2014

Polynomial

MARS

Decision trees

Naive Bayes
Support
Vector
machines

K-means

Gaussian
Mixtures

Principle

Component
analysis

Active
Co-training
Markowv
Decision
process

Q-learning
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Machine Learning Flow Chart

No
Yes

>50
samples?

Predicting a
Category?

Do you have Predicting a

CLASSIFICATION abeled data?. quantity?

Just looking?

ST DIMENSIONALITY

—Big Data Taxonomy, Big Data Working Group, CSA, Sep. 2014 = @
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Security and Privacy Research Problems

frasturcture

Data privacy
Data
management

Integrity and

Big Security &
Data Privacy

Secure computations in
distributed programming

f

Security best practices for non-
relational data stores

y preserving data
ng and analyt

Enforced data
Secur

Granular access control

Secure data storage and
Transaction logs

Granular audits

Data provenance

End-point validation and
filtering

Real-time security
monitoring

—Big Data Taxonomy, Big Data Working Group, CSA, Sep. 2014 a
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Misuse Intrusion Detection

Network _ Pre-
Traffic Processors
Online
Offline
Training
Dataset
—J. Zhang, et al.,

Alerts
Detector ——mmm»
»
Patterns
Pattern
Builder

Random-Forests-Based Network Intrusion Detection Systems, Sep. 2008
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Misuse Intrusion Detection (Conti.)

v

Signature rule-based SIEM systems on misuse detection

v

Discovering attacks from intrusions known features

v

Low false positive rate but cannot detect new attacks

v

Zero-day and APTs are novel new attacks.

—J. Zhang, et al., Random-Forests-Based Network Intrusion Detection Systems, Sep. 2008
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Anomaly Intrusion Detection (Conti.)

Normal Instances

Rx
x, LN
X x
x Xx X 0 \‘
* oy /,Anomalies
- X X s
*ox
X
X
X .
o Xox .
.. Normal Class 2 )
(a) Multi-class Anomaly Detection (b) One-class Anomaly Detection

—V. Chandola, et al., Anomaly Detection: A Survey, ACM Computing Surveys, July 2009
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Anomaly Intrusion Detection (Conti.)

Network Pre- Pattem Outler
N Dataset = R Al
Trffic | | Processing Buding | | Detection

—J. Zhang, et al., Random-Forests-Based Network Intrusion Detection Systems, Sep. 2008
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Anomaly Intrusion Detection (Conti.)

» Identifying attacks with significant deviations from normal.
» Extracting features to represent normal activity is hard.

» Can detect new attacks, but a high false positive rate.

» Use attack free training datasets to learn.

» How about hybrid intrusion detection?

—J. Zhang, et al., Random-Forests-Based Network Intrusion Detection Systems, Sep. 2008
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Hybrid Intrusion Detection

Activities Misuse
———=>|  Detection
Component

Known attacks

IS

4

Uncertain
Items

Anomaly
Detection
Component

Unknown

attacks
—p

—J. Zhang, et al., Random-Forests-Based Network Intrusion Detection Systems, Sep. 2008
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Hybrid Intrusion Detection (Conti.)

Audited

Online Pre-

|
Packets I data
Network . Sensors
|

Detecting Database

Feature
Vectors

Misuse | Attacks Misuse
Detector Alarmer :

Processor [ intrusion
. Patterns
Online :
- _ L
Offline | Training —
- ntrusion
data Offline Pre-
P Pattern
rocessor Feature Builder
Vectors
v
Uncertain .
Anomaly Items Training
Database Database
Uncertain
It
R oy - = New
| Intrusions
i " Service Unknown
! Service Patterns Outlier Attacks Anomaly
| Pattern Detector Alarmer
. Builder Alarm
|
ly D C

—J. Zhang, et al., Random-Forests-Based Network Intrusion Detection Systems, Sep. 2008
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Hybrid Intrusion Detection (Conti.)

» How to combine misuse with anomaly intrusion detection?

» High performance online misuse detection engine runs with
offline anomaly system.

» How to extracting security features to model abnormal
signatures and normal behaviors?

» Possible network security features are packet size, IP addresses,
ports, header fields, time stamps, inter-arrival time, session duration,

session volume, etc.
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L ComposiTE Bic DATA ANALYTICS MODELLING

2. Cleaning and
Extracting

H

3. Aggregation and

Semantic

Annotation

H

RDF(S)

SPARQL

Dataset Processing Layer

Structured Knowledge

Modelling Layer

Optimize

Attack Behaviors

Machine Learning Analytics

Layer

Csoneca

Big Data Analytics Lifecycle for Intelligent Security

6. Reactive and
Proactive Actions




Composite Big Data Analytics and Modelling (CBDAM) (Conti.)
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(1) Dataset Processing Layer

FI1GUuRE: CBDAM Architecture
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Composite Big Data Analytics and Modelling (CBDAM) (Conti.)
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FIGURE: DAtaset Processing (DAP) layer
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Composite Big Data Analytics and Modelling (CBDAM) (Conti.)
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Composite Big Data Analytics and Modelling (CBDAM) (Conti.)
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FIGURE:  Machine Learning and Analytics (MLA) layer & (@
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Machine Learning with Perfect Domain Knowledge

Human-ages

Lmming-Eazes
machine lsarning

rul cenarstio

FIGURE: Security domain knowledge aids machine learning

—Joseph, D. A, et al. Machine Learning Methods for Computer Security. Dagstuhl Perspective Workshop, 2012.
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Machine Learning with Perfect Domain Knowledge (Conti.)

> Research issues and challenges:
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Machine Learning with Perfect Domain Knowledge (Conti.)

> Research issues and challenges:
1. What are the important features should be extracted from the
big datasets D and model the initial security domain
knowledge K to further learn the intrusion behaviors B?
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Machine Learning with Perfect Domain Knowledge (Conti.)

> Research issues and challenges:

1. What are the important features should be extracted from the
big datasets D and model the initial security domain
knowledge K to further learn the intrusion behaviors B?

2. What algorithms exist to learn the security target function
f(x) from training instances x; € D;, where D = D; U D,,,?
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Machine Learning with Perfect Domain Knowledge (Conti.)

> Research issues and challenges:

1. What are the important features should be extracted from the
big datasets D and model the initial security domain
knowledge K to further learn the intrusion behaviors B?

2. What algorithms exist to learn the security target function
f(x) from training instances x; € D;, where D = D; U D,,,?

3. How many training datasets D; are sufficient to offer an
acceptable target function f(x) to approximate the true
intrusion behaviors B;?
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Machine Learning with Perfect Domain Knowledge (Conti.)

> Research issues and challenges:

1. What are the important features should be extracted from the
big datasets D and model the initial security domain
knowledge K to further learn the intrusion behaviors B?

2. What algorithms exist to learn the security target function
f(x) from training instances x; € D;, where D = D; U D,,,?

3. How many training datasets D; are sufficient to offer an
acceptable target function f(x) to approximate the true
intrusion behaviors B;?

4. How to provide and use a minimum amount of labelled
training instances x; € D; to learn and classify the intrusion
behaviors correctly?
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> Research issues and challenges:
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Machine Learning with Perfect Domain Knowledge (Conti.)

> Research issues and challenges:

1. How the prior security domain knowledge K can guide the
generalization from the labelled instances x; € D, to correctly
predict the unknown instances x; using labelled training
instances x; € D; with noise?
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Machine Learning with Perfect Domain Knowledge (Conti.)

» Research issues and challenges:

1. How the prior security domain knowledge K can guide the
generalization from the labelled instances x; € D, to correctly
predict the unknown instances x; using labelled training
instances x; € D; with noise?

2. The learner is provided with a perfect security domain
knowledge K, to satisfy the correct and complete criteria.
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Machine Learning with Perfect Domain Knowledge (Conti.)

» Research issues and challenges:

1. How the prior security domain knowledge K can guide the
generalization from the labelled instances x; € D, to correctly
predict the unknown instances x; using labelled training
instances x; € D; with noise?

2. The learner is provided with a perfect security domain
knowledge K, to satisfy the correct and complete criteria.

3. What do you mean the learner has the correct and complete
intrusion detection criteria?
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Machine Learning with Perfect Domain Knowledge (Conti.)

> K, can be shown as a combination of ontologies O and rules
R to explain the labelled training instances D;.

—Tom M. Mitchell, Machine Learning, McGraw-Hill, 1997
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Machine Learning with Perfect Domain Knowledge (Conti.)

» K, can be shown as a combination of ontologies O and rules
R to explain the labelled training instances D;.

» The desired output is a hypothesis h € H consistent with the
labelled training instances x; € D; and the security domain
knowledge K, with acceptable detection capability for
unknown instances x; € D,,.

—Tom M. Mitchell, Machine Learning, McGraw-Hill, 1997
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Machine Learning with Perfect Domain Knowledge (Conti.)

» K, can be shown as a combination of ontologies O and rules
R to explain the labelled training instances D;.

» The desired output is a hypothesis h € H consistent with the
labelled training instances x; € D; and the security domain
knowledge K, with acceptable detection capability for
unknown instances x; € D,,.

» Why we need a perfect domain knowledge K, to model our
hypothesis h, € H?

—Tom M. Mitchell, Machine Learning, McGraw-Hill, 1997
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Machine Learning with Perfect Domain Knowledge (Conti.)

» K, can be shown as a combination of ontologies O and rules
R to explain the labelled training instances D;.

» The desired output is a hypothesis h € H consistent with the
labelled training instances x; € D; and the security domain
knowledge K, with acceptable detection capability for
unknown instances x; € D,,.

» Why we need a perfect domain knowledge K, to model our
hypothesis h, € H?

» However, a perfect domain knowledge K}, with sound and
complete criteria is hard to obtain.

—Tom M. Mitchell, Machine Learning, McGraw-Hill, 1997
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Machine Learning with Perfect Security Domain Knowledge (Conti.)

INDUCTIVE LEARNING SYSTEM (ILS)

ILS = (V < %3, (%) >€ D)(Kj A hp A xi) b £(x)

v

K;,: background knowledge for security

v

Dy: training datasets
A hypothesis h, € H

v

v

f: target function

v

f(x;): target value

» x;: the it training instance.

—Tom M. Mitchell, Machine Learning, McGraw-Hill, 1997
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Machine Learning with Perfect Domain Knowledge (Conti.)

DEDUCTIVE LEARNING SYSTEM (DLS)

(V < Xj, f(X,') > D/)(hp AXx; b f(X,))
DLS={ D/AK,Fh
(V < Xj, f(X,‘ >) S D/)(Kp AN X,') = f(X,')

v

K,: domain knowledge for security

v

Dy: training datasets
A hypothesis h, € H

v

v

f: target function

v

f(x;): target value

» x;: the it training instance.

—Tom M. Mitchell, Machine Learning, McGraw-Hill, 1997
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Machine Learning with imperfect Domain Knowledge (Conti.)

How about an imperfect domain knowledge Kj,?

THIS IS AN OPTIMIZATION PROBLEM
Minimize argmin,cy; ap, errorp, (h) + Bk, errork,, (h)
where

> ap, and 5K,—,,1 tunable parameters

> errorD,.p(h,-p): the ratio of instances misclassified by h;,

> errorKip(h,-p): the probability that h;, disagrees with Kj, on the
classification of an instance.

—Tom M. Mitchell, Machine Learning, McGraw-Hill, 1997
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Ontology Learning

ONTOLOGY REPRESENTATION

» What do you mean ontology?
» What ontology languages are available?

» How ontology can use security features to describe the
concepts of intrusions?

» Why we need SPARQL query in the ontology learning process?
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Ontology Learning (Conti.)

FEATURE EXTRACTION AND REPRESENTATION

» Feature is a basic element of a recognized intrusion pattern.

—J. Fiirnkranz, et al., Foundations of Rule Learning, Springer, 2012
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Ontology Learning (Conti.)

FEATURE EXTRACTION AND REPRESENTATION

» Feature is a basic element of a recognized intrusion pattern.
» Possible feature types are:

» Selector features
Order features
Hierarchical features
Relational features
Set-value features

vV vy vy

—J. Fiirnkranz, et al., Foundations of Rule Learning, Springer, 2012
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Ontology Learning (Conti.)

FEATURE EXTRACTION AND REPRESENTATION

» Feature is a basic element of a recognized intrusion pattern.
» Possible feature types are:
» Selector features
Order features
Hierarchical features
Relational features
Set-value features

v

vV VvYyy

» Above features should be combined with time, spatial,
sequence order’s contextual features to classify intrusion types.

—J. Fiirnkranz, et al., Foundations of Rule Learning, Springer, 2012
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Ontology Learning (Conti.)

ONTOLOGY LEARNING

» Ontology learning is a concept with instance learning to
create, revise, and update the previous ontologies to reflect
the status changes.

» Ontology learning is achieved by ontology matching,
alignment, and merging from multiple ontologies.

» Ontology learning is an iterative process to reflect and adapt
for new datasets.

» Ideally, we need an (semi-)automated ontology learning.
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Rule Learning

RULE REPRESENTATION

» Rule can be represented as: If body then head

» a body contains a conjunction of conditions
» each condition is a feature satisfaction constraint
» a head contains a prediction with a classification label

» A rule is said to cover an positive (or negative) instance if the
instance satisfies the conditions of the rule.

> A rule’s head is predicted class label or prediction values for
an instance if a rule covers this instance.

> If a rule’s head only covers the positive instance, so NAF for
CWA is assumed.

—J. Fiirnkranz, et al., Foundations of Rule Learning, Springer, 2012 @V (
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Rule Learning (Conti.)

RULE LEARNING

» A rule learning is (probabilistic) inductive logic program (ILP),
statistical relational learning, structured machine learning, etc.

v

A single rule learning is for a general to specific principle.

v

A ruleset learning is for a specific to general principle.

» How to combine the deductive with inductive reasoning?

v

This can be achieved by structured machine learning, how?
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Rule Learning (Conti.)

FroM ONTOLOGY TO RULE LEARNING AND VICE VERSA

» On ontology learning, the RDF(S)-based ontology schema and
instances are imported to the rule module by using SPARQL
for classification.

» On rule learning, the rules (or SPARQL queries) enable the
ontology module to reformulate the ontologies through
approximate query to enable new predicate features.

» RDF(S) graph ontologies with approximate SPARQL query
with time and error bounds can learn the new evolving
ontologies.
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Rule Learning (Conti.)

FroM ONTOLOGY TO RULE LEARNING AND VICE VERSA

» Later, we will upgrade to the logic-based ontologies with
Datalog rules.

> The evolving ontologies with schema and relationships
dynamic creation and removing.

» The rule (or query) learning allows approximate query to
discover potential predicate relationships of features with a
certain confidence.
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Conclusion and Future Works

> Preliminary Results:

1. Structured machine learning in inductive logic program (ILP),
since 1990+, has been established at least 20+ years.
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Conclusion and Future Works

> Preliminary Results:

1. Structured machine learning in inductive logic program (ILP),
since 1990+, has been established at least 20+ years.

2. Big data analytics is a driving force to rethink about the
research challenges.
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Conclusion and Future Works

> Preliminary Results:

1. Structured machine learning in inductive logic program (ILP),
since 1990+, has been established at least 20+ years.

2. Big data analytics is a driving force to rethink about the
research challenges.

3. A combination of ontology with rule learning creates a specific
research avenue.
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Conclusion and Future Works

> Preliminary Results:

1.

Structured machine learning in inductive logic program (ILP),

since 1990+, has been established at least 20+ years.

. Big data analytics is a driving force to rethink about the

research challenges.

research avenue.

. A hybrid intrusion detection application domain is the first

problem to verify this concept.

. A combination of ontology with rule learning creates a specific
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Conclusion and Future Works (Conti.)

» Future Works:

1. The RDF(S)graph ontology learning with SPARQL rule
learning for supervised machine learning, e.g., random forest
and boosting, are considered first to verify the intelligent
security problem.
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Conclusion and Future Works (Conti.)

» Future Works:

1. The RDF(S)graph ontology learning with SPARQL rule
learning for supervised machine learning, e.g., random forest
and boosting, are considered first to verify the intelligent
security problem.

2. The SPARK with RDF(S) and SPARQL platform have been
establishing for the CBDAM platform.
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Conclusion and Future Works (Conti.)

» Future Works:

1. The RDF(S)graph ontology learning with SPARQL rule
learning for supervised machine learning, e.g., random forest
and boosting, are considered first to verify the intelligent
security problem.

2. The SPARK with RDF(S) and SPARQL platform have been
establishing for the CBDAM platform.

3. Using the logic-based ontology and rules to verify structured
machine learning concepts will be the next research challenge.
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