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Extending from the previous semantic privacy-preserving model, we propose a wide-

scale super-peer data integration and protection architecture. Any user from a super-
peer domain can contribute new data, schema, or even mappings for other super-peer

domains to integrate the information. Each super-peer domain is essentially a mediator-

based data integration system, where an agent at the super-peer performs semantic
local mappings to manage a set of its local peers endowed with shareable relational

data sources. Semantic global mappings are also possible from the current super-peer

to interlink with other super-peers located in their super-peer domains. A super-peer
is the only place, at the virtual platform (VP), where an agent can empower the data

integration and access control services for a super-peer domain. Through the semantics-
enabled privacy protection policies, authorized view-based queries posed to a super-peer

can enable the data integration without losing a user’s privacy. The ontology mapping

and merging algorithm with a local-as-view (LAV) source description that creates a
global ontology schema in a super-peer by integrating multiple local ontology schemas

for data integration. The perfect rules integration of datalog rules enforces the data

query and protection services. Finally, using a global-local-as-view (GLAV) for global
semantic mappings among super-peers, we have a greater flexibility of data integration

and protection in the super-peer architecture.

Keywords: Semantics-enabled policies, super-peer data integration, privacy protection,
ontology and rule

1. Introduction

Large enterprises spend a great deal of time and money on data (or information)

integration [Bernstein and Haas, 2008]. Data integration is the problem of com-

bining data from autonomous and heterogeneous sources, and providing users with

a unified view of these data through so called global (or mediated) schema. The

global schema, which is a reconciled view of the information, that provides query

services to end users. The design of a data integration system is a very complex

task and includes several different issues: heterogeneity of the data sources, relation

between the global schema and the data sources, limitations on the mechanisms for

accessing the sources, and how to process queries expressed on the global schema,
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etc [Calvanses et al., 2002].

We face a data request for a tremendous amount of heterogeneous and scalable

data sources on the web. A peer data management system (PDMS) inherits the

spirit of PAYGO approach that enables a wide-scale data integration [Franklin et al.,

2005] [Madhavan et al., 2007]. In a PDMS, each peer exports data in terms of its own

schema, and information integration is achieved by establishing mappings among

the various peer schemas. In the super-peer network architecture, we group a set of

peers into a super-peer domain and organize them into a two-level architecture. In

the lower level, called the peers, and in the upper one, called the super-peer [Ben-

eventano et al., 2007]. More precisely, a peer integrates data sources into a local

ontology. A super-peer contains a data integration system, which integrates these

local peers’ ontologies into a global ontology through ontology mapping, alignment,

and merging. Therefore, a traditional data integration system can be viewed as a

special case of a PDMS.

Three approaches have been proposed to model a set of source descriptions that

specify the semantic mapping between the source schema and the global schema.

The first one, called global-as-view (GAV), requires that the each concept in the

global schema is expressed in terms of query over the data sources. The GAV deals

with the case when the stable data source contains details not present in the global

schema so it is not used for dynamically adding or deleting data sources.

The second one, called local-as-view (LAV), requires the global schema to be

specified independently from the sources, and the source descriptions between the

stable global schema, such as ontology and the dynamic data sources are established

by defining each concept in the data sources as a view over the global schema [Cal-

vanese and Giacomo, 2005] [Lenzerini, 2002]. LAV descriptions handle the case in

which the global schema contains details that are not present in every data sources.

The third one, called global-local-as-view (GLAV), a source description that

combines the expressive power of both GAV and LAV, allows flexible schema def-

initions independent of the particular details of the data sources [Friedman et al.,

1999] [Nash and Deutsch, 2007]. The data integration system uses these different

source descriptions to reformulate a user query into a query over the source schemas.

However, data integration is hampered by legitimate and widespread privacy con-

cerns, so it is critical to develop a technique that enables the integration and sharing

of data without losing a user’s privacy [Clifton et al., 2004].

Privacy protection policies represent a long-term promise made by an enterprise

to its users and are determined by business practices and legal concerns. It is un-

desirable to change an enterprise’s promises to customers every time an internal

access control rule changes. If possible, we should allow the integration of Plat-

form for Privacy Preferences (P3P) and Enterprise Privacy Authorization Language

(EPAL) policies to provide accountable and transparent information processing for

data owners to revise their data usage permissions [Antón et al., 2007].

Although many organizations post online privacy policies, they must realize
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that simply posting a privacy policy on their Web sites does not guarantee true

compliance with existing legislation. Following the OECD’s Fair Information Prin-

ciples (FIPs)a, an organization should provide the norms of personal information

processing for its data collection, retention, use, disclosure, and destruction. An

organization must also be accountable for its information possession and should

declare the purposes of information usage before collection. Moreover, an organiza-

tion should collect personal information with an individual’s consent and disclose

personal information only for previously identified purposes.

Fig. 1. A semantic privacy protection model extended from the P3P and EPAL integration for
data integration and protection in a super-peer domain

Each enterprise as a peer declares its P3P privacy protection policies that takes

the FIPs’ criteria (see Figure 1). Then EPAL policies are established in each site,

corresponding to the P3P [Karjoth and Schunter, 2002]. For each data request, the

data handling and usage controls are based on the EPAL policies. However, P3P and

EPAL lack formal and unambiguous semantics to specify privacy protection policies

so they are limited in the policy enforcement and auditing support for software

agents. One of the research challenges for the online privacy protection problem

is to develop a privacy management framework and a formal semantics language

to empower agents to enforce privacy protection policies. Agents must avoid any

policy violation of each data request. We attempt to establish a semantic privacy

protection model for a super-peer domain to address this issue. In a super-peer

domain, each peer shares its collected data with other peers but without breaking

the original data usage commitment to its clients [Karjoth et al., 2003].

aSee http://www.privacyrights.org/ar/fairinfo.htm
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1.1. Research Issues and Contributions

In this paper we are addressing the following research issues:

• We aim at providing data integration and protection services for various

data sources to perform effective data sharing for different purposes in a

super-peer domain,. The incentives for using a super-peer model involve

the avoidance of solving the complex pair-wise ontology matching and rule

integration problems between peers. In addition, various complex ontology

evolution and compatibility issues among peers can be hidden in a super-

peer domain.

• Privacy protection policy representation and enforcement issues are also

addressed. Policies are expressed as a combination of ontologies and rules,

i.e. O + R, where ontology O includes TBox schemas and ABox instances,

and rule R includes deductive rule sets (RS) and facts (F). Data integration

and protection are achieved at the super-peer for multiple peers through a

combination of semantics-enabled formal protection policies (FPP).

• In a super-peer domain, the challenge of designing a semantic privacy pro-

tection model is to ensure a soundness and a completeness of data inte-

gration and protection within a super-peer domain. For the soundness cri-

terion, we do not allow unintended data being released to the data users

through the global policy schema (GPS) at the super-peer. Otherwise, it

violates the privacy protection policies. As for the completeness criterion,

we do not miss any eligible shared data when a user asks for a data re-

quest service at the super-peer. Therefore, shareable data obtained at the

super-peer should equal data obtained directly from each peer.

• In the multiple super-peer domains environment, we focus on using an emer-

gent semantic mapping technique from a super-peer domain to interconnect

with another one when additional information is requested on demand. This

wide-scale data integration and protection problem faces the challenge of

effectiveness data sharing without causing any semantic ambiguity of on-

tology mappings among super-peers. In addition, we avoid the undecidable

computation of query answering posed to the super-peer by using acyclic

schema mappings in a tree-based information query.

Our contributions. Our main contributions are: (i) We offer a three layer seman-

tic privacy-preserving model for a super-peer domain. This extends our previous

work on data integration for privacy protection policies [Hu and Yang, 2011]. We

define a formal policy using ontology for privacy protection concepts and rules for

data query and access control services. (ii) We focus on solving the soundness and

completeness of query rewriting problems for a super-peer domain by using a per-

fect ontology merging and rule integration. Followed by each possible data query at

the super-peer, we briefly demonstrate how the soundness and completeness criteria

of a privacy protection data integration can be achieved. (iii)In the multiple super-
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peer domains environment, we propose a tree-based information query technique

by using the GLAV semantic ontology mappings among super-peers to achieve a

wide-scale data integration. This avoids possible cyclic schema mappings as shown

in [Calvanese et al., 2006]. We also adopt the top-down query answering strategy to

pose authorized view-based queries over the super-peer to provide data integration

and protection services. By incrementally collecting global information from each

additional super-peer domain, we use the GLAV schema mappings among super-

peers to collect information from their peers by using the LAV mappings between

a super-peer and its peers.

Outline. The paper is organized as follows. In Section 2, we present a semantic

privacy-preserving model as a framework for data integration services. In Section 3,

we define a formal policy combination as an integration of formal policies from au-

tonomous data sources. Each formal policy is composed of ontologies and rules for

each independent data source. A privacy protection policy is a type of formal policy

used for specifying a data usage constraint from a data owner. In Section 4, we for-

mally define a formal policy combination in terms of ontology mapping, alignment,

and merging. Then, in Section 5, we demonstrate how a perfect rule integration is

used for query rewriting at the super-peer corresponding to its local peers’ schema.

Following Section 6, the semantics of a super-peer data integration system is speci-

fied and demonstrated with an example. In Section 7, we briefly prove the soundness

and completeness of privacy-preserving data integration for a super-peer domain.

Finally, we point out the related work and draw our conclusion.

2. A Privacy-Preserving Model

A semantic privacy protection model is proposed with three layers for a super-

peer domain, where the bottom layer provides data sources from the relational

databases and the middle layer provides a semantics-enabled local schema for each

peer’s independent service domain. The top layer is served at the super-peer, which

provides a unified global view of privacy-preserving data integration services (see

Figure 2).

We have a merged global ontology schema created by mapping and aligning

local ontology schemas with a LAV source description from multiple local schemas

in the middle layer. The idea of using description logic (DL) to model the local

and global schemas is to empower the ontology’s abstract concept representation

and reasoning capabilities. A query is defined as an SQWRL datalog rule in the

SWRL-based policy to access a global ontology [O’Connor and Das, 2009]. Each

SQWRL data service query posed to a global ontology at the super-peer is mapped

to multiple queries as SQWRL datalog rules for local schemas. This is a LAV query

rewriting service which has been investigated in databases but has largely been

unexplored in the context of DL-based ontologies [Friedman et al., 1999].
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Fig. 2. A semantic privacy protection model in a super-peer domain

2.1. Formal Privacy Protection Policy

A policy’s explicit representation in terms of ontologies or rules depends on what the

underlying logic foundation of your policy language is. If your policies are created

from a DL-based policy language, such as Rein or KAoS, then ordinary policies

are shown as TBox schemas and ABox instances. Otherwise, policies are created

from an LP-based policy language, such as EPAL or Protune. In that case, ordinary

policies are a set of rules with predicates of unary, binary, or ternary variables and

facts [Bonatti and Olmedilla, 2005].

A formal policy (FP) is a declarative expression corresponding to a human legal

norm that can be executed in a computer system without causing any semantic

ambiguity. An FP is created from a policy language (PL), and this PL is shown as a

combination of ontology language and rule language. Therefore, an FP is composed

of ontologies O and rules R, where ontologies are created from an ontology language

and rules are created from a rule language.

A formal protection policy (FPP) is an FP that aims at representing and enforc-

ing resource protection principles, where the structure of resources is modeled as

ontologies O but the resources protection is shown as rules R.

A privacy protection policy shown as an FPP is a combination of ontologies and

rules, e.g., O + R, where DL-based ontologies, such as OWL-DL ontologies provide a

well-defined structure data model for data integration, while Logic Program (LP)-

based rules, such as datalog rules provide further expressive power for data query

and protection. There are numerous O + R combinations available for designing pri-

vacy protection policies, such as SWRL [Horrocks et al., 2005], and OWL2 RL [Grau

et al., 2008b]. Each O + R combination implies whatever expressive power we can

extract from ontologies for the rules and vice versa.

The SWRL is one of the O + R semantic web languages suitable for a policy
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representation in the privacy protection model. However, this is not an exclusive

selection. Other O + R combinations, such as CARIN, OWL2 RL are also possible

for modeling formal privacy protection policy whenever their underlying theoretical

foundations and development tools are available. We fully utilize the SWRLTab

development tools and SQWRL OWL-DL query language [O’Connor and Das, 2009]

in the Protégé to model and enforce semantic privacy protection policies.

We face a research challenge of combining SWRL-based privacy protection poli-

cies from multiple peers to ensure the soundness and completeness of data integra-

tion and protection criteria in a super-peer domain. Another challenge is to solve

the policy’s syntax and semantics incompatibility when we allow policy combination

in multiple peers. SWRL is based on the classical first order logic (FOL) semantics

that mitigates a possible semantic and syntax inconsistency when policies come

from different peers.

However, we still face a background policy inconsistency problem when default

policy assumptions vary between different peers. For example, one peer uses open

policy assumption, where no explicit option-out for data usage means option-in, but

the other peer uses closed policy assumption, where no explicit option-in for data

usage means option-out. We avoid this kind of policy inconsistency by requesting all

sites to use a uniform policy assumption, and to only collect option-in data usage

choices from users whenever multiple policies are integrated.

Fig. 3. A user quests information to the super-peer at a VP through ontology mapping, merging,
and rule integration in a super-peer domain

Previous studies for policy combination did not consider solving the problem

of merging multiple schemas and integrating access control rules from multiple

peers [Bonatti et al., 2002] [Mazzoleni et al., 2008]. In this paper we propose a

semantic privacy protection model that allows flexibly combining TBox’s schemas of
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privacy protection policies without moving ABox’s instances from its original data

source until a data request service is initiated (see Figure 3). Therefore, the global

ontology’s schemas and rules created at the super-peer have the latest updated

incoming data from each peer when a user asks a query.

Data integration aims at providing unified and transparent access to a set of au-

tonomous and heterogeneous data sources. The semantic privacy protection model

providing global ontology schema for data integration is similar to the data inte-

gration problem solved by DL− LiteA ontologies shown in [Calvanese et al., 2008a].

Here, we are also focusing on data protection besides data integration.

The goal of ontology-based data integration in DL− LiteA is to provide a uniform

access mechanism to a set of heterogeneous relational database sources, freeing the

user from having the knowledge about where the data are, what are stored, and how

they can be accessed. The idea is based on decoupling information access from its

relational data storage so users only access the conceptual layer shown as ontology,

while the relational data layer, hidden to users, manages the data.

Compared with DL− LiteA, we have extended and used it as a part of our

semantic privacy protection model. We have three layers of data integration infras-

tructure instead of two layers shown in DL− LiteA so we face a research challenge of

ontology merging and rule integration from the middle layer to the top layer when

we enforce a privacy protection policy (see Figure 3).

A semantic privacy protection model is composed of three main components:

• In the top layer, we have a global policy schema (GPSsuper−peer), including

a global ontology schema (GSsuper−peer) aligned and merged from several

local schemas (LSpeer), e.g. TBox and a set of rule integration at the middle

layer. The super-peer at this layer provides conceptual data access and

protection services that give users a unified conceptual “global view” with

access control power for each data request.

• Ontology-based data sources are external, independent, and heterogeneous,

and each local ontology was combined with logic program (LP)-based rules

for each peer in the middle layer.

• Mapping language (ML), semantically links a GSsuper−peer and integrated rule

set in the top layer to each peer’s ontology LSpeer and privacy protection

rules in the middle layer.

3. A Formal Policy Combination

A formal policy combination (FPC) in a global policy schema (GPSsuper−peer) allows

data sharing as integration of FP from a variety of peers.

Each FP is shown as K = O + R, where ontology O = (T, A) and rule R = (RS, F),

T is TBox, and A is ABox; RS is a set of rules, and F is a set of facts.
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3.1. FPP for Privacy Protection

A privacy protection policy is a type of FPP. We designed an ontology that de-

clares the FIPs’ attributes as classes in an FPP (see Figure 4). The attributes,

purpose, datauser, data, obligation, and action, allow people to specify the con-

straints of privacy protection policies using related property chains.

Fig. 4. A partial ontology schema for OECD FIPs’ attributes shown as owl : Class, and constraints
shown as owl : Property

Constraint properties is a type of owl : ObjectProperty that specifies the fea-

sible domain and range classes of the above attributes. For example, a property of

hasOptInPurpose has its domain and range classes shown as follows:

T v ∀ hasOptInPurpose.Data, T v ∀ hasOptInPurpose−.Purpose.
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Then a datalog rule, in the SWRL-based policy representation, allows us to use

a property chain to combine the two feasible classes together:

hasOptInPurpose.Data(?data) ∧ hasOptInPurpose−.Purpose(?purpose)

−→ hasOptInPurpose(?data, ?purpose) ←− (1)

Similarly, a hasOptInDatauser property has its domain and range classes shown as

follows:

T v ∀ hasOptInDatauser.Data, T v ∀ hasOptInDatauser−.Datauser.

Then, another datalog rule allows us to use another property chain to combine

another two feasible classes together:

hasOptInDatauser.Data(?data) ∧ hasOptInDatauser−.Datauser(?datauser)

−→ hasOptInDatauser(?data, ?datauser) ←− (2)

Based on (1) and (2), we have a feasible set of ABox instances with data, purpose,

and datauser combinations of an attribute set that was permitted from the original

dataowner to allow a particular type of datauser to ask for a data set with a per-

missive purpose. When a peer collects a customer’s data, the promise of data usage

will be ensured if a data user’s identity and usage purpose are verified successfully.

Otherwise, the data will be kept secret without a data user’s awareness.

These are easily extended to the other two attributes, action and obligation,

to complete the FIPs’ privacy protection criteria. An ordinary data user is allowed

to ask a query service with action = read at the super-peer. The other actions,

such as deletion or modify, are only allowed for a system administrator in the

middle layer when (s)he asks to delete a user’s data to satisfy the obligation of a

data retention period or for a data owner to update his or her own profile data.

3.2. Data Request Services

A peer declares its privacy policy in P3P before a data owner’s data

is collected. Once a user accepts a peer’s privacy declaration policy, the

data usage constraints are specified as Figure 5, where FIP’s five attributes

(?d, ?p, ?du, ?a, ?o) for data, purpose, datauser, action, and obligation, are

classes, and hasOptInDatauser, hasOptInPurpose, etc., are properties proposed

as chains of usage constraints for attributes. For each data request service, an ini-

tial feasible parameter input set is FS = input(?du, ?r, ?p), where ?du ∈ Datauser,

?r = read ∈ Action, ?p ∈ Purpose and output dataset with associated obligations

is output(?d, ?o), where ?d ∈ Data, ?o ∈ Obligation. The feasible dataset shown

as ABox instances will be discovered by using SQWRL datalog rules. Further per-

missible actions will be activated when the following data protection policies are
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satisfied.

Fig. 5. Five major FIP’s attributes, such as data, purpose, etc are shown as owl : class and chained
by associated owl : Property, such as hasOptInDatauser, hasOptInPurpose, etc.

3.3. FPPC at the super-peer

A data user still possibly collects a shareable data by asking each peer individually

without using a formal privacy protection policy combination (FPPC). However,

the high complexity of using query services for all data sources hinders people

from using this data integration approach. The other possible approach to collect

a shareable data is to combine pair-wise peers’ policies. Then, we face another

scalability problem when more than two peers are intending to share their data.

In this semantic privacy-preserving model, we propose the super-peer infras-

tructure that allows a peer in each data source to offer its FPP at the super-peer

to enforce FPPC. FPP in each data source is shown as K = O + R, where ontology O

= (T, A) and rule R = (RS, F). At the super-peer, we only map and merge T, e.g.

TBox but leave A, e.g. ABox instances in its original RDB data source. Similarly, we

only integrate RS, a set of rules at the super-peer but leave F, a set of facts in its

original RDB data source. The benefit of using this approach is to map and merge

the TBoxes and to integrate the RS with the updated data only once.

4. Ontology Mapping and Merging

A merged ontology comes from mapping and alignment that provides data integra-

tion services [Euzenat and Shvaiko, 2007]. In particular, data integration through

ontologies, such as LAV is possible for multiple peers if a mapping language ML pro-

vides a semantic mapping description between the GSsuper−peer and the underlying

LSpeer of each peer [Friedman et al., 1999]. In LAV, the relationships between the

GSsuper−peer and the LSpeer are established by making LAV assertions. Every asser-

tion has the form QLSpeer  CQGSsuper−peer , where each vocabulary in the QLSpeer ,

i.e., class or property in a peer’s local ontology schema, is defined as the views of
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a conjunctive query (CQ) over the global schema GSsuper−peer, so CQGSsuper−peer
is

a CQ over the global schema GSsuper−peer at the super-peer.

A QLSpeer
 CQGSsuper−peer

is defined as a privacy-aware authorized view of

each peer so we do not disclose any non-shareable data to the super-peer whenever

each peer submits its FPP for ontology merging and rule integration. A CQ can be

defined as a subset of Datalog program, i.e. CQ containment problem, for querying

the relational database. This problem was previously investigated in [Ullman, 2000].

On the other hand, the connection between the problem of answering queries

using extensions of views and the problem rewriting queries using views were studied

previously through an ontology expressed in DL [Goasdoué and Rousset, 2004].

In [Calvanese et al., 2008a], a relational data integration was obtained by mapping

each ontology element, e.g. class and property, in the LSpeer into an SQL query

of a relational data source. This is a GAV approach that focuses on mapping the

elements of the LSpeer to a view (SQL query) over the sources.

4.1. Perfect Ontology Alignment

A mapping can be shown as (uid, e1, e2, n, ρ), where uid is a unique identity for the

mapping, e1, e2 are entity names, such as class or property, and in the vocabulary of

O1, O2, n is a numeric confidence measure between 0 and 1, and ρ is a relation such as

subsumption (v), equivalence (≡), or disjointness (⊥) between e1 and e2 [Jiménez-

Ruiz et al., 2009].

In this study, the entity names for describing the ontology’s class and property,

and the structure of using these entity names in the root of the ontology schema

for Oi to define the FIPs’ privacy protection criteria (see Figure 5) are required to

be the same. This is a strict constraint to achieve a perfect ontology alignment of

this study. Moreover, a perfect mapping language ML provides semantic mappings

for each entity e ∈ GSsuper−peer at the super-peer to the corresponding entities

ei ∈ LSpeeri.

A perfect ontology alignment obtained via a mapping (uid, ei, ej , n, ρ) and merg-

ing between Ti, i.e. TBox, in Oi and Tj in Oj satisfies the following conditions:

• ei ∈ Ti and ej ∈ Tj entity names are either defined for describing the root

class names which correspond to the privacy protection concepts, such as

purpose, action, datauser, data, and obligation or for property names,

such as hasOptInDatauser, hasOptInPurpose, etc; Furthermore, entity

names below the root class and root property are also defined for the de-

scriptions of the underlying subclass and subproperty names.

• A numeric confidence measure n is always equal to 1.

• ρ is either equivalence (≡) or subsumption (v) between entity names of Ti
and Tj schemas. In an equivalent (≡) case, we can find a pair of one-to-one

corresponding entity names for ei ∈ Ti and ej ∈ Tj in the same layer of the

respective ontology schema with n = 1; In a subsumption (v) case, there

are subclass or subproperty entity names not in the same layer so ei ∈ Ti
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and ei v ej ∈ Tj , and vice versa.

4.2. Query Rewriting Services

SWRL combines OWL-DL’s ontology language with an additional datalog rule lan-

guage, where a datalog rule language is shown as an axiom of ontology, a little exten-

sion of the OWL-DL language that overcomes the limitations of property chaining

in the OWL-DL language [Horrocks et al., 2005]. The computation complexity of

answering SWRL-based policies might be undecidable regarding the verification of

rights access permission unless these policies satisfy the DL− Safe conditions [Motik

et al., 2004].

SPARQL is a query language for the RDF(S)-based ontologies. OWL2 QL is

another query language for the OWL2-based ontologies. We did not use SPARQL

query language or OWL2 QL, since our current local and global ontologies are

modeled as the OWL-DL ontology language. In fact, SPARQL might not be able to

query the complete semantics of the OWL-DL’s ontologies. The OWL-DL’s ontology

queries can be shown as the SQWRL datalog rules, where the CQ conditions are

shown as the rule’s body and the query results, i.e., views are shown as the rule’s

conclusion. SQWRL uses SWRL’s strong FOL semantic foundation as its formal

semantics so this query language provides a small but powerful array of operators

that allows users to construct queries over OWL-DL ontologies [O’Connor and Das,

2009].

For each data request query service, a perfect mapping language ML provides

the semantically linking of an entity name e ∈ GSsuper−peer in the datalog rule at

the super-peer to the entity name ei ∈ LSpeeri in the datalog rule at peeri, where

LSpeeri is the TBox of Oi, and e is a class or a property name. If there does not exist

an ei ∈ TBoxi in a subtree of the LSpeeri on the same layer as e ∈ TBox in the global

tree of GSsuper−peer, then we can recursively find a superclass or superproperty of e′i
with e v e′i as the corresponding entity name, with a confidence measure of n = 1.

To successfully fulfill the semantically linking of any entity name e ∈ GSsuper−peer
via ML, an ontology schema designer must follow the principles we propose using

the specifications of concepts and relations for the FIPs on the root layer of each

ontology’s local schema’s LSpeeri. But we still allow the designer to use a different

entity name string, ei ∈ LSpeeri below the root layer of each local schema and to have

an entirely different underlying subtree structure. We use Prompt ontology mapping

algorithm [Euzenat and Shvaiko, 2007] first to synchronize the entity names between

LSpeeri and further perform the ontology mappings and aligning operations. Finally,

we perfectly merge their schemas even if the subtrees of the local schemas are

variant.

We use ML to map the name of a class entity c ∈ GSsuper−peer to one of the

equivalent local ontology schema’s class entity names in a deeper subtree, say cj ∈
LSpeerj , i.e., c! cj in the datalog rule’s conditions of each data request service.

When the class semantics for c is c v ci in the LSpeeri , i.e., we do not have
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a corresponding class c′i ∈ LSpeeri on the same lower layer of a schema tree as

c ∈ GSsuper−peer. All of the ABox instances ai in the class name entity ci, i.e., ai ∈ ci
are still feasibly collected for this data request. This is because class ci is a legal

domain class or range class for a particular property in the datalog rule for enforcing

its privacy protection.

Similarly, a property p ∈ GSsuper−peer is mapped to another equivalent prop-

erty pj ∈ LSpeerj for the associated datalog rule’s body conditions. Then property

p! pj might be on a lower layer in the schema tree when compared with property

pi ∈ LSpeeri. We still regard property pi as feasible for its enforcement of the datalog

rule on data integration and protection. Finally, if we consider mappings for binding

property and class from the aligning ontology schema GSsuper−peer to LSpeeri and

LSpeerj to the respective datalog rule, then we have the following semantically link-

ing relationships by using ML’s mapping to align the ontology’s class and property

shown as follows:

Property p ∈ GSsuper−peer with its domain class dc and range class rc that are

mapped to property pi ∈ LSpeeri with its domain class dci and its range class rci.

For each data request service using a perfect mapping language ML, when p v pi, we

use property pi. Otherwise, when pi v p, we use property p for the datalog rule ri.

When dc v dci and rc v rci, we use class dci and rci. Otherwise, when dci v dc

and rci v rc, we use class dc and rc for the datalog rule ri.

Here, we did not explicitly consider an algebra operations, such as intersection

or union, for class/subclass with property as shown in OWL-DL. Intuitively,

this class/subclass and property algebra operation problem can be transformed to

the generic class/property problem when terms from different data sources can be

mapped and aligned at the super-peer.

Example 4.1. In Figure 6, after we map and align two local partial ontol-

ogy schemas, LSpeeri and LSpeerj, into a merged partial ontology global schema

GSsuper−peer, we receive a data request service with class P212. In the purpose class

P, P111 ! P211, but P212 ∈ GSsuper−peer does not have a corresponding subclass in

LSpeeri, since P212 v P21 and P21! P11. When a data request service asks for class

P212 ∈ GSsuper−peer, mapping language ML will map P212 to P11 for the datalog rule

ri to query the LSpeeri.

5. Perfect Rule Integration

In FPPC, we define an integrated rule set �
i
Ri = (�

i
RSi,�

i
Fi) to enforce data query

and protection services in �
i
Oi. In fact, an integrated rule set �

i
RSi is a part of FPC

that was created by collecting the datalog rules, e.g. SQWRL queries, in formal

policies FPi, from local peers. A datalog rule ri in the Ri of FPi is shown as:

H←− B1 ∧ B2∧, · · · ,∧Bn,
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Fig. 6. A partial ontology mapping for class alignment and ontology merging

where H, the query results (or views) are expressed as SQWRL built-ins, such

as sqwrl : select and the rule antecedent Bi, are defined as a pattern matching

specifications, i.e., query conditions that are either SQWRL built-ins or class and

property predicates from the ontology schema. More specifically, this datalog rule

is related to a CQ of the form:

H(−→x )← ∃−→y (B1(−→x ,−→y ) ∧ B2(−→x ,−→y )∧, · · · ,∧Bn(−→x ,−→y ))

where Bi(
−→x ,−→y ) is a conjunction of atoms with LA, the set of function-free first-

order logic formulas, involving the free variables (also the distinguished variables of

the query) −→x = x1, · · · , xn, and the existentially quantified variables (also the non-

distinguished variables of the query), −→y = y1, · · · , yn. H(−→x ) is the views of query

results posed over the super-peer to perform data integration within a super-peer

domain.

A perfect rule integration is defined for the integration of any datalog rules

as: ∃ri ∈ RSi in FPi, for the purpose of data integration and protection without

causing conflicts with ∃r′i ∈ �
i
Ri, λi ∈ �

i
Oi, i.e., conditions do not exist for ∃ri |=

λi ⇒ ∃r′i 2 λi, or ∃ri 2 λi ⇒ ∃r′i |= λi. Then, ∃r′i ∈ �
i
Ri at the super-peer can

be activated and mapped by the perfect mapping language ML into ri, posed to a

super-peer to enable a global data query and protection service of multiple peers

within a super-peer domain.

Example 5.1. A rule r′i is one of the rules within the integrated rule set at

the super-peer. When a user asks for a data set ?d with related obligations ?o

under the feasible parameter input set FSi = (M1, TMarketing6, Read2), where

data user M1 is a marketing staff with the purpose of achieving telephone mark-
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ing TMarketing, A rule r′i is mapped to a rule ri and a rule rj using the rule

mapping processes when we have done an upward perfect ontology mapping, align-

ment, merging and a perfect rule integration. A perfect mapping language ML with

downward operation maps the r′i’s predicates, such as class, property to the cor-

responding predicates in a rule ri and a rule rj with MUser(M1) v Datauser(M1),

TMarketing(TMarketing6) v Purpose(TMarketing6). Therefore, real data query

and protection services requested by a rule r′i are performed by a rule ri and a rule

rj.

A rule r′i query posed to the super-peer at the �
i
Oi:

MUser(M1) ∧ TMarketing(TMarketing6)

∧datauserHasPurpose(M1, TMarketing6)

∧datauserHasAction(M1, Read2)

∧ hasOptInPurpose(?d, TMarketing6)

∧hasOptInDataUser(?d, M1)

∧ purposeHasObligation(TMarketing6, ?o)

−→ sqwrl : selectDistinct(?d, M1, TMarketing6, Read2, ?o)

A rule ri query posed to a peeri at the Oi:

V iew(Datauser(M1)) ∧ V iew(TMarketing(TMarketing6))

∧ datauserHasPurpose(M1, TMarketing6)

∧ datauserHasAction(M1, Read2)

∧ hasOptInPurpose(?d, TMarketing6)

∧ hasOptInDataUser(?d, M1)

∧ purposeHasObligation(TMarketing6, ?o)

−→ sqwrl : selectDistinct(?d, M1, TMarketing6, Read2, ?o)

A rule rj query posed to a peerj at the Oj:

V iew(MUser(M1)) ∧ V iew(Purpose(TMarketing6))

∧ datauserHasPurpose(M1, TMarketing6)

∧ datauserHasAction(M1, Read2)

∧ hasOptInPurpose(?d, TMarketing6)

∧ hasOptInDataUser(?d, M1)

∧ purposeHasObligation(TMarketing6, ?o)

−→ sqwrl : selectDistinct(?d, M1, TMarketing6, Read2, ?o)

6. Semantics of a Super-Peer Data Integration System

Inspired by [Calvanese et al., 2006] [Halevy et al., 2004], we define a super-peer data

integration system as a set of super-peer domains Π = {π1, π2, ..., πn}, where each

super-peer domain πj is an autonomous information site that exports its information

content in terms of the super-peer spj ’s schema to another super-peer domain.
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6.1. Semantics of a Super-Peer Domain

In each super-peer domain πi, actual data is stored in a set of local data sources

DS = {ds1, ds2, ..., dsm}. Using the GAV local mappings, we associate a set of local

peer P = {peer1, peer2, ..., peern} in πi with each individual ontology schema to

the views of the related relational data sources, i.e., SQL queries. Furthermore,

through LAV semantic mappings, a set of peers P’s local ontology schemas are also

mapped and aligned into the super-peer sp’s global view. Formally, the semantics

of a super-peer domain is based on SWRL, a subset of the classical first-order logic

(FOL) semantics, that mitigates a possible semantic and syntax inconsistency when

data sources come from different peers. This FOL semantics approach is different

from the multi-modal epistemic logic approach used in [Calvanese et al., 2006]. We

avoid any possible cyclic schema mappings among a large number of peers by using

a tree-based information query through schema mappings among the super-peers.

This cyclic avoidance technique is similar to the Piazza PDMS approach [Halevy

et al., 2004]. This technique not only simplifies the unrestricted mapping among

multiple peers but it also meets the recent development trend of using a description

logic (DL) technique, such as DL− LiteA, for data integration [Calvanese et al.,

2008a] [Calvanese et al., 2008b].

A super-peer domain π ∈ Π is defined as a tuple (P, SPD,GS,LS,M,DS):

• A super-peer sp is the only node in a super-peer domain π ∈ SPD, which al-

lows an agent to enforce the global protection policies. This enforcement ac-

tion empowers the super-peer sp to facilitate information collection through

a CQπ(sp) posed to the GSsp in the super-peer sp of π.

• Through the local LAV mapping assertions, a global schema GSsuper−peer
provides an integrated view for a set of peers from P in a π. Similar to the

Section 4 technique, we proposed that every LAV assertions has the form

QLSpeer
 CQGSsuper−peer

, where QLSpeer
provides the views of the CQ over

the global schema, GSsuper−peer for each peer. CQGSsuper−peer
is a CQ over

the global schema GSsuper−peer at the super-peer.

• A set of peers from P are mediators. A peer p ∈ π maps its local ontol-

ogy schema LSpeer to a set of relational data sources, dsi, from DS in π.

Therefore, this query uses the unfolding GAV mapping assertions. QLSpeer

 CQdsi , where QLSpeer
is a vocabulary of an ontology local schema of a

peer that maps to the SQL CQ over a set of data sources, dsi, from DS.

• A set of local mapping assertions, M, created from a mapping language ML,

are used to semantically link between a super-peer sp and a set of peers

from P in a π. The semantics of a set of global mapping assertions among

super-peers will be addressed in Section 8.

• A set of local data sources, dsi from DS, are relational structure data that

store the materialized instances.
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7. Soundness and Completeness

In this section, we briefly demonstrate how the exact query rewriting service satisfies

the soundness and completeness criteria by using the LAV source descriptions based

on the GPSsp = (�
i
Oi,�

i
Ri): If CQsp is a conjunctive query over �

i
Oi at the super-peer sp

within a super-peer domain π, and CQpeeri is a conjunctive query over Oi using LAV

source descriptions from peeri, then ∀x CQsp(x) ←→
⊔
i

CQpeeri(x). In [Goasdoué

and Rousset, 2004], authors showed that when a query has a finite number of

maximally contained conjunctive rewritings, the complete set of its answers can be

obtained as the union of the answer sets of its rewritings. The datalog-rewriting

was introduced, in which query language is a hybrid language with CARIN as its

combination of O + R, and the rewriting language is a relational language. They also

provided a rewriting algorithm, and showed that the RewriteQuery is sound and

complete.

In comparison, we use LAV for rewriting queries and use SWRL as a combination

of O + R. A perfect ontology merging and a rule integration ensure the soundness

and completeness of data integration in the semantic privacy-preserving model. This

will be briefly shown as follows:

7.1. [Soundness]

For the soundness criterion, we do not allow any unintentionally released (or pro-

tected) data for a user by using a query rewriting service with a rule (query)

r′i ∈ �
i
Ri at the super-peer sp within a super-peer domain π.

Theorem 7.1. [Soundness] After a perfect ontology alignment and rule integra-

tion with FPPC, ∃GPSsp = (�
i
Oi,�

i
Ri) at the super-peer sp within a super-peer domain

π, Under a particular feasible parameter input set FSi, if λj ∈ Oi is protected by a

FPPi at each peeri, i.e., ∀i, ri ∈ Ri 2 λj, then r′i ∈ �
i
Ri 2 λj for the same FSi,

where λj is a protective data set in Oi.

Proof. (Sketch) If CQsp is a conjunctive query over �
i
Oi at the super-peer sp within

a super-peer domain π and CQpeeri is a conjunctive query over Oi in a peeri, then

we need to prove the statement ∀x CQsp(x) −→
⊔
i

CQpeeri(x). This statement is

equivalent to the original argument: If ri ∈ Ri 2 λj , then r′i ∈ �
i
Ri 2 λj . The

CQsp(x) is a query containment of datalog rule r′i and the CQpeeri(x) is a query

containment of datalog rule ri ∈ Ri. The statement ∀x CQsp(x) −→
⊔
i

CQpeeri(x)

is true because the LAV schema mapping only allows the protected concept λj in

each peeri to be connected to the global schema. After using a perfect ontology

alignment and a perfect rule integration with a perfect mapping language ML, we

avoid the following condition: ∃ri 2 λj ⇒ ∃r′i |= λj .
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7.2. [Completeness]

As for the completeness criterion, we do not allow any eligible shared data being

missed for a query by a query rewriting service with a rule (query) r′i ∈ �
i
Ri at the

super-peer sp within a super-peer domain π.

Theorem 7.2. [Completeness] After a perfect ontology alignment and rule in-

tegration with FPPC, ∃GPSsp = (�
i
Oi,�

i
Ri) at the super-peer sp within a super-peer

domain π, Under a particular feasible parameter input set FSi, if λj ∈ Oi is share-

able by a FPPi at each peeri, i.e., ∀i, ri ∈ Ri |= λj, then r′i ∈ �
i
Ri |= λj for the

same FSi, where λj is a shareable data set in Oi.

Proof. (Sketch) If CQsp is a conjunctive query over �
i
Oi at the super-peer sp within

a super-peer domain π and CQpeeri is a conjunctive query over Oi in a peeri, then

we need to prove the statement ∀x CQsp(x) ←−
⊔
i

CQpeeri(x). This statement is

equivalent to the original argument: If ri ∈ Ri |= λj , then r′i ∈ �
i
Ri |= λj . The

CQsp(x) is a query containment of datalog rule r′i and the CQpeeri(x) is a query

containment of datalog rule ri ∈ Ri. The statement ∀x CQsp(x) ←−
⊔
i

CQpeeri(x)

is true because the LAV schema mapping only allows the protected concept λj in

each peeri to be connected to the global schema. After using a perfect ontology

alignment and a perfect rule integration with a perfect mapping language ML, we

avoid the following condition: ∃ri |= λj ⇒ ∃r′i 2 λj .

8. Semantics of Multiple Super-Peer Domains

A super-peer domain πi is related to other super-peer domains πj by means of a set

of super-peer GLAV semantic mapping assertions for tree-based information query.

A super-peer’s semantic mapping is shown as follows:

CQπj (spj) CQπi(spi)

where CQπj
(spj) is a conjunctive query over the super-peer spj in a super domain

πj ∈ Π, and CQπi(spi) is a conjunctive query over the super-peer spi in a super

domain πi ∈ Π. A CQπj
(spj) is defined as a privacy-aware authorized view of a

super-peer domain πj whenever the super-peer spj intends to export its shareable

information in terms of its schema GSspj mapping to another super-peer domain

πi’s spi schema GSspi through the super-peers’ GLAV semantic mapping assertions.

Note that in the super-peer system Π, only the tree-based information query with

the GLAV schema mappings are imposed on the topology of super-peer mapping

assertions, hence the graph corresponding to Π is acyclic. The tree-based datalog

rule corresponding to πj ∈ Π contains mapping from one super-peer spj’s shareable
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ontology schema symbol, Rj to another super-peer spi’s ontology schema symbol,

Ri. Therefore one edge from the super-peer spj’s symbol, Rj, to the super-peer

spi’s symbols, Ri, exists if there is a super-peer mapping assertion in Π whose tail

mentions Rj and whose head mentions Ri in a datalog rule.

Example 8.1. Under the data protection law, Hospitals A, B, and C, in three super-

peer domains are allowed to share their patients’ Electronic Health Records (EHRs)

after patients give their consents for medication (see Figure 7). A patient, Jong,

was hospitalized in Hospital A for surgery. After that, Jong went to Hospital B for

an outpatient medication. A physician, Matt, in Hospital C was authorized by Jong

to query his shareable EHRs collected from Hospitals A and B’s super-peers, spa, spb
for a medical treatment. The partial ontology global schemas for Hospital A, B, and

C are: GSspa , GSspb , and GSspc (see Figure 8).

Fig. 7. The tree-based information query technique to share the hospitals A, B, C’s EHRs through the

GAV and LAV (GLAV) semantic mappings among GSspa , GSspb , and GSspc in their super-peers

Hospital A has the following terms as its super-peer’s ontology global schema,

GSspa , vocabularies:

Class: Clinic, HealthData, SurgeryData, and HospitalizationData

Property: create and beTreated with the respective domain and range class:

T v ∀ create.Clinic, T v ∀ create−.HealthData

T v ∀ beTreated.Individual, T v ∀ beTreated−.Clinic.

Hospital B has the following terms as its super-peer’s ontology global schema, GSspb ,

vocabularies:
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Class: Person, HealthCenter, and PatientData with subClass OutPatientData

Property: own, beMedicated with their respective domain and range class are:

T v ∀ own.Person, T v ∀ own−.PatientData.

T v ∀ beMedicated.Person, T v ∀ beMedicated−.HealthCenter.

Hospital C has the following terms as its super-peer’s ontology global schema, GSspc ,

vocabularies:

Class: Patient, Hospital, Surgery, and HealthRecord

Property: beCured, hasHealthRecord, generate, and hasMedType with their re-

spective domain and range class are:

T v ∀ beCured.Patient, T v ∀ beCured−.Hospital

T v ∀ hasHealthRecord.Patient, T v ∀ hasHealthRecord−.HealthRecord

T v ∀ generate.Hospital, T v ∀ generate−.HealthRecord

T v ∀ hasMedType.HealthRecord, T v ∀ hasMedType−.Outpatient

T v ∀ hasMedType−.Surgery, T v ∀ hasMedType−.Hospitalization

Use LAV approach to define each class and property of Hospitals A and B super-

peers, spa and spb’s, global schemas as views in terms of Hospital C’s spc’s global

schema vocabularies are shown as follows:

Views use at the spc in Hospital C created from the GSspa schema’s vocabularies

are:

def(V1Individual)
LAV

⊆ Patient,

def(V2Clinic)
LAV

⊆ Hospital,

def(V3HealthData)
LAV

⊆ HealthRecord

def(V4SurgeryData)
LAV

⊆ HealthRecord ∧ ∀hasMedType.Surgery

def(V5HospitalizationData)
LAV
⊆ HealthRecord ∧ ∀hasMedType.Hospitalization

def(V6create)
LAV

⊆ generate,

def(V7hold)
LAV

⊆ hasHealthRecrod,

def(V8beTreated)
LAV

⊆ beCured,

def(V9Purpose)
LAV

⊆ Purpose

Views use at the spc in Hospital C created from the GSspb schema’s vocabularies

are:

def(V10Person)
LAV

⊆ Patient,
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Fig. 8. A partial ontology for EHRs’ sharing and privacy protection

def(V11HealthCenter)
LAV

⊆ Hospital

def(V12PatientData)
LAV

⊆ HealthRecord,

def(V13OutPatientData)
LAV

⊆ HealthRecord ∧ ∀ hasMedType.OutPatient

def(V14produce)
LAV

⊆ generate,

def(V15own)
LAV

⊆ hasHealthRecrod,

def(V16beMedicated)
LAV

⊆ beCured,

def(V17produce)
LAV

⊆ generate,

def(V18Purpose)
LAV

⊆ Purpose

A physician, Matt, queries a patient’s EHRs at the spc of Hospital C by using a query
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rewriting service instead of directly requesting each hospital. An original datalog-

based rule for a conjunctive query CQπc(spc) at Hospital C is shown as:

spc : Patient(YJHu) ∧ spc : beCured(YJHu, ?y) ∧ spc : hasHealthRecrod(YJHu, ?r)

∧ spc : HealthRecord(?r) ∧ spc : hasMedType(?r, ?mt) ∧
spc : generate(?y, ?r) ∧ spc : Purpose(Medication)

−→ spc : HealthRecord(YJHu, ?r)

Qπc(spc : HealthRecord(Y JHu, ?r))
GAV←−

CQπa
(spa : HealthData(Y JHu, ?r)) ∧ CQπb

(spb : PatientData(Y JHu, ?r))

Query rewriting of the CQπc
(spc) in terms of two CQs, e.g., CQπa

(spa) and

CQπb
(spa), uses views defined at the Qπc

(spc):

V1Individual ∧ V8beTreated ∧ V7hold ∧ V4SurgeryData ∧ V6create ∧ V9Purpose
−→ spa : HealthData(YJHu, ?r) ! CQπa(spa)

Above CQπa(spa) is corresponding to:

spa : Individual(YJHu) ∧ spa : beTreated(YJHu, ?c) ∧ spa : hold(YJHu, ?d)

∧ spa : SurgeryData(?sd) ∧ spa : create(?h, ?hd) ∧ spa : Purpose(Medication)

−→ spa : HealthData(YJHu, ?sd)

V10Person ∧ V16beMedicated ∧ V15own ∧ V13OutPatientData ∧ V17produce ∧ V18Purpose
−→ spb : PatientData(YJHu, ?r) ! CQπb

(spb)

Above CQπb
(spb) is corresponding to:

spb : Person(YJHu) ∧ spb : beMedicated(YJHu, ?c) ∧ spb : own(YJHu, ?d)

∧ spb : OutPatientData(?od) ∧ spb : produce(?h, ?hd)

∧ spb : Purpose(Medication) −→ spb : PatientData(YJHu, ?od)

9. Related Work

Data integration is a pervasive challenge faced in the applications that need to

query across multiple autonomous and heterogeneous data sources. This problem

has been receiving considerable attention from researchers in the fields of Artificial

Intelligence and Database System more than a decade [Halevy et al., 2006] [Levy,

2001]. A logic of the Description Logic (DL) family is used to model the ontology

managed by the integration system, to formulate queries posed to the system, and to

perform several types of automated reasoning supporting both the modeling, and

the query answering process [Calvanses et al., 2002]. The ontology expresses the
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domain of interest of the information system at a high level of abstraction, and the

relationship between data at the sources and instances of concepts and roles in the

ontology is expressed by means of mappings, such as GLAV, GAV, LAV [Calvanese

et al., 1998] [Poggi et al., 2008].

Recently, various studies, such as PAYGO systems, have pointed out using a PDMS

in the wide-scale data integration system [Halevy et al., 2003] [Madhavan et al.,

2007]. This inspires us to put forth efforts in the peer data integration research.

However, PAYGO systems used a relation data model, which did not use any ontology-

based conceptual data modeling for schema mappings and information query. This

hampers the feasibility of information integration when the semantics for describing

real world entities is represented as an abstract concept. In the peer-to-peer data

integration systems [Calvanese et al., 2006], authors used multi-modal epistemic for-

malization to describe each peer as a rational agent that exchanges knowledge/belief

with other peers in a two-level peer-to-peer architecture. This epistemic modeling

is far more complex and infeasible in the real data integration system implemen-

tation. Therefore, the description logic DL− LiteA, a subset of the first-order logic

(FOL), adopted from the semantic web technique was proposed to solve the tradi-

tional data integration problem [Calvanese et al., 2008a] [Calvanese et al., 2008b].

In this paper, we use a three-level super-peer architecture with tree-based informa-

tion query through the GLAV schema mappings among super-peers to avoid any

possible peer-to-peer cyclic mapping problems.

Data integration is usually hampered by legitimate and widespread privacy con-

cerns, so it is critical to develop a technique to enable the integration of data that

does not lose privacy. We face a challenge to develop a privacy framework for data

integration that is flexible and clear to the end users [Clifton et al., 2004]. View-

based query answering over DL provides a framework to answer a query under the

assumption that the only accessible information consists of the precomputed an-

swers to a set of queries, called views. Privacy-aware access to data, each user is

associated with a set of views, called authorization views, which specify the infor-

mation that the user is allowed to access [Calvanese et al., 2008b].

The EFAF access control model is an extension of the FAF that provided the

solution for privacy protection [Jajodia et al., 2001] [Karjoth and Schunter, 2002].

This method is close to our solution, but its privacy protection control is more

on the logic program and less on the ontology schema used for structure data

modeling. This also prevents the data integration and protection in multiple sites.

The other similar model for enforcing the enterprise privacy protection goes to

the EPAL [Karjoth et al., 2003] [Vimercati et al., 2007]. Another OASIS XACML

is a policy language for privacy and digital rights protection. However, it is an

XML-based policy language so the policies based on XACML possibly might have

ambiguous semantics that prevent us from using a flexible policy combination in

multiple peers [Anderson, 2006].
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10. Conclusion and Further Study

We propose a semantic privacy protection model which encompasses and extends

the existing works on data sharing and integration through a super-peer data man-

agement. We intend to solve the privacy protection problem to provide data inte-

gration and integration in the multiple peers by using one of the ontology and rule

language combinations, e.g. SWRL. Another OWL2 combination will be considered

in the near future [Grau et al., 2008b]. In addition, this model can be extended to a

modular reuse of ontologies for data integration and protection in the cross-domain

cloud computing environment [Grau et al., 2008a] [Hu et al., 2011].

The perfect ontology alignment through ontology mapping and merging creates

a global ontology schema at the super-peer by integrating multiple peers’ local on-

tology schemas. In addition, the perfect rule integration by the perfect mapping

language avoids any possible data usage conflicts between datalog rules from dif-

ferent data sources at the super-peer. In fact, a datalog rule is considered to be a

conjunctive query, which provides data query and protection services for each peer.

However, this perfect ontology alignment is impossible without the restrictions of

using the same ontology schema in the root layers of multiple peers. We face another

policy hidden conflict challenge when background default policy assumptions vary

between different peers. The semantics-enabled policies are combined at the super-

peer, so we simplify the data integration and protection services for a PDMS.

In a wide-scale data integration scenario, we use the tree-based information

query through the super-peers’ GLAV semantic mapping assertions to avoid cyclic

schema mappings among super-peers. Therefore, we can incrementally collect in-

formation from the other super-peer domains. The soundness and completeness

criteria are preserved for data integration in a super-peer domain. This supports

the trustworthiness of a policy combination for data integration and protection from

multiple peers.

We currently did not deal with the issue of privacy-preserving instance fusion (or

record linkage) in our tree-based information query as shown in [Hall and Fienberg,

2010] [Rahm et al., 2005]. All of these need further study.
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