Towards Law-Aware Semantic Cloud Policies with Exceptions for Data Integration and Protection

Yuh-Jong Hu Win-Nan Wu Di-Rong Cheng {hu, d9905, 98753031}@cs.nccu.edu.tw

> Emerging Network Technology(ENT) Lab. Department of Computer Science National Chengchi University, Taipei, Taiwan

> > June-13-2012

International Conference on Web Intelligence, Mining, and Semantics (WIMS'12)

- Current cloud infrastructures do not provide enough automatically self-managed services.
- In order to seek technology innovation on Software-as-a-service (SaaS), we apply semantic web technologies for cloud computing.
- Automatically self-managed SaaS is not only for automatic allocation of cloud resources, but also for enforcing security and privacy policies.
- Law-as-a-Service (LaaS) further enhances security and privacy policy representation and enforcement in the cloud.

- Current cloud infrastructures do not provide enough automatically self-managed services.
- In order to seek technology innovation on Software-as-a-service (SaaS), we apply semantic web technologies for cloud computing.
- Automatically self-managed SaaS is not only for automatic allocation of cloud resources, but also for enforcing security and privacy policies.
- Law-as-a-Service (LaaS) further enhances security and privacy policy representation and enforcement in the cloud.

- Current cloud infrastructures do not provide enough automatically self-managed services.
- In order to seek technology innovation on Software-as-a-service (SaaS), we apply semantic web technologies for cloud computing.
- Automatically self-managed SaaS is not only for automatic allocation of cloud resources, but also for enforcing security and privacy policies.
- Law-as-a-Service (LaaS) further enhances security and privacy policy representation and enforcement in the cloud.

- Current cloud infrastructures do not provide enough automatically self-managed services.
- In order to seek technology innovation on Software-as-a-service (SaaS), we apply semantic web technologies for cloud computing.
- Automatically self-managed SaaS is not only for automatic allocation of cloud resources, but also for enforcing security and privacy policies.
- Law-as-a-Service (LaaS) further enhances security and privacy policy representation and enforcement in the cloud.

- How to empower semantic technologies for cloud computing to provide law-aware semantics-enabled cloud policies?
- I How to accomplish data protection while enforcing data integration?
- O How to use semantic legal policies to interpret laws and ensure the legality of data sharing and protection across jurisdictions?
- How to unify semantic policies and allow defeasible reasoning of a policy's exceptions handling?

- How to empower semantic technologies for cloud computing to provide law-aware semantics-enabled cloud policies?
- I How to accomplish data protection while enforcing data integration?
- One of the semantic legal policies to interpret laws and ensure the legality of data sharing and protection across jurisdictions?
- How to unify semantic policies and allow defeasible reasoning of a policy's exceptions handling?

- How to empower semantic technologies for cloud computing to provide law-aware semantics-enabled cloud policies?
- I How to accomplish data protection while enforcing data integration?
- How to use semantic legal policies to interpret laws and ensure the legality of data sharing and protection across jurisdictions?
- How to unify semantic policies and allow defeasible reasoning of a policy's exceptions handling?

- How to empower semantic technologies for cloud computing to provide law-aware semantics-enabled cloud policies?
- I How to accomplish data protection while enforcing data integration?
- How to use semantic legal policies to interpret laws and ensure the legality of data sharing and protection across jurisdictions?
- How to unify semantic policies and allow defeasible reasoning of a policy's exceptions handling?

- A law-aware semantic cloud policy infrastructure has been established to verify the feasibility of LaaS concepts.
- Semantic legal policies for data integration and protection are designed and enforced in a super-peer architecture.
- Constructing multiple super-peer domains to verify semantic legal policies across jurisdictions.
- Exploiting stratified Datalog with negation for a policy's exceptions handling.

- A law-aware semantic cloud policy infrastructure has been established to verify the feasibility of LaaS concepts.
- Semantic legal policies for data integration and protection are designed and enforced in a super-peer architecture.
- Onstructing multiple super-peer domains to verify semantic legal policies across jurisdictions.
- Exploiting stratified Datalog with negation for a policy's exceptions handling.

- A law-aware semantic cloud policy infrastructure has been established to verify the feasibility of LaaS concepts.
- Semantic legal policies for data integration and protection are designed and enforced in a super-peer architecture.
- Onstructing multiple super-peer domains to verify semantic legal policies across jurisdictions.
- Exploiting stratified Datalog with negation for a policy's exceptions handling.

- A law-aware semantic cloud policy infrastructure has been established to verify the feasibility of LaaS concepts.
- Semantic legal policies for data integration and protection are designed and enforced in a super-peer architecture.
- Onstructing multiple super-peer domains to verify semantic legal policies across jurisdictions.
- Exploiting stratified Datalog with negation for a policy's exceptions handling.

We proposed a three-layer law-aware semantic policy infrastructure in [25]:

- Trusted Legal Domain (TLD)
- Trusted Virtual Domain (TVD)
- Trusted Machine Domain (TMD).

We proposed a three-layer law-aware semantic policy infrastructure in [25]:

• Trusted Legal Domain (TLD)

- Trusted Virtual Domain (TVD)
- Trusted Machine Domain (TMD).

We proposed a three-layer law-aware semantic policy infrastructure in [25]:

- Trusted Legal Domain (TLD)
- Trusted Virtual Domain (TVD)
- Trusted Machine Domain (TMD).

We proposed a three-layer law-aware semantic policy infrastructure in [25]:

- Trusted Legal Domain (TLD)
- Trusted Virtual Domain (TVD)
- Trusted Machine Domain (TMD).

Logical Cage Model vs. Legal Cage Model

- A TVD is a *logical cage* model, which consists of a set of distributed virtual machines (VMs), storage for the VMs, and a communication medium interconnecting the VMs [6].
- A TLD is a *legal cage* model, which determined by a specific law, to regulate virtual legal boundary of data disclosure and usage.
- TLD concepts are modeled as a taxonomy of laws, where a type of law and an effective judicial domain are two factors to decide whether a data request is allowed.

Logical Cage Model vs. Legal Cage Model

- A TVD is a *logical cage* model, which consists of a set of distributed virtual machines (VMs), storage for the VMs, and a communication medium interconnecting the VMs [6].
- A TLD is a *legal cage* model, which determined by a specific law, to regulate virtual legal boundary of data disclosure and usage.
- TLD concepts are modeled as a taxonomy of laws, where a type of law and an effective judicial domain are two factors to decide whether a data request is allowed.

Logical Cage Model vs. Legal Cage Model

- A TVD is a *logical cage* model, which consists of a set of distributed virtual machines (VMs), storage for the VMs, and a communication medium interconnecting the VMs [6].
- A TLD is a *legal cage* model, which determined by a specific law, to regulate virtual legal boundary of data disclosure and usage.
- TLD concepts are modeled as a taxonomy of laws, where a type of law and an effective judicial domain are two factors to decide whether a data request is allowed.

- Semantic legal policies are expressed as logical theories for information queries, and context are sets of ground facts that fed into policies for outputs.
- Semantic legal policies are mapping from a data usage context to access control decisions, such as permit, deny, and error.
- A data usage context comprises a user's role along with his/her personal properties, resources metadata, access time, access location, purpose, and action, etc.
- Once a user's data usage context is satisfied with the domain policy of a TLD, the semantic legal policies of this TLD are identified and executed.
- Semantic legal policy outputs (or query answers) are also encoded as logical formulas for authorization.

- Semantic legal policies are expressed as logical theories for information queries, and context are sets of ground facts that fed into policies for outputs.
- Semantic legal policies are mapping from a data usage context to access control decisions, such as permit, deny, and error.
- A data usage context comprises a user's role along with his/her personal properties, resources metadata, access time, access location, purpose, and action, etc.
- Once a user's data usage context is satisfied with the domain policy of a TLD, the semantic legal policies of this TLD are identified and executed.
- Semantic legal policy outputs (or query answers) are also encoded as logical formulas for authorization.

- Semantic legal policies are expressed as logical theories for information queries, and context are sets of ground facts that fed into policies for outputs.
- Semantic legal policies are mapping from a data usage context to access control decisions, such as permit, deny, and error.
- A data usage context comprises a user's role along with his/her personal properties, resources metadata, access time, access location, purpose, and action, etc.
- Once a user's data usage context is satisfied with the domain policy of a TLD, the semantic legal policies of this TLD are identified and executed.
- Semantic legal policy outputs (or query answers) are also encoded as logical formulas for authorization.

- Semantic legal policies are expressed as logical theories for information queries, and context are sets of ground facts that fed into policies for outputs.
- Semantic legal policies are mapping from a data usage context to access control decisions, such as permit, deny, and error.
- A data usage context comprises a user's role along with his/her personal properties, resources metadata, access time, access location, purpose, and action, etc.
- Once a user's data usage context is satisfied with the domain policy of a TLD, the semantic legal policies of this TLD are identified and executed.
- Semantic legal policy outputs (or query answers) are also encoded as logical formulas for authorization.

- Semantic legal policies are expressed as logical theories for information queries, and context are sets of ground facts that fed into policies for outputs.
- Semantic legal policies are mapping from a data usage context to access control decisions, such as permit, deny, and error.
- A data usage context comprises a user's role along with his/her personal properties, resources metadata, access time, access location, purpose, and action, etc.
- Once a user's data usage context is satisfied with the domain policy of a TLD, the semantic legal policies of this TLD are identified and executed.
- Semantic legal policy outputs (or query answers) are also encoded as logical formulas for authorization.

Semantic Legal Policies as Logical Theories (conti.)

- Multi-tenant cloud services: Abbadi [1], Cabuk [6], Eberhart [13], Foresti [16], Haase [20], Hu [25].
- Peer data management: Beneventano [3], Calvanese [7], Halevey [21] [22], Hu [27], Madhavan [31].
- Semantic policies for data sharing and protection: Clifton [10], Hu [24] [26].
- Semantic privacy policies: Bart [2], Datta [11], Weitzner [37].
- Semantic legal informatics: Boer [4], Gordon [19].
- Datalog for security and privacy: Bonatti [5], Jajodia [28].

- Multi-tenant cloud services: Abbadi [1], Cabuk [6], Eberhart [13], Foresti [16], Haase [20], Hu [25].
- Peer data management: Beneventano [3], Calvanese [7], Halevey [21] [22], Hu [27], Madhavan [31].
- Semantic policies for data sharing and protection: Clifton [10], Hu [24] [26].
- Semantic privacy policies: Bart [2], Datta [11], Weitzner [37].
- Semantic legal informatics: Boer [4], Gordon [19].
- Datalog for security and privacy: Bonatti [5], Jajodia [28].

- Multi-tenant cloud services: Abbadi [1], Cabuk [6], Eberhart [13], Foresti [16], Haase [20], Hu [25].
- Peer data management: Beneventano [3], Calvanese [7], Halevey [21] [22], Hu [27], Madhavan [31].
- Semantic policies for data sharing and protection: Clifton [10], Hu [24] [26].
- Semantic privacy policies: Bart [2], Datta [11], Weitzner [37].
- Semantic legal informatics: Boer [4], Gordon [19].
- Datalog for security and privacy: Bonatti [5], Jajodia [28].

- Multi-tenant cloud services: Abbadi [1], Cabuk [6], Eberhart [13], Foresti [16], Haase [20], Hu [25].
- Peer data management: Beneventano [3], Calvanese [7], Halevey [21] [22], Hu [27], Madhavan [31].
- Semantic policies for data sharing and protection: Clifton [10], Hu [24] [26].
- Semantic privacy policies: Bart [2], Datta [11], Weitzner [37].
- Semantic legal informatics: Boer [4], Gordon [19].
- Datalog for security and privacy: Bonatti [5], Jajodia [28].

- Multi-tenant cloud services: Abbadi [1], Cabuk [6], Eberhart [13], Foresti [16], Haase [20], Hu [25].
- Peer data management: Beneventano [3], Calvanese [7], Halevey [21] [22], Hu [27], Madhavan [31].
- Semantic policies for data sharing and protection: Clifton [10], Hu [24] [26].
- Semantic privacy policies: Bart [2], Datta [11], Weitzner [37].
- Semantic legal informatics: Boer [4], Gordon [19].
- Datalog for security and privacy: Bonatti [5], Jajodia [28].

- Multi-tenant cloud services: Abbadi [1], Cabuk [6], Eberhart [13], Foresti [16], Haase [20], Hu [25].
- Peer data management: Beneventano [3], Calvanese [7], Halevey [21] [22], Hu [27], Madhavan [31].
- Semantic policies for data sharing and protection: Clifton [10], Hu [24] [26].
- Semantic privacy policies: Bart [2], Datta [11], Weitzner [37].
- Semantic legal informatics: Boer [4], Gordon [19].
- Datalog for security and privacy: Bonatti [5], Jajodia [28].

A Super-Peer Domain (SPD) Model

A super-peer specifies its legal semantic policies based on a type of law from a jurisdiction within a super-peer domain:

- A Peer Data Management System (PDMS) is the best way to achieve wide-scale data integration over the Internet.
- However, a pure peer data integration architecture is hard to enact in the cloud environment because we are unable to capture the unstructured peer relationships from a large amount of peers.

A Super-Peer Domain (SPD) Model

A super-peer specifies its legal semantic policies based on a type of law from a jurisdiction within a super-peer domain:

- A Peer Data Management System (PDMS) is the best way to achieve wide-scale data integration over the Internet.
- However, a pure peer data integration architecture is hard to enact in the cloud environment because we are unable to capture the unstructured peer relationships from a large amount of peers.

A Super-Peer Domain (SPD) Model

A super-peer specifies its legal semantic policies based on a type of law from a jurisdiction within a super-peer domain:

- A Peer Data Management System (PDMS) is the best way to achieve wide-scale data integration over the Internet.
- However, a pure peer data integration architecture is hard to enact in the cloud environment because we are unable to capture the unstructured peer relationships from a large amount of peers.

- Global-As-View(GAV): expressing each concept in the global schema as queries over the data sources.
- Local-As-View(LAV): expressing each concept in the data sources as a query (or view) over the global schema.
- Global-Local-As-View(GLAV): allowing flexible schema definitions independent of the particular details of the data sources.

- Global-As-View(GAV): expressing each concept in the global schema as queries over the data sources.
- Local-As-View(LAV): expressing each concept in the data sources as a query (or view) over the global schema.
- Global-Local-As-View(GLAV): allowing flexible schema definitions independent of the particular details of the data sources.

- Global-As-View(GAV): expressing each concept in the global schema as queries over the data sources.
- Local-As-View(LAV): expressing each concept in the data sources as a query (or view) over the global schema.
- Global-Local-As-View(GLAV): allowing flexible schema definitions independent of the particular details of the data sources.

- Global-As-View(GAV): expressing each concept in the global schema as queries over the data sources.
- Local-As-View(LAV): expressing each concept in the data sources as a query (or view) over the global schema.
- Global-Local-As-View(GLAV): allowing flexible schema definitions independent of the particular details of the data sources.

- *Registration* principle: location of service provider registration, which enables data collection services.
- *Nationality* principle: nationality of the data owner whose data are being used.
- *Territoriality* principle: data center location where actual data processing happens.

- *Registration* principle: location of service provider registration, which enables data collection services.
- *Nationality* principle: nationality of the data owner whose data are being used.
- *Territoriality* principle: data center location where actual data processing happens.

- *Registration* principle: location of service provider registration, which enables data collection services.
- *Nationality* principle: nationality of the data owner whose data are being used.
- *Territoriality* principle: data center location where actual data processing happens.

- *Registration* principle: location of service provider registration, which enables data collection services.
- *Nationality* principle: nationality of the data owner whose data are being used.
- *Territoriality* principle: data center location where actual data processing happens.

Objectives of Law-Aware Semantic Cloud

Applying semantic technologies in the trusted virtual cloud infrastructure to:

- offer LaaS for Cloud Service Providers (CSPs) while integrating semantic data modeled as ontologies from multiple data sources.
- enable query services for cloud end-users through a combination of ontologies and stratified Datalog rules with negation.

Objectives of Law-Aware Semantic Cloud

Applying semantic technologies in the trusted virtual cloud infrastructure to:

- offer LaaS for Cloud Service Providers (CSPs) while integrating semantic data modeled as ontologies from multiple data sources.
- enable query services for cloud end-users through a combination of ontologies and stratified Datalog rules with negation.

Objectives of Law-Aware Semantic Cloud

Applying semantic technologies in the trusted virtual cloud infrastructure to:

- offer LaaS for Cloud Service Providers (CSPs) while integrating semantic data modeled as ontologies from multiple data sources.
- enable query services for cloud end-users through a combination of ontologies and stratified Datalog rules with negation.

- Each super-peer domain π_i corresponds to a TLD.
- Grouping a set of peers into a super-peer domain and organize them into a two-level architecture: peers and super-peer.
- The super-peer is a guardian, which integrates all of its local peers' ontologies into a global ontology through ontology mapping, alignment, and merging.
- Semantic global mappings are also possible from the current $Super peer_{\alpha}$ to interlink with another $Super peer_{\beta}$.
- Semantic legal privacy policies enforcement is posed to a super-peer that provides data integration and protection services.

- Each super-peer domain π_i corresponds to a TLD.
- Grouping a set of peers into a super-peer domain and organize them into a two-level architecture: peers and super-peer.
- The super-peer is a guardian, which integrates all of its local peers' ontologies into a global ontology through ontology mapping, alignment, and merging.
- Semantic global mappings are also possible from the current $Super peer_{\alpha}$ to interlink with another $Super peer_{\beta}$.
- Semantic legal privacy policies enforcement is posed to a super-peer that provides data integration and protection services.

- Each super-peer domain π_i corresponds to a TLD.
- Grouping a set of peers into a super-peer domain and organize them into a two-level architecture: peers and super-peer.
- The super-peer is a guardian, which integrates all of its local peers' ontologies into a global ontology through ontology mapping, alignment, and merging.
- Semantic global mappings are also possible from the current $Super peer_{\alpha}$ to interlink with another $Super peer_{\beta}$.
- Semantic legal privacy policies enforcement is posed to a super-peer that provides data integration and protection services.

- Each super-peer domain π_i corresponds to a TLD.
- Grouping a set of peers into a super-peer domain and organize them into a two-level architecture: peers and super-peer.
- The super-peer is a guardian, which integrates all of its local peers' ontologies into a global ontology through ontology mapping, alignment, and merging.
- Semantic global mappings are also possible from the current $Super peer_{\alpha}$ to interlink with another $Super peer_{\beta}$.
- Semantic legal privacy policies enforcement is posed to a super-peer that provides data integration and protection services.

- Each super-peer domain π_i corresponds to a TLD.
- Grouping a set of peers into a super-peer domain and organize them into a two-level architecture: peers and super-peer.
- The super-peer is a guardian, which integrates all of its local peers' ontologies into a global ontology through ontology mapping, alignment, and merging.
- Semantic global mappings are also possible from the current $Super peer_{\alpha}$ to interlink with another $Super peer_{\beta}$.
- Semantic legal privacy policies enforcement is posed to a super-peer that provides data integration and protection services.

- Each super-peer domain π_i corresponds to a TLD.
- Grouping a set of peers into a super-peer domain and organize them into a two-level architecture: peers and super-peer.
- The super-peer is a guardian, which integrates all of its local peers' ontologies into a global ontology through ontology mapping, alignment, and merging.
- Semantic global mappings are also possible from the current $Super peer_{\alpha}$ to interlink with another $Super peer_{\beta}$.
- Semantic legal privacy policies enforcement is posed to a super-peer that provides data integration and protection services.

- A super-peer sp_α is the only node in a super-peer domain π_α ∈ SPD_α, which allows an agent_α to enforce semantic legal policies.
- Through local LAV mapping assertions, a global schema GS_α provides an integrated view for a set of peers from P_α = {peer₁, ..., peer_n}.
- A set of peers from P_α are mediators. A peer p_i ∈ π_α maps its local ontology schema, LS_{peer_i}, to a set of relational data sources, ds_i, from DS_α = {ds₁, ..., ds_m}.
- A set of local mapping assertions, M_{α} , created from a mapping language, ML, are used to semantically link between a super-peer sp_{α} and a set of peers.
- A set of local data sources, *ds_i*, from *DS_α*, are relational structure data that store materialized data instances.

- A super-peer sp_α is the only node in a super-peer domain π_α ∈ SPD_α, which allows an agent_α to enforce semantic legal policies.
- Through local LAV mapping assertions, a global schema GS_α provides an integrated view for a set of peers from P_α = {peer₁, ..., peer_n}.
- A set of peers from P_α are mediators. A peer p_i ∈ π_α maps its local ontology schema, LS_{peer_i}, to a set of relational data sources, ds_i, from DS_α = {ds₁, ..., ds_m}.
- A set of local mapping assertions, M_{α} , created from a mapping language, ML, are used to semantically link between a super-peer sp_{α} and a set of peers.
- A set of local data sources, *ds_i*, from *DS_α*, are relational structure data that store materialized data instances.

- A super-peer sp_α is the only node in a super-peer domain π_α ∈ SPD_α, which allows an agent_α to enforce semantic legal policies.
- Through local LAV mapping assertions, a global schema GS_α provides an integrated view for a set of peers from P_α = {peer₁, ..., peer_n}.
- A set of peers from P_α are mediators. A peer p_i ∈ π_α maps its local ontology schema, LS_{peeri}, to a set of relational data sources, ds_i, from DS_α = {ds₁, ..., ds_m}.
- A set of local mapping assertions, M_{α} , created from a mapping language, ML, are used to semantically link between a super-peer sp_{α} and a set of peers.
- A set of local data sources, *ds_i*, from *DS_α*, are relational structure data that store materialized data instances.

- A super-peer sp_α is the only node in a super-peer domain π_α ∈ SPD_α, which allows an agent_α to enforce semantic legal policies.
- Through local LAV mapping assertions, a global schema GS_α provides an integrated view for a set of peers from P_α = {peer₁, ..., peer_n}.
- A set of peers from P_α are mediators. A peer p_i ∈ π_α maps its local ontology schema, LS_{peer_i}, to a set of relational data sources, ds_i, from DS_α = {ds₁, ..., ds_m}.
- A set of local mapping assertions, M_{α} , created from a mapping language, ML, are used to semantically link between a super-peer sp_{α} and a set of peers.
- A set of local data sources, *ds_i*, from *DS_α*, are relational structure data that store materialized data instances.

- A super-peer sp_α is the only node in a super-peer domain π_α ∈ SPD_α, which allows an agent_α to enforce semantic legal policies.
- Through local LAV mapping assertions, a global schema GS_α provides an integrated view for a set of peers from P_α = {peer₁, ..., peer_n}.
- A set of peers from P_α are mediators. A peer p_i ∈ π_α maps its local ontology schema, LS_{peer_i}, to a set of relational data sources, ds_i, from DS_α = {ds₁, ..., ds_m}.
- A set of local mapping assertions, M_{α} , created from a mapping language, ML, are used to semantically link between a super-peer sp_{α} and a set of peers.
- A set of local data sources, ds_i, from DS_α, are relational structure data that store materialized data instances.

- A super-peer sp_α is the only node in a super-peer domain π_α ∈ SPD_α, which allows an agent_α to enforce semantic legal policies.
- Through local LAV mapping assertions, a global schema GS_α provides an integrated view for a set of peers from P_α = {peer₁, ..., peer_n}.
- A set of peers from P_α are mediators. A peer p_i ∈ π_α maps its local ontology schema, LS_{peer_i}, to a set of relational data sources, ds_i, from DS_α = {ds₁, ..., ds_m}.
- A set of local mapping assertions, M_{α} , created from a mapping language, ML, are used to semantically link between a super-peer sp_{α} and a set of peers.
- A set of local data sources, ds_i, from DS_α, are relational structure data that store materialized data instances.

Semantics of Multiple TLDs

A super-peer domain π_{α} for TLD_{α} is related to another super-peer domain π_{β} for TLD_{β} through:

• A set of super-peer's GLAV semantic mapping assertions

 $CQ_{\pi_{\beta}}(sp_{\beta}) \rightsquigarrow CQ_{\pi_{\alpha}}(sp_{\alpha})$

where $CQ_{\pi_{\beta}}(sp_{\beta})$ and $CQ_{\pi_{\alpha}}(sp_{\alpha})$ are conjunctive queries over the super-peer sp_{β} and super-peer sp_{α} .

• A Datalog rule is a mapping assertion of GLAV:

$$H \longleftarrow B_1 \wedge B_2 \wedge, \cdots, \wedge B_n$$

where H, query results (or views) are from the source of sp_{α} 's global ontology schema, and rule antecedent B_i , is a pattern matching specification from target sp_{β} 's global ontology schema.

Semantics of Multiple TLDs

A super-peer domain π_{α} for TLD_{α} is related to another super-peer domain π_{β} for TLD_{β} through:

• A set of super-peer's GLAV semantic mapping assertions

$$CQ_{\pi_{\beta}}(sp_{\beta}) \rightsquigarrow CQ_{\pi_{\alpha}}(sp_{\alpha})$$

where $CQ_{\pi_{\beta}}(sp_{\beta})$ and $CQ_{\pi_{\alpha}}(sp_{\alpha})$ are conjunctive queries over the super-peer sp_{β} and super-peer sp_{α} .

• A Datalog rule is a mapping assertion of GLAV:

$$H \longleftarrow B_1 \wedge B_2 \wedge, \cdots, \wedge B_n$$

where H, query results (or views) are from the source of sp_{α} 's global ontology schema, and rule antecedent B_i , is a pattern matching specification from target sp_{β} 's global ontology schema.

Semantics of Multiple TLDs

A super-peer domain π_{α} for TLD_{α} is related to another super-peer domain π_{β} for TLD_{β} through:

• A set of super-peer's GLAV semantic mapping assertions

$$CQ_{\pi_{\beta}}(sp_{\beta}) \rightsquigarrow CQ_{\pi_{\alpha}}(sp_{\alpha})$$

where $CQ_{\pi_{\beta}}(sp_{\beta})$ and $CQ_{\pi_{\alpha}}(sp_{\alpha})$ are conjunctive queries over the super-peer sp_{β} and super-peer sp_{α} .

• A Datalog rule is a mapping assertion of GLAV:

$$H \longleftarrow B_1 \land B_2 \land, \cdots, \land B_n$$

where H, query results (or views) are from the source of sp_{α} 's global ontology schema, and rule antecedent B_i , is a pattern matching specification from target sp_{β} 's global ontology schema.

- A semantic legal policy is created from a policy language, and a semantic legal policy language is shown as a combination of ontology language and rule language.
- A semantic legal policy is composed of ontologies and rules, where ontologies are created from an ontology language and rules are created from a rule language.
- Currently, OWL-DL is used for policy ontology and stratified Datalog with negation, e.g., *Datalog*, rules are used for defeasible rules reasoning.
- The research challenging is how to integrate two families of logics, description logic (DL) and logic program (LP), for a semantic legal policy representation and enforcement under non-monotonic semantics.

- A semantic legal policy is created from a policy language, and a semantic legal policy language is shown as a combination of ontology language and rule language.
- A semantic legal policy is composed of ontologies and rules, where ontologies are created from an ontology language and rules are created from a rule language.
- Currently, OWL-DL is used for policy ontology and stratified Datalog with negation, e.g., *Datalog*, rules are used for defeasible rules reasoning.
- The research challenging is how to integrate two families of logics, description logic (DL) and logic program (LP), for a semantic legal policy representation and enforcement under non-monotonic semantics.

- A semantic legal policy is created from a policy language, and a semantic legal policy language is shown as a combination of ontology language and rule language.
- A semantic legal policy is composed of ontologies and rules, where ontologies are created from an ontology language and rules are created from a rule language.
- Currently, OWL-DL is used for policy ontology and stratified Datalog with negation, e.g., *Datalog*, rules are used for defeasible rules reasoning.
- The research challenging is how to integrate two families of logics, description logic (DL) and logic program (LP), for a semantic legal policy representation and enforcement under non-monotonic semantics.

- A semantic legal policy is created from a policy language, and a semantic legal policy language is shown as a combination of ontology language and rule language.
- A semantic legal policy is composed of ontologies and rules, where ontologies are created from an ontology language and rules are created from a rule language.
- Currently, OWL-DL is used for policy ontology and stratified Datalog with negation, e.g., *Datalog*, rules are used for defeasible rules reasoning.
- The research challenging is how to integrate two families of logics, description logic (DL) and logic program (LP), for a semantic legal policy representation and enforcement under non-monotonic semantics.

Policy Ontology for a Super-Peer Domain

Semantics of a super-peer data cloud includes two modular concepts:

- super-peer domain
- Odd a comparison of the second sec

Policy Ontology for a Super-Peer Domain

Semantics of a super-peer data cloud includes two modular concepts:

- super-peer domain
- e domain policy and data policy

• Balancing policy expressive power and computational complexity from integration of ontologies and rules.

- OWL-DL with positive unary and binary datalog rule from SWRL is not capable for a policy's exceptions handling.
- How about using different species of DL-Lite, e.g. *DL Lite_A*, *DL – Lite_F*, *DL – Lite_R* integrated with extended Datalog, *Datalog⁺⁻*, for a semantic legal policy enforcement?
- Consider seriously about policy enforcement criteria in terms of computational complexity, such as undecidable vs. decidable, intractable vs. tractable, etc.

- Balancing policy expressive power and computational complexity from integration of ontologies and rules.
- OWL-DL with positive unary and binary datalog rule from SWRL is not capable for a policy's exceptions handling.
- How about using different species of DL-Lite, e.g. *DL Lite_A*, *DL – Lite_F*, *DL – Lite_R* integrated with extended Datalog, *Datalog⁺⁻*, for a semantic legal policy enforcement?
- Consider seriously about policy enforcement criteria in terms of computational complexity, such as undecidable vs. decidable, intractable vs. tractable, etc.

- Balancing policy expressive power and computational complexity from integration of ontologies and rules.
- OWL-DL with positive unary and binary datalog rule from SWRL is not capable for a policy's exceptions handling.
- How about using different species of DL-Lite, e.g. *DL Lite_A*, *DL - Lite_F*, *DL - Lite_R* integrated with extended Datalog, *Datalog⁺⁻*, for a semantic legal policy enforcement?
- Consider seriously about policy enforcement criteria in terms of computational complexity, such as undecidable vs. decidable, intractable vs. tractable, etc.

- Balancing policy expressive power and computational complexity from integration of ontologies and rules.
- OWL-DL with positive unary and binary datalog rule from SWRL is not capable for a policy's exceptions handling.
- How about using different species of DL-Lite, e.g. *DL Lite_A*, *DL – Lite_F*, *DL – Lite_R* integrated with extended Datalog, *Datalog⁺⁻*, for a semantic legal policy enforcement?
- Consider seriously about policy enforcement criteria in terms of computational complexity, such as undecidable vs. decidable, intractable vs. tractable, etc.

Semantic Legal Policies A Domain Policy's Ontology

A PARTIAL ONTOLOGY FOR A DOMAIN POLICY

```
hasTLD.DomainPolicy(dmp),hasTLD<sup>-</sup>.TLD(tld).
hasCondition.DomainPolicy(dmp),
hasCondition<sup>-</sup>.Condition(dmc).
hasPartOf.Condition(dmc),
hasPartOf<sup>-</sup>.Purpose(checkIn),
hasPartOf<sup>-</sup>.DataUser(airlineStaff),
hasPartOf<sup>-</sup>.Action(read).
hasPartOf<sup>-</sup>.Location(TW),
hasPartOf<sup>-</sup>.Consent(\top).
= 1 hasSuperPeer<sup>-</sup>.Super - Peer(sp),
∃hasPeers.Peer(p),
\forall registerAt.Peer(p),
\exists registerAt^-.Super - Peer(sp).
```


LINK BETWEEN TLD AND SPD

 $\texttt{DomainPolicy(?dmp)} \land \texttt{hasTLD(?dmp,?tld)} \land \texttt{correspondTo(?tld,?spd)} \land \texttt{SPD(?spd)}$

 \longrightarrow domainPolicyForSPD(?dmp,?spd) \longleftarrow (1)

REQUEST FOR AN SPD

Request(?r) ∧ hasCondition(?r,?c) ∧ Condition(?c) ∧ DomainPolicy(?dmp) ∧ hasCondition(?dmp,?dmc) ∧ Condition(?dmc) ∧ isSubsumed(?c,?dmc) ∧ domainPolicyForSPD(?dmp,?spd) → getInTo(?r,?spd) ← (2)

LINK BETWEEN TLD AND SPD

DomainPolicy(?dmp) \land hasTLD(?dmp,?tld) \land correspondTo(?tld,?spd) \land SPD(?spd)

 \longrightarrow domainPolicyForSPD(?dmp, ?spd) \longleftarrow (1)

REQUEST FOR AN SPD

Request(?r) ∧ hasCondition(?r,?c) ∧ Condition(?c) ∧ DomainPolicy(?dmp) ∧ hasCondition(?dmp,?dmc) ∧ Condition(?dmc) ∧ isSubsumed(?c,?dmc) ∧ domainPolicyForSPD(?dmp,?spd) → getInTo(?r,?spd) ← (2)

Semantic Legal Policies A Data Policy's Ontology (conti.)

A PARTIAL ONTOLOGY FOR A DATA POLICY

```
isBelongedTo.DataPolicy(dap),
isBelongedTo<sup>-</sup>.DomainPolicy(dmp).
hasPII.Data(da), hasPII<sup>-</sup>.PII,
hasPFlightInfo.PII(pii),
hasPFlightInfo<sup>-</sup>.PersonalFlightInfo(fInfo).
hasPartOf.PersonalFlightInfo(finfo),
hasPartOf<sup>-</sup>.Name(name),
hasPartOf<sup>-</sup>.PassportNo.(pano),
hasPartOf<sup>-</sup>.Nationality(citizenship),
hasPartOf -.FlightNo.(fno),
hasPartOf<sup>-</sup>.Date(date).
hasPartOf<sup>-</sup>.Address(addr).
hasPartOf<sup>-</sup>.PhoneNo.(pono).
```


SUPER-PEER HAS ITS OWN PEERS

 $\begin{array}{l} \texttt{SPD(?spd)} \land \texttt{hasSuperPeer(?spd, ?sp)} \land \texttt{Super} - \texttt{Peer(?sp)} \land \texttt{hasPeers(?spd, ?p)} \\ \land \texttt{Peer(?p)} \land \texttt{registerAt(?p, ?sp)} \longrightarrow \texttt{hasOwnPeers(?sp, ?p)} \longleftarrow (3) \end{array}$

Super-peer is allowed to disclose PII

Super - Peer(?sp) ∧ hasOwnPeers(?sp, ?p) ∧ Peer(?p) ∧ canFind(?p,?da) ∧ Data(?da) ∧ hasPII(?da,?pii) ∧ PII(?pii) → hasDisclosedFor(?sp,?pii) ← (4)

SUPER-PEER HAS ITS OWN PEERS

 $\begin{array}{l} \texttt{SPD(?spd)} \land \texttt{hasSuperPeer(?spd, ?sp)} \land \texttt{Super} - \texttt{Peer(?sp)} \land \texttt{hasPeers(?spd, ?p)} \\ \land \texttt{Peer(?p)} \land \texttt{registerAt(?p, ?sp)} \longrightarrow \texttt{hasOwnPeers(?sp, ?p)} \longleftarrow \texttt{(3)} \end{array}$

SUPER-PEER IS ALLOWED TO DISCLOSE PII

```
Super - Peer(?sp) ∧ hasOwnPeers(?sp,?p) ∧ Peer(?p) ∧ canFind(?p,?da)
∧ Data(?da) ∧ hasPII(?da,?pii) ∧ PII(?pii)
→ hasDisclosedFor(?sp,?pii) ← (4)
```


A DATA POLICY FOR AN SPD

DataPolicy(?dap) ∧ isBelongedTo(?dap, ?dmp) ∧ DomainPolicy(?dmp) ∧ domainPolicyForSPD(?dmp, ?spd) → dataPolicyForSPD(?dap, ?spd) ← (5)

Request can use PII

 $\begin{array}{l} \texttt{Request(?r)} \land \texttt{getInTo(?r,?spd)} \land \texttt{satisfy(?r,?dap)} \land \texttt{DataPolicy(?dpa)} \\ \land \texttt{dataPolicyForSPD(?dap,?spd)} \land \texttt{SPD(?spd)} \land \texttt{hasSuperPeer(?spd,?sp)} \\ \land \texttt{hasDisclosedFor(?sp,?pii)} \longrightarrow \texttt{canUse(?r,?pii)} \longleftarrow \texttt{(6)} \end{array}$

A DATA POLICY FOR AN SPD

DataPolicy(?dap) ∧ isBelongedTo(?dap, ?dmp) ∧ DomainPolicy(?dmp) ∧ domainPolicyForSPD(?dmp, ?spd) → dataPolicyForSPD(?dap, ?spd) ← (5)

REQUEST CAN USE PII

 $\begin{array}{l} \mbox{Request(?r)} \land \mbox{getInTo(?r, ?spd)} \land \mbox{satisfy(?r, ?dap)} \land \mbox{DataPolicy(?dpa)} \\ \land \mbox{dataPolicyForSPD(?dap, ?spd)} \land \mbox{SPD(?spd)} \land \mbox{hasSuperPeer(?spd, ?sp)} \\ \land \mbox{hasDisclosedFor(?sp, ?pii)} \longrightarrow \mbox{canUse(?r, ?pii)} \longleftarrow (6) \end{array}$

Unifying Two Types of Policies Privacy Protection and National Security

- We manually unify two types of semantic legal policies, translated from privacy protection law and national security law.
- ⁽²⁾ Privacy protection law α and national security law β are unified at Super $- peer_{\alpha \cap \beta}$ at $TLD_{\alpha \cap \beta}$, where $TLD_{\alpha \cap \beta}$ is in the intersection of TLD_{α} and TLD_{β} jurisdiction
- Obtained by Database is in compliance with a data protection law α from one jurisdiction but data centers hosting database are possibly in compliance with national security law β from another jurisdiction.

Unifying Two Types of Policies Privacy Protection and National Security

- We manually unify two types of semantic legal policies, translated from privacy protection law and national security law.
- **②** Privacy protection law α and national security law β are unified at $Super peer_{\alpha \cap \beta}$ at $TLD_{\alpha \cap \beta}$, where $TLD_{\alpha \cap \beta}$ is in the intersection of TLD_{α} and TLD_{β} jurisdiction
- Obtail Database is in compliance with a data protection law α from one jurisdiction but data centers hosting database are possibly in compliance with national security law β from another jurisdiction.

Unifying Two Types of Policies Privacy Protection and National Security

- We manually unify two types of semantic legal policies, translated from privacy protection law and national security law.
- **2** Privacy protection law α and national security law β are unified at $Super peer_{\alpha \cap \beta}$ at $TLD_{\alpha \cap \beta}$, where $TLD_{\alpha \cap \beta}$ is in the intersection of TLD_{α} and TLD_{β} jurisdiction
- Obtabase is in compliance with a data protection law α from one jurisdiction but data centers hosting database are possibly in compliance with national security law β from another jurisdiction.

Unifying Semantic Legal Policies at $Super - peer_{\alpha \cap \beta}$

Query at Intersection of TLDs

Two types of queries are available: subject-based and pattern-based:

- At $Super peer_{\alpha \cap \beta}$, only provides pattern-based queries, at $Super peer_{\alpha}$ and $Super peer_{\beta}$ we provide both.
- A guardian agent in Super peer_{α∩β} only grants anonymization pattern-based queries, so PII cannot be fully disclosed.

Query at Intersection of TLDs

Two types of queries are available: subject-based and pattern-based:

- At $Super peer_{\alpha \cap \beta}$, only provides pattern-based queries, at $Super peer_{\alpha}$ and $Super peer_{\beta}$ we provide both.
- ② A guardian agent in Super peer_{α∩β} only grants anonymization pattern-based queries, so PII cannot be fully disclosed.

Stratum One Exception: A Data Owner's Consent

NO DATA DISCLOSURE UNLESS A DATA OWNER'S CONSENT

 $Ab1 \rightarrow hasPartOf.Condition(Ab1)$ hasPartOf.Condition(Ab1),

$$Ab1 = \begin{cases} hasPartOf^{-}.Purpose(\neg nationalSecurity) \\ hasPartOf^{-}.DataUser(\neg securityOfficer) \\ hasPartOf^{-}.Consent(\top) \end{cases}$$

Stratum Two Exception: Without a Data Owner's Consent

DATA DISCLOSURE WITHOUT A DATA OWNER'S CONSENT

 $Ab2 \rightarrow hasPartOf.Condition(Ab2)$ hasPartOf.Condition(Ab2),

$$Ab2 = \begin{cases} hasPartOf^{-}.Purpose(nationalSecurity) \\ hasPartOf^{-}.DataUser(securityOfficer) \\ hasPartOf^{-}.Consent(\bot) \end{cases}$$

Stratum Three Exception: Citizen-ships are the Criteria

Deny data disclosing if not a local citizen

 $Ab3 \rightarrow hasPartOf.Condition(Ab3).$ hasPartOf.Condition(Ab3),

$$Ab3 = \begin{cases} hasPartOf.Condition(Ab2) \\ \cdots \\ hasPartOf^{-}.Nationality(\neg TW - citizenship) \end{cases}$$

A Policy's Exceptions Handling in $SPD_{\alpha \cap \beta}$

Stratified Datalog Rule for Policy Exceptions Handling

COMPLYING WITH TWO TYPE OF LAWS

- A semantic privacy preserving model provides legalized data integration and protection services in semantic cloud.
- 2 Law-as-a-Service (LaaS) overcomes legal obstacles when Cloud Service Providers (CSPs) intend to deploy their cloud resources and services.
- Semantic web technologies are applied for semantic legal policy representation to enable data integration and protection.
- Semantic legal policies, as a combination of ontologies and stratified Datalog rules with negation, are enforced and a semantic legal policy's exceptions are handled through defeasible reasoning.

- A semantic privacy preserving model provides legalized data integration and protection services in semantic cloud.
- Law-as-a-Service (LaaS) overcomes legal obstacles when Cloud Service Providers (CSPs) intend to deploy their cloud resources and services.
- Semantic web technologies are applied for semantic legal policy representation to enable data integration and protection.
- Semantic legal policies, as a combination of ontologies and stratified Datalog rules with negation, are enforced and a semantic legal policy's exceptions are handled through defeasible reasoning.

- A semantic privacy preserving model provides legalized data integration and protection services in semantic cloud.
- 2 Law-as-a-Service (LaaS) overcomes legal obstacles when Cloud Service Providers (CSPs) intend to deploy their cloud resources and services.
- Semantic web technologies are applied for semantic legal policy representation to enable data integration and protection.
- Semantic legal policies, as a combination of ontologies and stratified Datalog rules with negation, are enforced and a semantic legal policy's exceptions are handled through defeasible reasoning.

- A semantic privacy preserving model provides legalized data integration and protection services in semantic cloud.
- 2 Law-as-a-Service (LaaS) overcomes legal obstacles when Cloud Service Providers (CSPs) intend to deploy their cloud resources and services.
- Semantic web technologies are applied for semantic legal policy representation to enable data integration and protection.
- Semantic legal policies, as a combination of ontologies and stratified Datalog rules with negation, are enforced and a semantic legal policy's exceptions are handled through defeasible reasoning.

- Exploring defeasible reasoning of a policy's exceptions handling from different hybrid integration of DL-Lite species' ontologies and stratified Datalog rules with negation.
- Exploiting expressive power and computational complexity of semantic legal policy enforcement under different ontologies and rules integration.
- After direct mapping from a RDB's tables to modular ontologies, through fragmentation and encryption techniques to ensure the data protection criteria of outsourcing in the cloud.
- Using tremendous amount of RDB data sets as ontology's data sources to verify sustainability of LaaS.

- Exploring defeasible reasoning of a policy's exceptions handling from different hybrid integration of DL-Lite species' ontologies and stratified Datalog rules with negation.
- Exploiting expressive power and computational complexity of semantic legal policy enforcement under different ontologies and rules integration.
- After direct mapping from a RDB's tables to modular ontologies, through fragmentation and encryption techniques to ensure the data protection criteria of outsourcing in the cloud.
- Using tremendous amount of RDB data sets as ontology's data sources to verify sustainability of LaaS.

- Exploring defeasible reasoning of a policy's exceptions handling from different hybrid integration of DL-Lite species' ontologies and stratified Datalog rules with negation.
- Exploiting expressive power and computational complexity of semantic legal policy enforcement under different ontologies and rules integration.
- After direct mapping from a RDB's tables to modular ontologies, through fragmentation and encryption techniques to ensure the data protection criteria of outsourcing in the cloud.
- Using tremendous amount of RDB data sets as ontology's data sources to verify sustainability of LaaS.

- Exploring defeasible reasoning of a policy's exceptions handling from different hybrid integration of DL-Lite species' ontologies and stratified Datalog rules with negation.
- Exploiting expressive power and computational complexity of semantic legal policy enforcement under different ontologies and rules integration.
- After direct mapping from a RDB's tables to modular ontologies, through fragmentation and encryption techniques to ensure the data protection criteria of outsourcing in the cloud.
- Using tremendous amount of RDB data sets as ontology's data sources to verify sustainability of LaaS.

LaaS System Demo and Q&A

LAAS System Demo. and Q&A

- LaaS System Demo.
- Q&A

LaaS System Demo and Q&A

LAAS System Demo. and Q&A

- LaaS System Demo.
- Q&A

LaaS System Demo(1)

Ent Lab.	at NCCL	J in Taiwar	1
----------	---------	-------------	---

					Hor	ne Peer	SPD	Laas 1	iesti i	Trust Virutal Domair				
National Taiwan University Hospital	Center	of Disea	ise Contr	ol in T	laiwan									
Control in Taiwan	Welcon	/elcome! Lin(logout)												
National Immigration Agency		Notificat	ion Unit	Confirm	n									
The Taipei	National	Taiwan U	niversity He	ospita1	2	H1N1	Law Verify	Confirm						
Vational Security Sureau	α∩β dom National	af)β domain National Taiwan University Hospital												
Taipei District Prosecutors Office	Name	BirthDay	Nationality	Gender	ID	Hospital	Medicalre	cordnum	er Disease	Disclose				
Acer	Ding Yi- Jhong	19681114	Taiwin	м	K145698758	National Taiwa University Hospital	005		0					
	Hidd Low] ShowXML, PreventHarm_I Article Content													
	Exception Personal_Infomation_Protection_Act_C3-3								Where it is t arm on the ody, freedo roperty of arty;	to prevent : life, om or the				
	Law Enforcement_Rules_of_the_Communicable_Disease_Control_Act_16							I of f	n accordan egulations (aragraph 4 9 of the Ao nedical inst hysicians, orensic me hysicians t hysicians t defevant info f patients o ommunical	ice with of , Article , require itutions, or dicine o provide inite time, ormation of bie				

LaaS System Demo(2)

			Entl	_ab.	at NC	CL	J in	Ta	iwa	n			
					Ног	e	Peer	Si	0	laas Te		Trust Vin	ital Domain 🔸
Communicable Disease Control Medical Network SPD Security SPD	Comn Lin(<u>lo</u>	unicable gout)	Disease	Contro	l Medical N	etworl	k SPI	,					
					NTU_Hospital Peer	Sup Pi	eer_9 Peer		taipei go Peer	¥]			
		Ce	tter of Dise tion Unit	ase Con	trol in Taiwan Report Numbe	Law	Verify						
	Nation	al Taiwan	Jaiversity I	lospital	1	Law	Verity	1					
	a∩β do	main											
	Nation	al Taiwan	Jaiversity I	lospital									
	Name	BirthDay	Nationality	Gender	ID	Hospit	zl	Medic	alrecord	number	Disease	Disclose	
	Ding Yi- Jhong	19681114	Taiwin	м	K145698758	Nation Taiwa Univer Hospit	al n rsity al	005			HINI	0	
	Show I Show I a/1β do The G	.aw GML main oversment	of Taipei										
	same	bday	phone	city a	ddress		6d	_	gendor	fiame	miamo	disclose	
	Wu Yi- Jboog	19681114	02- 22665600	B Taipei A City N E	m. 1, 2F., No dy. 3, Ln. 12, finquan W. Ra hatong Dist.,	.34-2, 1.,	K1456	i98758	м	Wu Langley	Gao Wo		
	Show I	.aw GAL											

	PresentHam_1	Article	Content
Ezzeptica	Personal_Information_Protection_Act_C3-3	16	Where it is to prevent harm on the life, body, freedom or property of the Party.
Law	Taberment, Dahn, el, fra, Commandela, Dannes, Control, Ara, 16	36	In accordance with regulations of Paragnaph 4, Article 39 of the Act, requere medical nethtations, physicians, or forenair medicate physicians to prombe within a definite time, relevant information of communicable damater,

	PreestHam_I	Article	Content
Esception	Perronal_Information_Protection_Ast_C1-5	3	when the notice will impoin the government agency in performing its official duties;
lav	Televenet, Juley, of the Communicable Disease Control, Art. 16,2	16	In accordance with regulations of Paragraph 4, Article 20 of the Act require medical instantions, phymizus to provide optimizes to provide within a definite time, relevant information of patients of communicable doesney.

LaaS System Demo(3)

Ent Lab. at NCCU in Taiwan

					Hom	e P	eer	SPD	Laas Tes	t T	irust Virutal Doma		
<u>National Taiwan</u> University Hospital	Nations	ıl Securi	ty Burea	u									
Center of Disease Control in Taiwan	Welcon	ne! Li(<mark>lo</mark> ;	gout)										
Vational Immigration Agency The Taipei Sovernment Vational Security Jureau Vaireau Vairei District Prosecutors Office Acer	Search Key μ Law verif β domain	D ReportNu Name (145698758 Search	mber warrant - N] ational T	aiwan Universi	ty Hospita	a						
	Mama	Ivanonai Taiwan University Hospitai											
	Ding Yi- Jhong	19681114	Taiwin	M	K 145698758	National Universit Hospital	Taiwan y	005	cordnumber	H1N1	0		
	Hide Low Show Xiv	NationalS	Security_I				Article	Content					
	Exception Personal_Infomation_Protection_Act_C1-5_5							when the notice will impair the government agency in performing its official duties;					
	Law The_Constitution_of_Th		The_Re	public_of_Chir	137	The national defense of the Republic of China shall have as its objective the safeguarding of national security and the preservation of world peace. The organization of national defense shall be prescribed by law			ublic of the r and the re shall be				

References

] [1]M. I. Abbadi.

 ${\sf Self-managed \ services \ conceptual \ model \ in \ trustworthy \ clouds' \ infrastructure.}$

In Workshop on Cryptography and Security in Clouds, 2011.

[2]A. Barth et al.

Privacy and contextual integrity: Framework and applications.

In IEEE Symposium on Security and Privacy, 2006.

[3]D. Beneventano et al.

Querying a super-peer in a schema-based super-peer network.

In G. Moro et al., editors, *Databases, Information Systems, and Peer-to-Peer Computing*, LNSC, pages 13–25. Springer, 2007.

[4]A. Boer.

Legal Theory: Sources of Law and the Semantic Web. IOS Press, 2009.

[5]A. P. Bonatti.

Datalog for security, privacy and trust.

In Datalog 2010, LNCS 6702, pages 21-36. Springer, 2011.

References

[6]S. Cabuk et al.

Towards automated security policy enforcement in multi-tenant virtual data centers.

Journal of Computer Security, 18:89–121, 2010.

[7]D. Calvanese et al.

Data management in peer-to-peer data integration systems. *Global Data Management*, pages 177–201, 2006.

[8]D. Calvanese et al.

View-based query answering over description logic ontologies.

In Proc. of KR-2008. AAAI Press, 2008.

[9]S. Ceri et al.

What you always wanted to know about Datalog (and never dared to ask). *IEEE Trans. on knowledge and data engineering*, 1(1), 1989.

[10]C. Clifton et al.

Privacy-preserving data integration and sharing.

In Data Mining and Knowledge Discovery, pages 19-26. ACM, 2004.

References

11]A. Datta et al.

Understanding and protecting privacy: Formal semantics and principled audit mechanisms.

In 7th International Conference on Information System Security, 2011.

[12]I. Deyrup et al.

Cloud computing and national security laws.

Technical report, The Harvard Law National Security Research Group, 2010.

[13]A. Eberhart et al.

Semantic technologies and cloud computing.

In D. Fensel, editor, *Foundations for the Web of Information and Services*, pages 239–251. Springer, 2011.

[14]T. Eiter and G. Ianni.

Rules and ontologies for the semantics web.

In Reasoning Web 2008, LNCS 5224, pages 1-53. Springer, 2008.

[15]J. Euzenat and P. Shvaiko.

Ontology Matching.

Springer, 2007.

Preserving Privacy in Data Outsourcing. Springer, 2011.

[17]M. Friedman et al.

Navigational plans for data integration.

In *Proc. of the Sixteen National Conference on Artificial Intelligence (AAAI'99)*, pages 67–73. AAAI/MIT Press, 1999.

[18]F. Goasdoué and M.-C. Rousset.

Answering queries using views: a KRDB perspective for the semantic web. ACM Trans. on Internet Technology, 4(3):255–288, August 2004.

[19]F. T. Gordon.

The legal knowledge interchange format (LKIF) ESTRELLA deliverable d4.1. Technical report, ESTRELLA, 2008.

[20]P. Haase et al.

Semantic technologies for enterprise cloud management. In International Semantic Web Conference 2010, pages 98–113, 2010.

References

Schema mediation in peer data management systems.

In Proc. 19th Int. Conference on Data Engineering (ICDE), pages 505-516, 2003.

[22]A. Halevy et al.

The Piazza peer data management system.

IEEE Transactions on Knowledge and Data Engineering, 16(7):787 – 798, july 2004.

[23]Y. A. Halevy.

Answering queries using views: A survey.

The VLDB Journal, 10(4):270–294, 2001.

[24]Y. J. Hu and H. Boley.

SemPIF: A semantic meta-policy interchange format for multiple web policies. In 2010 IEEE/WIC/ACM Int. Conference on Web Intelligence and Intelligent Agent Technology, pages 302–307. IEEE, 2010.

[25]Y. J. Hu, W. N. Wu, and J. J. Yang.

Semantics-enabled policies for information sharing and protection in the cloud. In Proc. of 3rd Int. Conf. on Social Informatics, LNCS 6984, Oct. 2011.

[26]Y. J. Hu and J. J. Yang.

A semantic privacy-preserving model for data sharing and integration.

In International Conference on Web Intelligence, Mining and Semantics (WIMS'11). ACM Press, May 2011.

[27]Y. J. Hu, W. N. Wu, and J. J. Yang.

Semantics-enabled Policies for Super-Peer Data Integration and Protection.

In International Journal of Computer Science and Applications (IJCSA), 9(1):23-49, 2011.

[28]S. Jajodia et al.

Flexible support for multiple access control policies.

ACM Trans. on Database Systems, 26(2):214–260, June 2001.

[29]M. Lenzerini.

Data integration: A theoretical perspective.

In Proceedings of the ACM Symposium on Principles of Database Systems (PODS), pages 233–246. ACM, 2002.

[30]L. Lessig. Code version 2.0.

Basic Books, 2006.

ⓒY. J. HU ET AL. (NCCU)

JUNE-13-2012 39 / 39

[31]J. Madhavan et al.

Web-scale data integration: You can only afford to pay as you go. In Proc. of CIDR-07, 2007.

[32]A. Nash and A. Deutsch.

Privacy in GLAV information integration.

In ICDT 2007, LNCS 4353, pages 89-103. Springer, 2007.

[33]J. W. Perry et al.

Protecting Individual Privacy in the Struggle Against Terrorists: A Framework for Program Assessment.

The National Academies Press, 2008.

[34]L. J. Pollock.

Defeasible reasoning.

In A. J. and L. Rips, editors, Reasoning: Studies of Human Inference and its Foundations. Cambridge University Press, 2008.

[35]R. Popp and J. Poindexter.

Countering terrorism through information and privacy protection technologies.

IEEE Security & Privacy, 4(6):24–33, 2006.

[36]S. D. C. d. Vimercati et al.

Access control policies and languages in open environments.

In T. Yu and S. Jajodia, editors, *Secure Data Management in Decentralized Systems*, pages 21–58. Springer, 2007.

[37] J. D. Weitzner et al.

Creating a policy-aware web: Discretionary, rule-based access for the world wide web.

In E. Ferrari and B. Thuraisingham, editors, *Web and Information Security*, pages 1–31. IGI, 2006.

