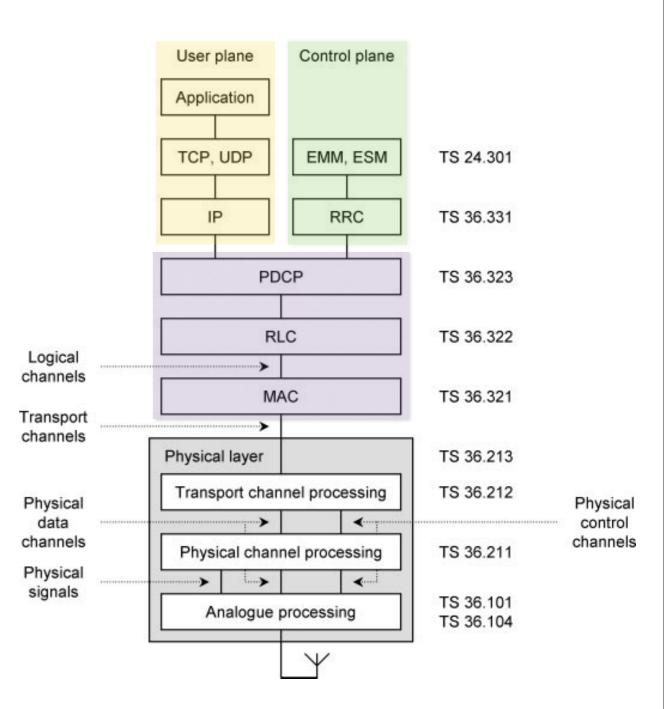
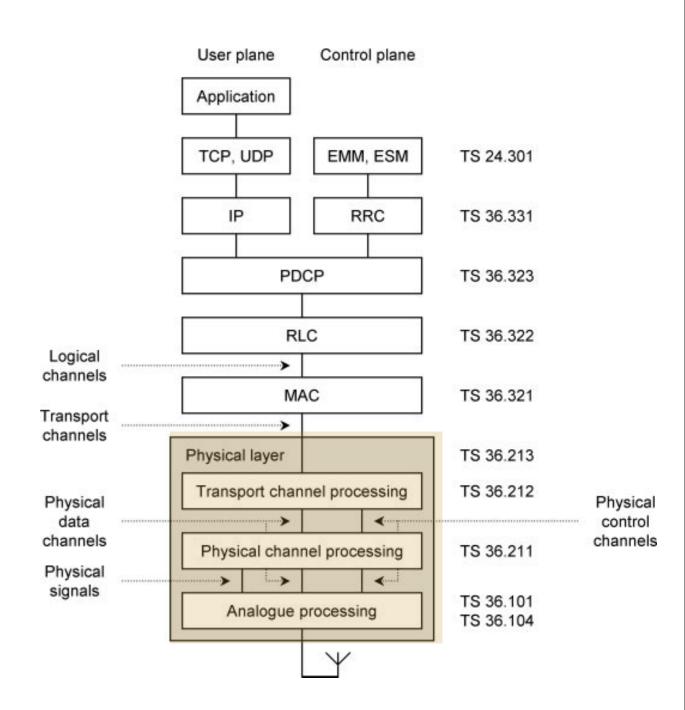
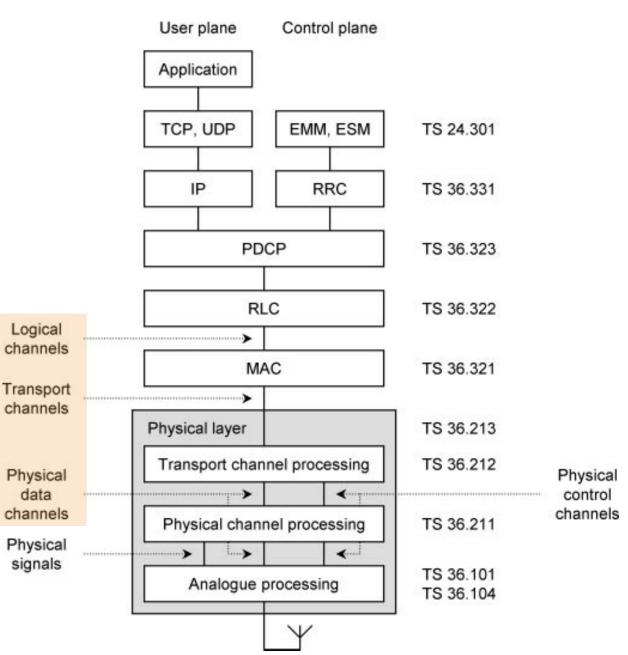

Architecture of the LTE Air Interface

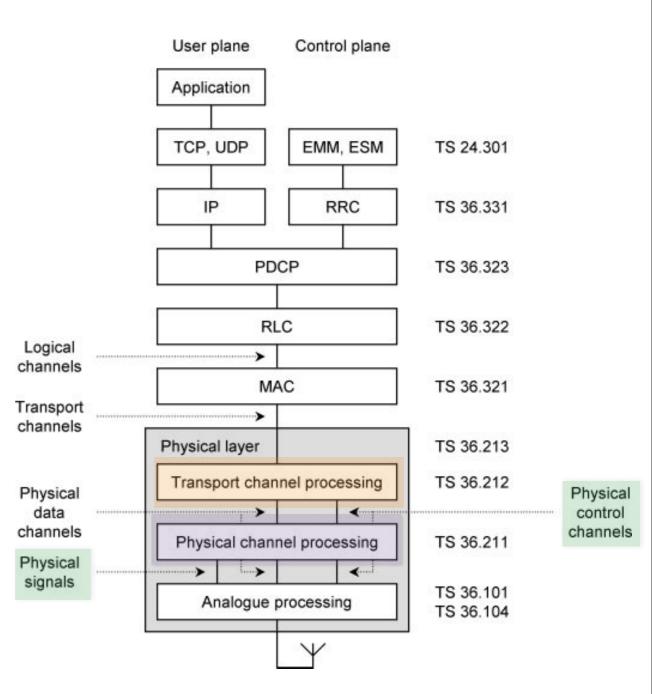
- 1. Air Interface Protocol Stack
- 2. Logical, Transport and Physical Channels
- 3. The Resource Grid
- 4. Multiple Antenna Transmission
- 5. Resource Element Mapping


X. Air Interface Protocol Stack

- Figure 6.1
 - The protocols used in the <u>air interface</u>, from the viewpoint of the <u>mobile</u>




- As a transmitter
 - ✓ User plane
 - The <u>application</u> creates <u>data packets</u> that are processed by protocols such as TCP, UDP and IP
 - ✓ Control plane
 - Radio Resource Control (RRC) protocol <u>writes</u> the <u>signaling</u> <u>messages</u> that are <u>exchanged</u> between BS and mobile
 - In both cases, the information is processed by the following protocols before being passed to the <u>physical</u> <u>layer</u> for transmission
 - Packet Data Convergence Protocol (<u>PDCP</u>)
 - Radio Link Control (<u>RLC</u>) protocol
 - Medium Access Control (<u>MAC</u>) protocol


- Physical layer has three parts
 - Transport channel processor
 - Applies <u>error management</u> procedures
 - ✓ Physical channel processor
 - Applies the techniques of OFDMA, SC-FDMA and multiple antenna transmission
 - ✓ Analogue processor
 - <u>Converts</u> the information to <u>analogue</u> form
 - Filters it
 - Mixes it up to <u>radio frequency</u> for transmission

- The <u>information flows</u> between different protocols are known as <u>channels</u> and <u>signals</u>
- <u>Data</u> and <u>signaling messages</u> are carried on
 - ✓ Logical channels between RLC and MAC protocols
 - ✓ <u>Transport channels</u> between MAC and physical layer
 - Physical data channels between different levels of the physical layer
- LTE uses several different types of logical, transport and physical channel, which are distinguished by the <u>kind of information</u> they carry and by the <u>way</u> in which the information is <u>processed</u>

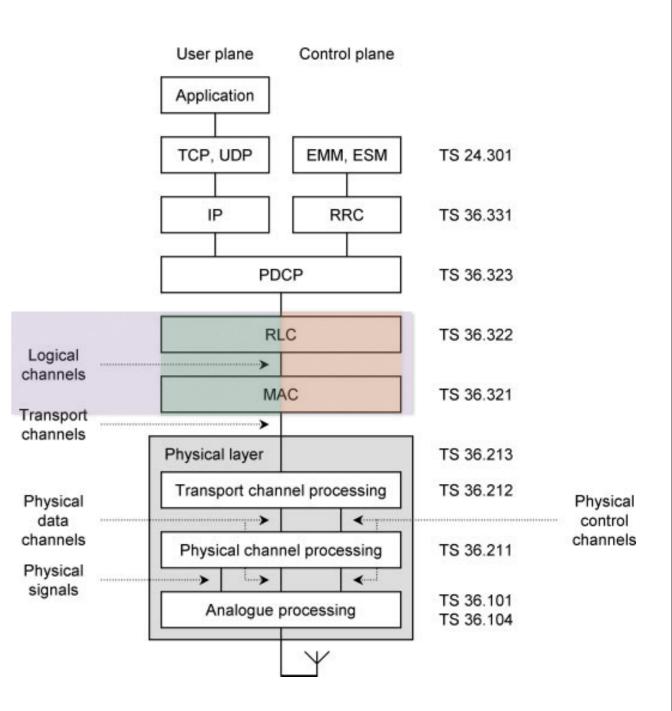
- In the transmitter
 - ✓ Transport channel processor
 - <u>Creates control information</u> that supports the low-level operation of physical layer
 - <u>Sends this information</u> to the physical channel processor in the form of <u>physical control channels</u>
 - The <u>information travels</u> as far as the transport channel processor in the <u>receiver</u>, but is completely <u>invisible</u> to higher layers
 - ✓ Physical channel processor
 - Creates <u>physical signals</u>, which support the <u>lowest-level aspects</u> of the system
 - These <u>travel</u> as far as the physical channel processor in the <u>receiver</u>, but once again are <u>invisible</u> to higher layers

- 1. Air Interface Protocol Stack
- 2. Logical, Transport and Physical Channels
- 3. The Resource Grid
- 4. Multiple Antenna Transmission
- 5. Resource Element Mapping

2. Logical, Transport and Physical Channels

- 2.1 Logical Channels
- 2.2 Transport Channels
- 2.3 Physical Data Channels
- 2.4 Control Information
- 2.5 Physical Control Channels
- 2.6 Physical Signals
- 2.7 Information Flows

2.1 Logical Channels


• Logical channels are distinguished by the <u>information</u> they carry and can be classified in two ways

✓ 1st

- <u>Logical traffic channels</u> carry <u>data</u> in the user plane
- <u>Logical control channels</u> carry <u>signaling messages</u> in the control plane

✓ 2nd

- <u>Dedicated logical channels</u> are allocated to a <u>specific</u> mobile
- <u>Common logical channels</u> can be used by <u>more than one</u>

Channel	Release	Name	Information carried	Direction
DTCH	R8	Dedicated traffic channel	User plane data	UL, DL
DCCH	R8	Dedicated control channel	Signalling on SRB 1 & 2	
CCCH	R8	Common control channel	Signalling on SRB 0	
PCCH	R8	Paging control channel	Paging messages	DL
BCCH	R8	Broadcast control channel	System information	
MCCH	R9	Multicast control channel	MBMS signalling	
MTCH	R9	Multicast traffic channel	MBMS data	

Table 6.1 Logical channels

- Dedicated Traffic CHannel (DTCH)
 - ✓ The most important logical channels
 - ✓ Carries <u>data</u> to or from a <u>single mobile</u>
- Dedicated Control Channel (DCCH)
 - ✓ Carries the large majority of <u>signaling messages</u>
 - Carries all the <u>mobile-specific</u> signaling messages on <u>Signaling Radio Bearers</u> 1 and 2, for <u>mobiles</u> that are in <u>RRC_CONNECTED</u> state

Channel	Release	Name	Information carried	Direction
DTCH	R8	Dedicated traffic channel	User plane data	UL, DL
DCCH	R8	Dedicated control channel	Signalling on SRB 1 & 2	
CCCH	R8	Common control channel	Signalling on SRB 0	
PCCH	R8	Paging control channel	Paging messages	DL
BCCH	R8	Broadcast control channel	System information	
MCCH	R9	Multicast control channel	MBMS signalling	
MTCH	R9	Multicast traffic channel	MBMS data	

- No S1 or radio bearers
- No serving eNB
- Cell reselection
- Paging
 - **RRC** connection requests

- All bearers exist
- Serving eNB allocated
- Handovers
- Any communication possible

Signalling radio bearer	Configured by	Used by
SRB 0	System information	RRC messages before establishment of SRB 1
SRB 1	RRC message on SRB 0	Subsequent RRC messages NAS messages before establishment of SRB 2
SRB 2	RRC message on SRB 1	Subsequent NAS messages

- Broadcast Control CHannel (BCCH)
 - ✓ Carries RRC <u>system information messages</u>
 - ✓ BS broadcasts BCCH message across the <u>whole cell</u> to tell the mobiles about <u>how the cell is configured</u>
- These messages are divided into two <u>unequal groups</u>, which are handled differently by lower layers
 - ✓ Master Information Block (MIB)
 - Carries a few important parameters such as downlink bandwidth
 - ✓ System Information Blocks (SIBs)
 - Carries the remainder

Channel	Release	Name	Information carried	Direction
DTCH DCCH CCCH	R8 R8 R8	Dedicated traffic channel Dedicated control channel Common control channel	User plane data Signalling on SRB 1 & 2 Signalling on SRB 0	UL, DL
РССН	R8	Paging control channel	Paging messages	
BCCH	R8	Broadcast control channel	System information	DI
MCCH MTCH	R9 R9	Multicast control channel Multicast traffic channel	MBMS signalling MBMS data	DL

- Paging Control CHannel (PCCH)
 - ✓ Carries <u>paging</u> messages

✓ BS transmits PCCH message if it wishes to contact mobiles that are in RRC_IDLE

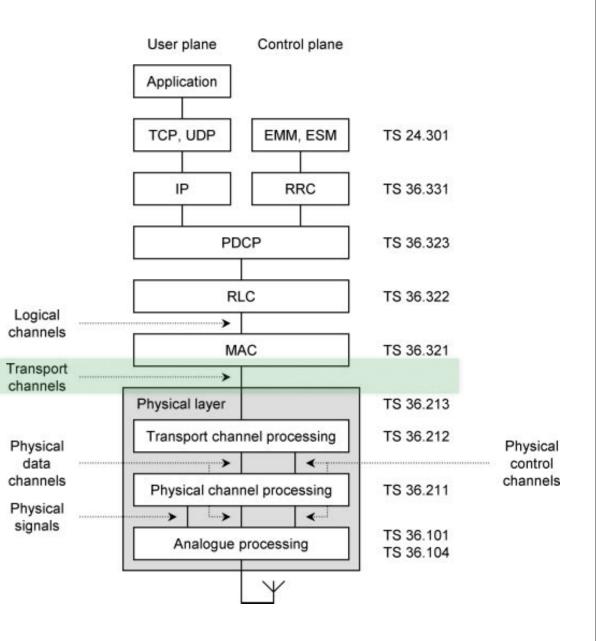
• Common Control CHannel (CCCH)

✓ Carries messages on Signaling Radio Bearer 0, for mobiles that are moving from RRC_IDLE to RRC_CONNECTED in the procedure of <u>RRC connection establishment</u>

Channel	Release	Name	Information carried	Direction
DTCH	R8	Dedicated traffic channel	User plane data	
DCCH	R8	Dedicated control channel	Signalling on SRB 1 & 2	UL, DL
CCCH	R8	Common control channel	Signalling on SRB 0	
PCCH	R8	Paging control channel	Paging messages	
BCCH	R8	Broadcast control channel	System information	DI
MCCH	R9	Multicast control channel	MBMS signalling	DL
MTCH	R9	Multicast traffic channel	MBMS data	

- · UE on standby
- No S1 or radio bearers
- No serving eNB
- Cell reselection
- Paging
 - **RRC** connection requests

- UE active
- All bearers exist
- Serving eNB allocated
- Handovers
- Any communication possible


- Multicast Traffic CHannel (MTCH) and Multicast Control CHannel (MCCH)
 - ✓ Handle Multimedia Broadcast/Multicast service (MBMS) service

Channel	Release	Name	Information carried	Direction
DTCH	R8	Dedicated traffic channel	User plane data	UL, DL
DCCH	R8	Dedicated control channel	Signalling on SRB 1 & 2	
CCCH	R8	Common control channel	Signalling on SRB 0	
PCCH	R8	Paging control channel	Paging messages	DL
BCCH	R8	Broadcast control channel	System information	
MCCH	R9	Multicast control channel	MBMS signalling	
MTCH	R9	Multicast traffic channel	MBMS data	

2 Transport Channels

 Transport channels are distinguished by the ways in which the <u>transport channel</u> <u>processor</u> manipulates them

Channel	Release	Name	Information carried	Direction
UL-SCH	R8	Uplink shared channel	Uplink data and signalling	
RACH	R8	Random access channel	Random access requests	UL
DL-SCH	R8	Downlink shared channel	Downlink data and signalling	
PCH	R8	Paging channel	Paging messages	DI
BCH	R8	Broadcast channel	Master information block	DL
MCH	R8/R9	Multicast channel	MBMS	

Channel	Release	Name	Information carried	Direction
UL-SCH	R8	Uplink shared channel	Uplink data and signalling	UL
RACH	R8	Random access channel	Random access requests	
DL-SCH	R8	Downlink shared channel	Downlink data and signalling	DL
PCH	R8	Paging channel	Paging messages	
BCH	R8	Broadcast channel	Master information block	
MCH	R8/R9	Multicast channel	MBMS	

Table 6.2 Transport channels

• UpLink Shared CHannel (UL-SCH) & DownLink Shared CHannel (DL-SCH)

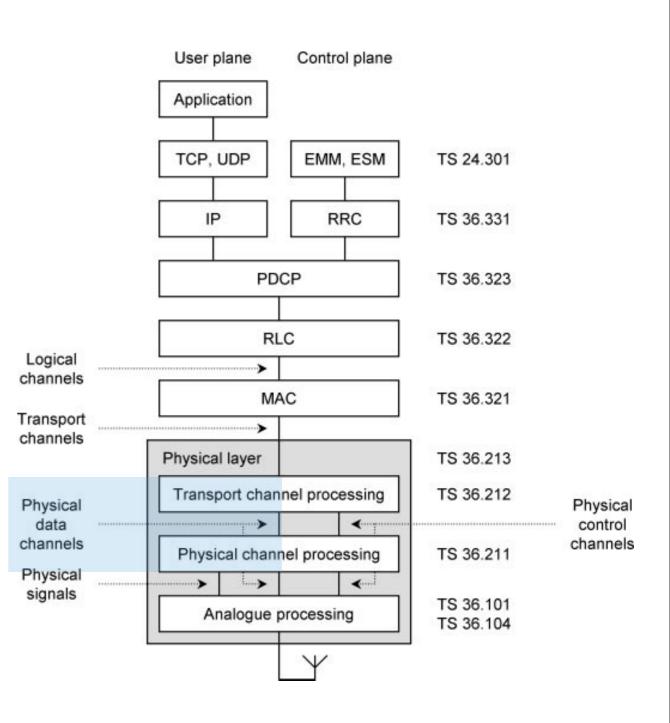
✓ The most important transport channels

- ✓ Carry the large majority of <u>data</u> and <u>signaling messages</u> across air interface
- Paging CHannel (PCH)
 - Carries <u>paging messages</u> that originated from Paging Control CHannel (PCCH)
- Broadcast CHannel (BCH)
 - ✓ Carries the broadcast control channel's <u>Master Information Block</u> (MIB)
 - ✓ The remaining system information messages are handled by DL-SCH, as if they were normal <u>downlink data</u>

Channel	Release	Name	Information carried	Direction
UL-SCH	R8	Uplink shared channel	Uplink data and signalling	UL
RACH	R8	Random access channel	Random access requests	
DL-SCH	R8	Downlink shared channel	Downlink data and signalling	DL
PCH	R8	Paging channel	Paging messages	
BCH	R8	Broadcast channel	Master information block	
MCH	R8/R9	Multicast channel	MBMS	

- Multicast CHannel (MCH)
 - Carry data from multimedia broadcast/multicast service
 - ✓ The BS usually <u>schedules</u> the transmissions that a mobile makes, by granting it resources for <u>downlink</u> transmission at <u>specific times</u> and on <u>specific sub-carriers</u>
- Random Access CHannel (RACH)
 - ✓ A special channel through which the mobile can contact the network without any prior scheduling
 - Random access transmissions are <u>composed</u> by <u>mobile's MAC</u> <u>protocol</u> and travel as far as the MAC protocol in the BS, but are completely invisible to higher layers.

Channel	Release	Name	Information carried	Direction
UL-SCH	R8	Uplink shared channel	Uplink data and signalling	UL
RACH	R8	Random access channel	Random access requests	
DL-SCH	R8	Downlink shared channel	Downlink data and signalling	DL
PCH	R8	Paging channel	Paging messages	
BCH	R8	Broadcast channel	Master information block	
MCH	R8/R9	Multicast channel	MBMS	


• Main differences between transport channels lie in their approaches to <u>error management</u>

✓ UL-SCH & DL-SCH

- The only transport channels that use <u>ARQ</u> and <u>hybrid ARQ</u>
- The only channels that can <u>adapt</u> their <u>coding rate</u> to changes in the <u>received SINR</u>
- ✓ The other transport channels use <u>FEC</u> alone and have a <u>fixed coding rate</u>

23 Physical Data Channels

- Physical data channels are distinguished by
 - The ways in which the physical channel
 processor manipulates them, and
 - The ways in which they are mapped onto the <u>symbols</u> and <u>sub-carriers</u> used by OFDMA

Channel	Release	Name	Information carried	Direction
PUSCH	R8	Physical uplink shared channel	UL-SCH and/or UCI	UL
PRACH	R8	Physical random access channel	RACH	
PDSCH	R8	Physical downlink shared channel	DL-SCH and PCH	DL
PBCH	R8	Physical broadcast channel	BCH	
PMCH	R8/R9	Physical multicast channel	MCH	

Table 6.3 Physical data channels

- Physical Downlink Shared CHannel (PDSCH) & Physical Uplink Shared CHannel (PUSCH)
 - ✓ The most important physical channels
- PDSCH
 - ✓ Carries <u>data</u> and <u>signaling messages</u> from DL-SCH
 - ✓ Carries <u>paging messages</u> from PCH
- PUSCH
 - ✓ Carries <u>data</u> and <u>signaling messages</u> from UL-SCH
 - ✓ Sometimes carries <u>uplink control</u> information

Channel	Release	Name	Information carried	Direction
PUSCH	R8	Physical uplink shared channel	UL-SCH and/or UCI	UL
PRACH	R8	Physical random access channel	RACH	
PDSCH	R8	Physical downlink shared channel	DL-SCH and PCH	DL
PBCH	R8	Physical broadcast channel	BCH	
PMCH	R8/R9	Physical multicast channel	MCH	

- Physical Broadcast CHannel (PBCH)
 - Carries the MIB (Master Information Block) from broadcast channel
- Physical Random Access CHannel (PRACH)
 - Carries random access transmissions from random access channel
- Physical Multicast CHannel (PMCH)

Carries data from multicast channel

Channel	Release	Name	Information carried	Direction
PUSCH	R8	Physical uplink shared channel	UL-SCH and/or UCI	UL
PRACH	R8	Physical random access channel	RACH	
PDSCH	R8	Physical downlink shared channel	DL-SCH and PCH	DL
PBCH	R8	Physical broadcast channel	BCH	
PMCH	R8/R9	Physical multicast channel	MCH	

• PDSCH and PUSCH

✓ The only physical channels that can <u>adapt</u> their <u>modulation</u> schemes in response to <u>changes</u> in the <u>received SINR</u>

• The other physical channels all use a <u>fixed</u> <u>modulation scheme</u>, usually <u>QPSK</u>

UCI: Uplink Control Information (UCI)

Channel	Release	Name	Information carried	Direction
PUSCH	R8	Physical uplink shared channel	UL-SCH and/or UCI	UL
PRACH	R8	Physical random access channel	RACH	
PDSCH	R8	Physical downlink shared channel	DL-SCH and PCH	DL
PBCH	R8	Physical broadcast channel	BCH	
PMCH	R8/R9	Physical multicast channel	MCH	

3.4 Control Information

 Transport channel processor composes several types of <u>control information</u> to support the lowlevel operation of <u>physical layer</u>

Field	Release	Name	Information carried	Direction
UCI	R8	Uplink control information	Hybrid ARQ acknowledgements Channel quality indicators (CQI) Pre-coding matrix indicators (PMI) Rank indications (RI) Scheduling requests (SR)	UL
DCI	R8	Downlink control information	Downlink scheduling commands Uplink scheduling grants Uplink power control commands	DL
CFI HI	R8 R8	Control format indicator Hybrid ARQ indicator	Size of downlink control region Hybrid ARQ acknowledgements	DL

Field	Release	Name	Information carried	Direction
UCI	R8	Uplink control information	Hybrid ARQ acknowledgements Channel quality indicators (CQI) Pre-coding matrix indicators (PMI) Rank indications (RI) Scheduling requests (SR)	UL
DCI	R8	Downlink control information	Downlink scheduling commands Uplink scheduling grants Uplink power control commands	DL
CFI HI	R8 R8	Control format indicator Hybrid ARQ indicator	Size of downlink control region Hybrid ARQ acknowledgements	DL

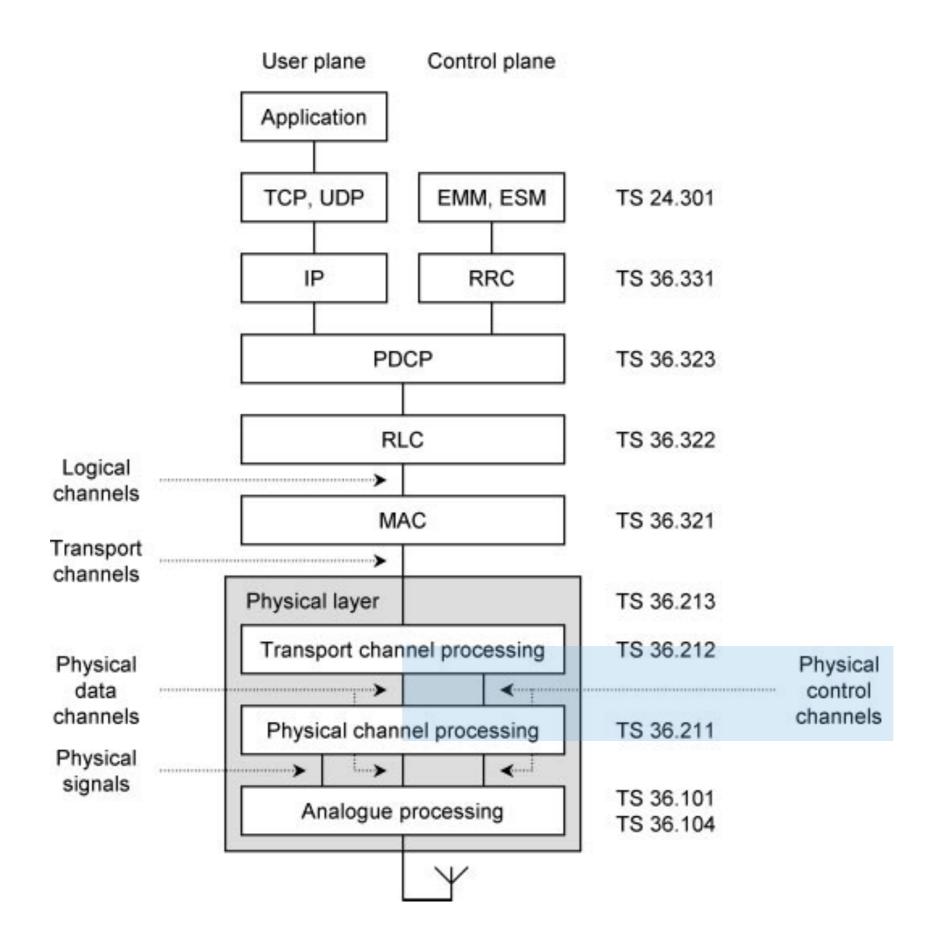
Table 6.4 Control information

- Uplink Control Information (UCI) contains several fields
 - ✓ Hybrid ARQ acknowledgements
 - The mobile's <u>acknowledgements</u> of the BS's transmissions on the DL-SCH (DownLink Shared CHannel)
 - ✓ Channel Quality Indicator (CQI)
 - Describes the <u>received SINR</u> as a function of <u>frequency</u> in support of frequencydependent scheduling
 - ✓ Precoding Matrix Indicator (PMI) and Rank Indication (RI)
 - Support the use of <u>spatial multiplexing</u>
 - ✓ Collectively, CQI, PMI and RI are sometimes known as Channel State Information (CSI)
 - ✓ Scheduling Request (SR)
 - Sent by the mobile, if it wishes to transmit <u>uplink data</u> on the PUSCH, but does not have the resources to do so

Field	Release	Name	Information carried	Direction
UCI	R8	Uplink control information	Hybrid ARQ acknowledgements Channel quality indicators (CQI) Pre-coding matrix indicators (PMI) Rank indications (RI) Scheduling requests (SR)	UL
DCI	R8	Downlink control information	Downlink scheduling commands Uplink scheduling grants Uplink power control commands	DL
CFI HI	R8 R8	Control format indicator Hybrid ARQ indicator	Size of downlink control region Hybrid ARQ acknowledgements	DL

- Downlink Control Information (DCI) contains most of the <u>downlink</u> control fields
 - ✓ Using <u>scheduling commands</u> and <u>scheduling grants</u>, the BS can
 - <u>Alert</u> the mobile to forthcoming transmissions on the <u>downlink shared channel</u> and
 - <u>Grant</u> it resources for transmissions on the <u>uplink shared</u> <u>channel</u>
 - ✓ It can also <u>adjust the power</u> with which the mobiles are transmitting using <u>power control</u> commands

Field	Release	Name	Information carried	Direction
UCI	R8	Uplink control information	Hybrid ARQ acknowledgements Channel quality indicators (CQI) Pre-coding matrix indicators (PMI) Rank indications (RI) Scheduling requests (SR)	UL
DCI	R8	Downlink control information	Downlink scheduling commands Uplink scheduling grants Uplink power control commands	DL
CFI HI	R8 R8	Control format indicator Hybrid ARQ indicator	Size of downlink control region Hybrid ARQ acknowledgements	DL


- Control Format Indicators (CFIs)
 - ✓ Tell the mobiles about the <u>organization of data</u> and <u>control information</u> on the downlink
- Hybrid ARQ Indicators (HIs)
 - ✓ The BS's <u>acknowledgements</u> of the mobiles' <u>uplink</u> transmissions on the UL-SCH

Field	Release	Name	Information carried	Direction
UCI	R8	Uplink control information	Hybrid ARQ acknowledgements Channel quality indicators (CQI) Pre-coding matrix indicators (PMI) Rank indications (RI) Scheduling requests (SR)	UL
DCI	R8	Downlink control information	Downlink scheduling commands Uplink scheduling grants Uplink power control commands	DL
CFI HI	R8 R8	Control format indicator Hybrid ARQ indicator	Size of downlink control region Hybrid ARQ acknowledgements	DL

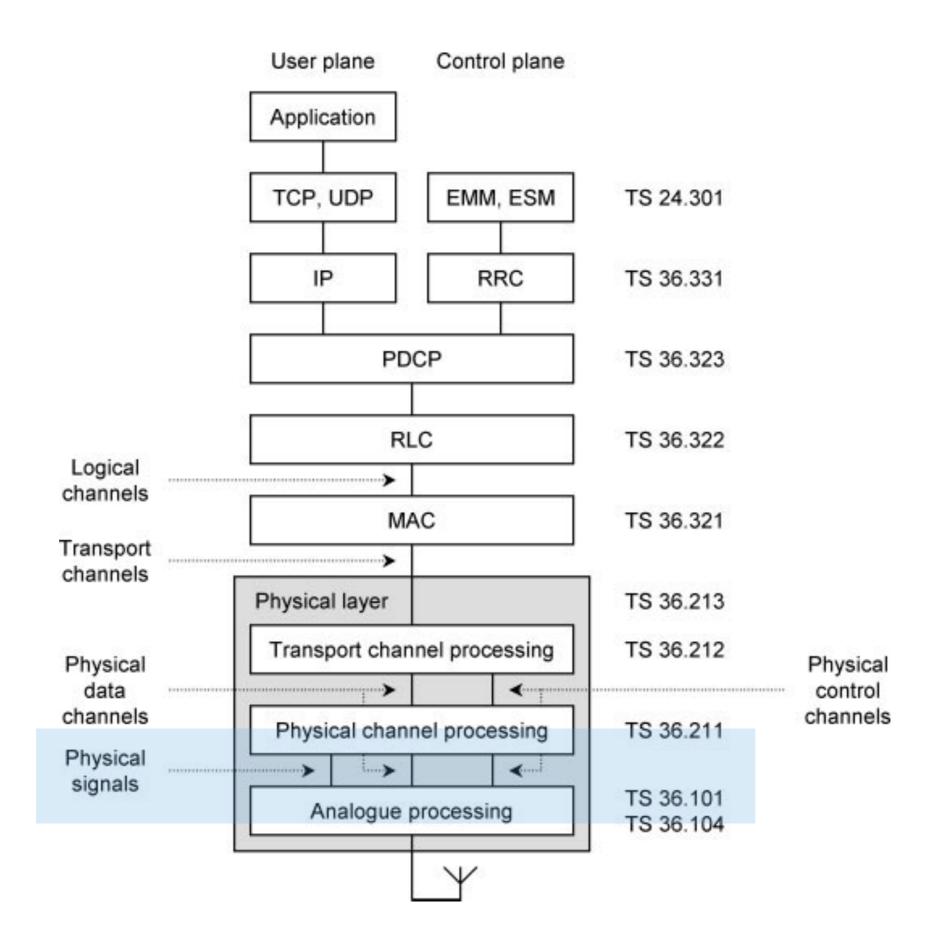
25 Physical Control Channels

- In the <u>downlink</u>, there is a <u>one-to-one mapping</u> between <u>physical control channels</u> and <u>control</u> <u>information</u> listed above
- Physical Control Format Indicator CHannel (PCFICH)
 - ✓ Carry control format indicators (CFI)
- ARQ Indicator Channel (PHICH)
 - ✓ Carry hybrid ARQ indicators (HI)
- Downlink Control CHannel (PDCCH)
 - ✓ Carry downlink control information (DCI)
- Relay Physical Downlink Control CHannel (R-PDCCH)
 - ✓ Supports the use of <u>relaying</u>

Channel	Release	Name	Information carried	Direction
PUCCH	R8	Physical uplink control channel	UCI	UL
PCFICH PHICH PDCCH R-PDCCH	R8 R8 R8 R10	Physical control format indicator channel Physical hybrid ARQ indicator channel Physical downlink control channel Relay physical downlink control channel	CFI HI DCI DCI	DL

Channel	Release	Name	Information carried	Direction
PUCCH	R 8	Physical uplink control channel	UCI	UL
PCFICH PHICH PDCCH R-PDCCH	R8 R8 R8 R10	Physical control format indicator channel Physical hybrid ARQ indicator channel Physical downlink control channel Relay physical downlink control channel	CFI HI DCI DCI	DL

Table 6.5 Physical control channels


- The <u>uplink control</u> information is sent
 - ✓ On the Physical Uplink <u>Shared</u> CHannel (PUSCH) if the mobile is transmitting <u>uplink data</u> at the same time
 - ✓ On the Physical Uplink <u>Control</u> CHannel (PUCCH) otherwise

Channel	Release	Name	Information carried	Direction
PUCCH	R8	Physical uplink control channel	UCI	UL
PCFICH PHICH PDCCH R-PDCCH	R8 R8 R8 R10	Physical control format indicator channel Physical hybrid ARQ indicator channel Physical downlink control channel Relay physical downlink control channel	CFI HI DCI DCI	DL

2.6 Physical Signals

• Physical signals support the <u>lowest-level</u> <u>operation</u> of the physical layer

Signal	Release	Name	Use	Direction
DRS SRS	R8 R8	Demodulation reference signal Sounding reference signal	Channel estimation Scheduling	UL
PSS	R8	Primary synchronization signal	Acquisition	DI
SSS	R 8	Secondary synchronization signal		DL
	R8	Cell specific reference signal	Channel estimation and scheduling	
DC	R8	UE specific reference signal	Channel estimation	DI
RS	R8/R9	MBMS reference signal	Channel estimation	DL
	R9	Positioning reference signal	Location services	
	R10	CSI reference signal	Scheduling	

Signal	Release	Name	Use	Direction
DRS SRS	R8 R8	Demodulation reference signal Sounding reference signal	Channel estimation Scheduling	UL
PSS SSS	R8 R8	Primary synchronization signal Secondary synchronization signal	Acquisition	DL
RS	R8 R8 R8/R9 R9 R10	Cell specific reference signal UE specific reference signal MBMS reference signal Positioning reference signal CSI reference signal	Channel estimation and scheduling Channel estimation Channel estimation Location services Scheduling	DL

Table 6.6 Physical signals

- In the <u>uplink</u>, the mobile
 - Transmits the <u>Demodulation Reference Signal</u> (DRS) at the same time as the PUSCH and PUCCH, as a <u>phase reference</u> for use in <u>channel estimation</u>
 - Transmit the <u>Sounding Reference Signal</u> (SRS) at times configured by the BS, as a <u>power reference</u> in support of <u>frequency-dependent</u> scheduling

Signal	Release	Name	Use	Direction
DRS	R8	Demodulation reference signal	Channel estimation	UL
SRS	R8	Sounding reference signal	Scheduling	
PSS	R8	Primary synchronization signal	Acquisition	DL
SSS	R8	Secondary synchronization signal	Acquisition	
RS	R8 R8 R8/R9 R9 R10	Cell specific reference signal UE specific reference signal MBMS reference signal Positioning reference signal CSI reference signal	Channel estimation and scheduling Channel estimation Channel estimation Location services Scheduling	DL

• The <u>downlink</u>

- ✓ Usually combines DRS and SRS in the form of <u>cell specific Reference Signal</u> (RS)
- ✓ <u>UE specific reference signals</u> are less important and are sent to mobiles that are using <u>beamforming</u> in support of <u>channel estimation</u>
- BS also transmits two other <u>physical signals</u>, which help the mobile <u>acquire the BS</u> after it first switches on
 - ✓ Primary Synchronization Signal (PSS)
 - ✓ Secondary Synchronization Signal (SSS)

Signal	Release	Name	Use	Direction
DRS	R8	Demodulation reference signal	Channel estimation	UL
SRS	R8	Sounding reference signal	Scheduling	
PSS	R8	Primary synchronization signal	Acquisition	DL
SSS	R8	Secondary synchronization signal	Acquisition	
RS	R8 R8 R8/R9 R9 R10	Cell specific reference signal UE specific reference signal MBMS reference signal Positioning reference signal CSI reference signal	Channel estimation and scheduling Channel estimation Channel estimation Location services Scheduling	DL

2.7 Information Flows

- Tables 6.1 to 6.6 contain a large number of <u>channels</u>, but LTE uses them in just a few types of <u>information</u> <u>flow</u>
- Figure 6.2 shows the <u>information flows</u> that are used in the <u>uplink</u>, with the <u>arrows</u> drawn from the viewpoint of the <u>BS</u>, so that uplink channels have arrows pointing upwards, and vice versa
- Figure 6.3 shows the corresponding situation in the <u>downlink</u>

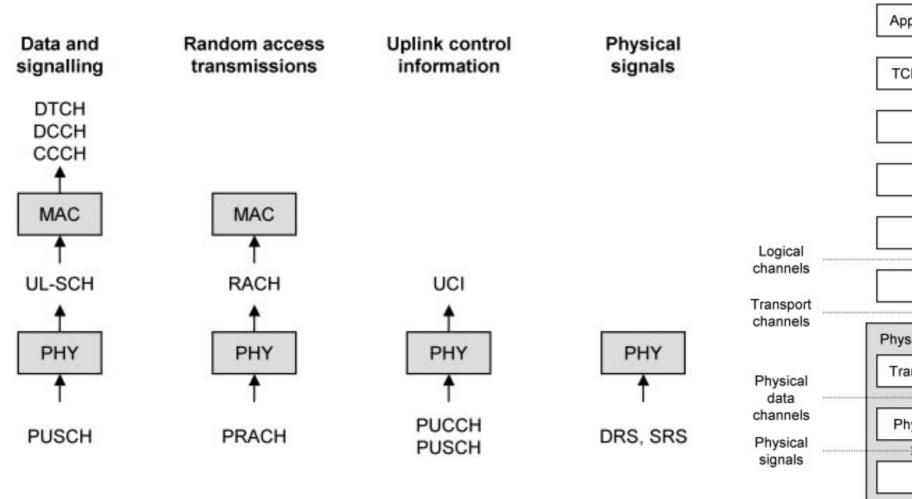
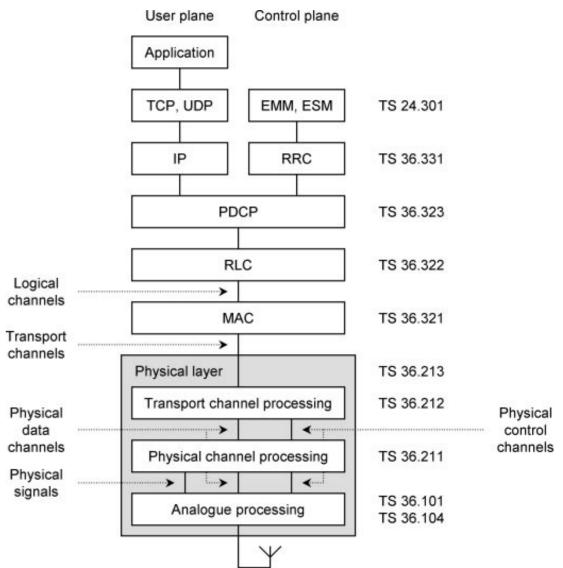



Figure 6.2 Uplink information flows used by LTE.

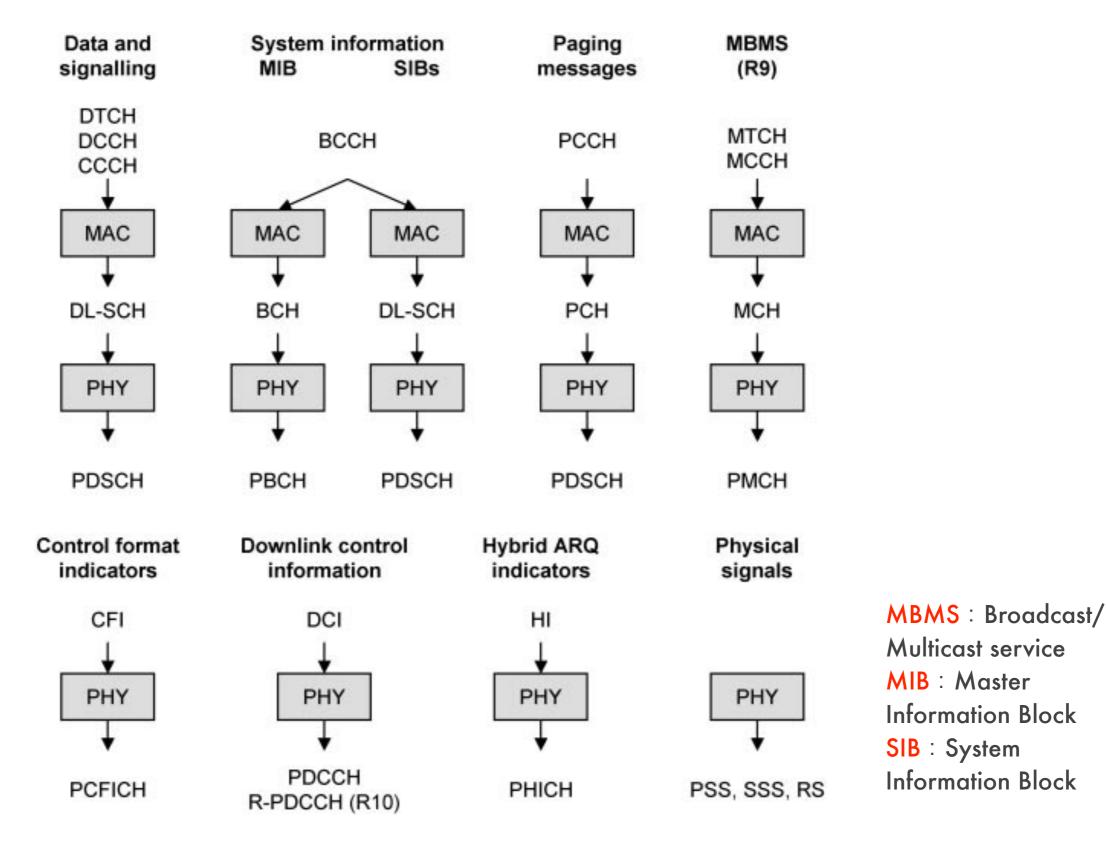
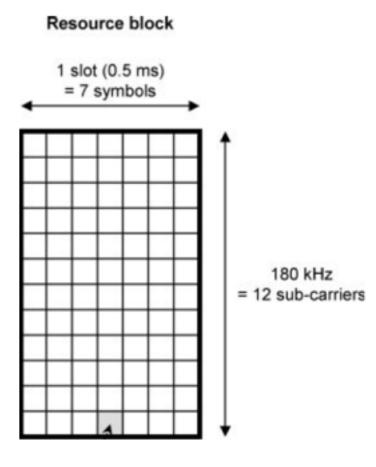


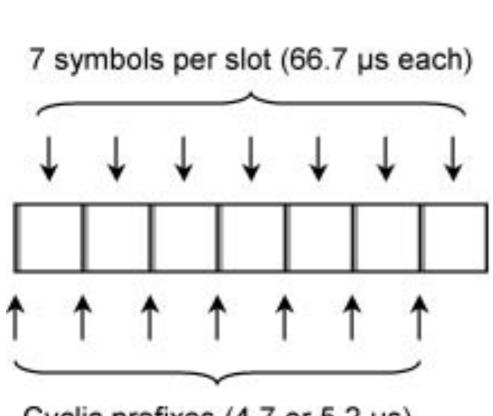
Figure 6.3 Downlink information flows used by LTE.


- 1. Air Interface Protocol Stack
- 2. Logical, Transport and Physical Channels
- 3. The Resource Grid
- 4. Multiple Antenna Transmission
- 5. Resource Element Mapping

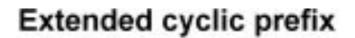
3. The Resource Grid

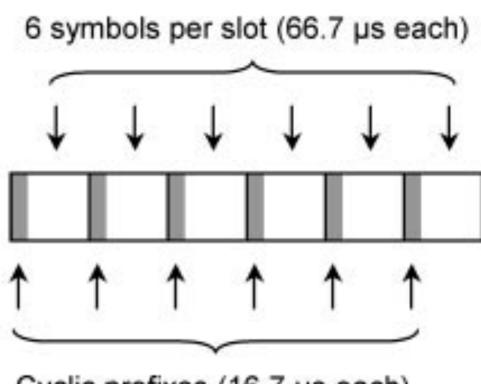
- 3.1 Slot Structure
- 3.2 Frame Structure
- 3.3 Uplink Timing Advance
- 3.4 Resource Grid Structure
- 3.5 Bandwidth Options

- LTE maps <u>physical channels</u> and <u>physical signals</u> onto OFDMA <u>symbols</u> and <u>subcarriers</u>
- How LTE organizes its symbols and sub-carriers in the <u>time</u> and <u>frequency domains</u>


- Consider the time domain
 - ✓ The timing of the LTE <u>transmissions</u> is based on a time unit T_s

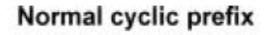
$$T_s = \frac{1}{2048 \times 15000} \sec \approx 32.6 \ ns$$

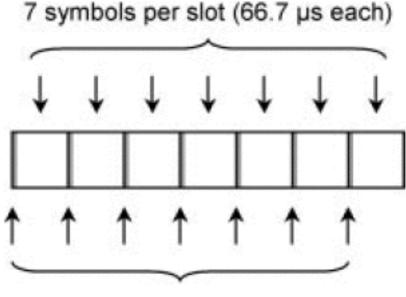

- *T_s* is the <u>shortest time interval</u> that is of interest to the physical channel processor
- (To be exact, *T_s* is the <u>sampling interval</u> if the system uses a fast Fourier transform that contains <u>2048 points</u>)
- ✓ The 66.7 μs symbol duration is then equal to 2048 T_s (66.7 μs = 2048 × 32.6 *ns*)


- The symbols are grouped into <u>slots</u>, whose duration is $0.5 \text{ms} (= 15,360T_s)$, this can be done in two ways
 - ✓ Normal cyclic prefix
 - ✓ Extended cyclic prefix

Normal cyclic prefix

Cyclic prefixes (4.7 or 5.2 µs)

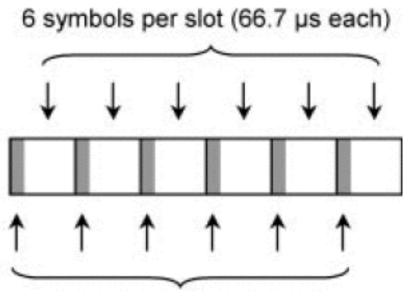




Cyclic prefixes (16.7 µs each)

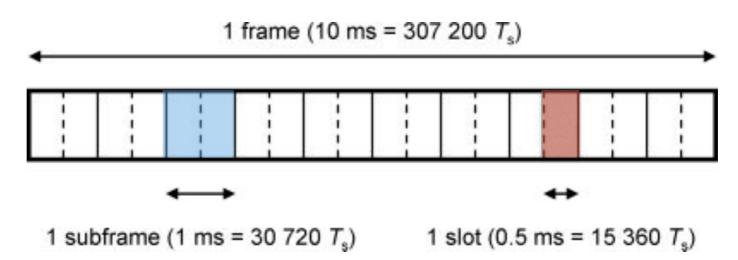
• Normal cyclic prefix

- ✓ Each symbol is preceded by a <u>cyclic prefix</u> that is usually 144 T_s (4.7 µs) long
- ✓ The <u>first cyclic prefix</u> has a longer duration of 160 T_s (5.2 µs), to tidy up the unevenness that results from <u>fitting seven symbols</u> into a slot
- ✓ The receiver can <u>remove inter-symbol</u> <u>interference</u> with a <u>delay spread</u> of <u>4.7 µs</u>, corresponding to a <u>path difference</u> of <u>1.4 km</u> between the lengths of the longest and shortest rays
- ✓ This is normally plenty, but may not be enough if the cell is <u>unusually large</u> or <u>cluttered</u>
- ✓ To deal with this possibility, LTE also supports an <u>extended cyclic prefix</u>




Cyclic prefixes (4.7 or 5.2 µs)

- Extended cyclic prefix
 - \checkmark The <u>number of symbols</u> per slot is reduced to <u>six</u>
 - ✓ This allows cyclic prefix to be extended to 512 Ts (16.7 µs), to support a max path difference of 5 km
- The normal cyclic prefix is far more common


Extended cyclic prefix

Cyclic prefixes (16.7 µs each)

- At a higher level, the <u>slots</u> are grouped into <u>subframes</u> and <u>frames</u>
- In FDD mode, this is done using <u>frame structure type</u> <u>1</u>
- <u>Two slots</u> make <u>one subframe</u>, which is *1ms* long (30,720 *T_s*)

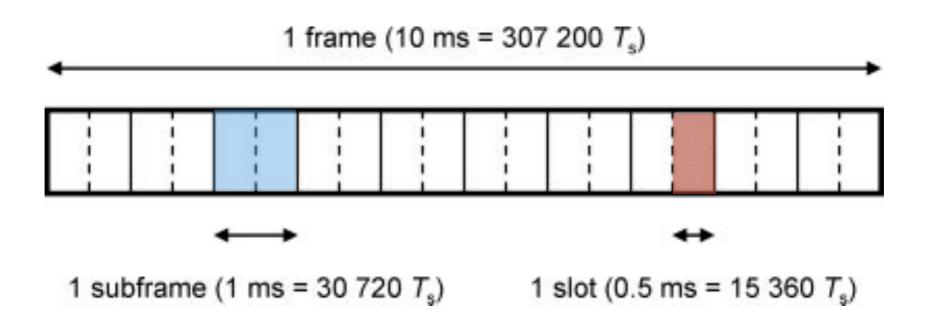
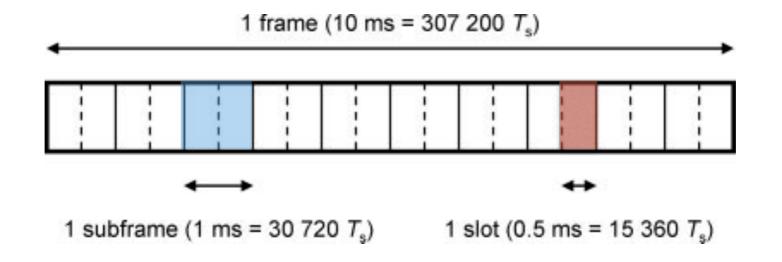
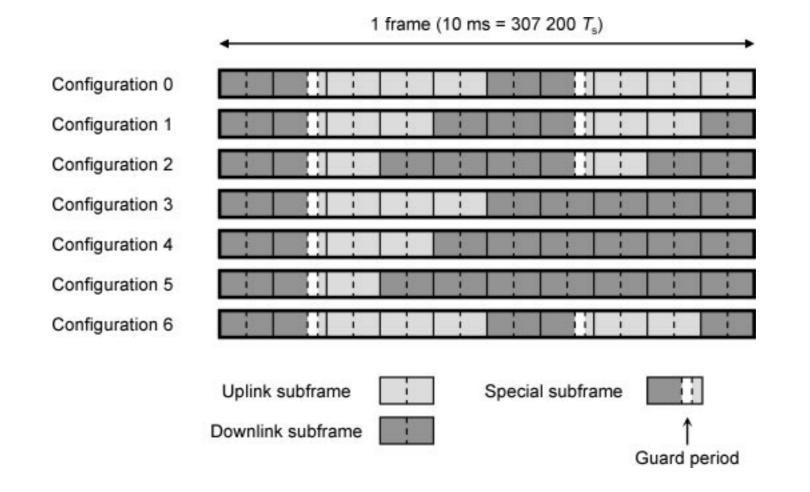
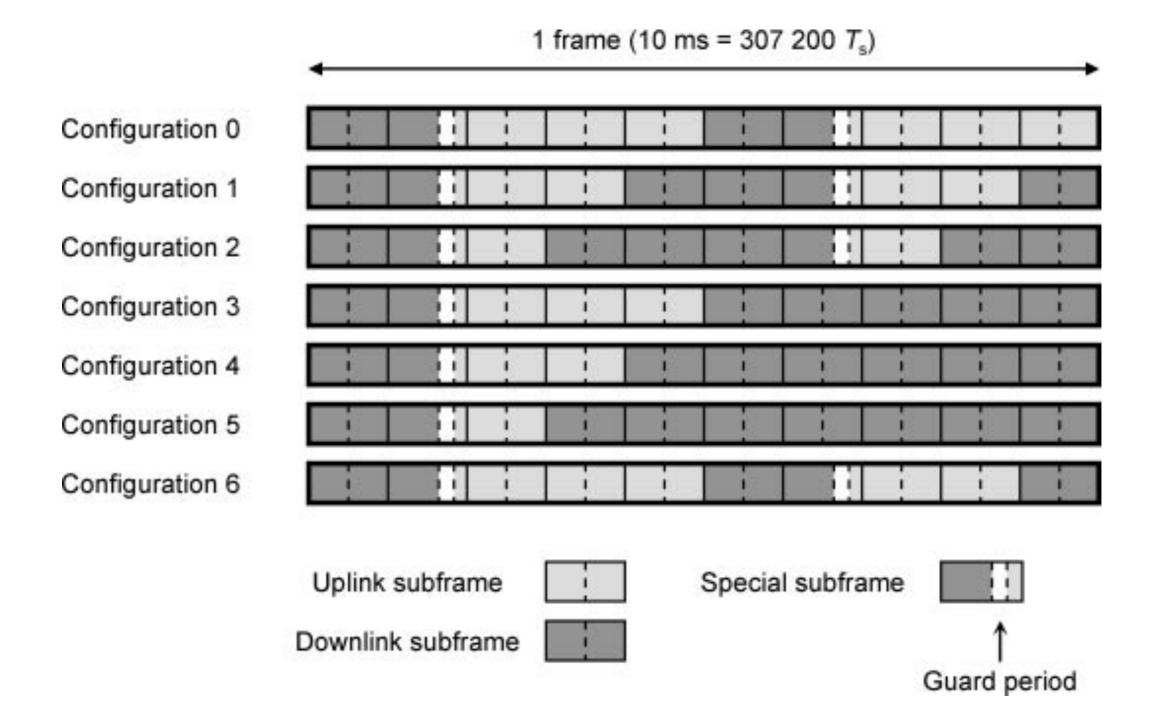
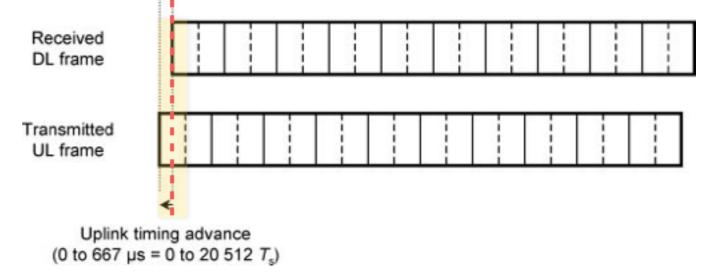
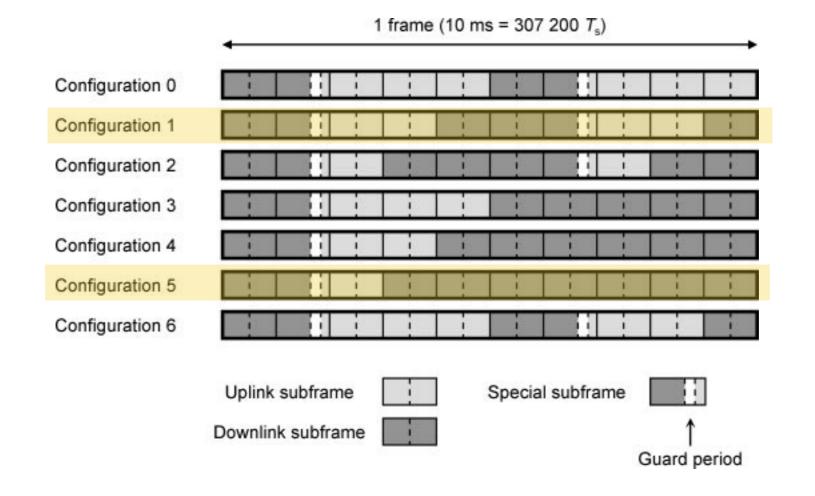




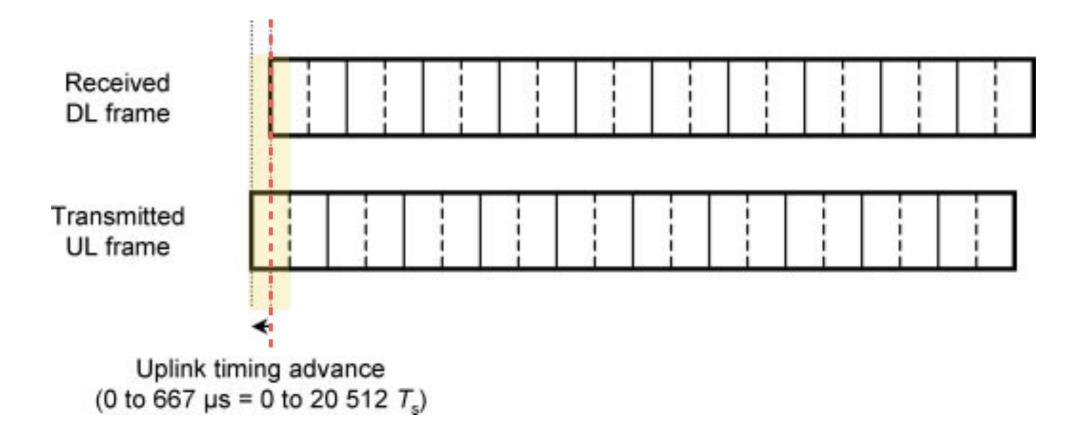
Figure 6.5 Frame structure type 1, used in FDD mode.

- Subframes are used for <u>scheduling</u>
 - ✓ When a BS transmits to a mobile on the <u>downlink</u>, it
 - <u>Schedules</u> its Physical Downlink Shared Channel (PDSCH) transmissions <u>one subframe at a time</u>, and
 - <u>Maps</u> each block of <u>data</u> onto a set of <u>sub-carriers</u> within that subframe
 - ✓ A similar process happens on the <u>uplink</u>
- 10 subframes make <u>one frame</u>, which is 10 ms long (307,200 T_s)
- Each <u>frame</u> is numbered using a <u>system frame number</u> (SFN), which runs repeatedly from 0 to 1023
- <u>Frames</u> help to schedule a number of <u>slowly changing processes</u>, such as the transmission of <u>system information</u> and <u>reference signals</u>

- TDD mode uses frame structure type 2
 - ✓ The slots, subframes and frames have the same <u>duration</u> as before
 - ✓ But each <u>subframe</u> can be allocated to <u>either</u> <u>uplink or downlink</u> using one of the <u>TDD</u> <u>configurations</u> shown in the figure


Figure 6.6 TDD configurations using frame structure type 2.


3.3 Uplink Timing Advance

- In LTE, a mobile starts <u>transmitting</u> its <u>uplink frames</u> at a <u>time TA (Timing Advance)</u> <u>before</u> the <u>arrival</u> of the corresponding frames on the downlink
- TA is used for the following reason
 - ✓ Even traveling at the <u>speed of light</u>, a mobile's transmissions take time (typically a few microseconds) to reach the BS
 - ✓ However, the signals from <u>different mobiles</u> have to reach the BS at roughly the same time, with a delay spread <u>less than the cyclic prefix duration</u>, to <u>prevent</u> any risk of <u>inter-symbol interference</u> between them
 - ✓ To enforce this requirement, <u>distant mobiles</u> have to start transmitting slightly <u>earlier</u> than they otherwise would

- <u>Different cells</u> can have <u>different TDD configurations</u>, which are <u>advertised</u> as part of the cells' system information
 - ✓ Configuration 1
 - Might be suitable if the <u>data rates are similar</u> on the uplink and downlink
 - ✓ Configuration 5
 - Might be used in cells that are dominated by <u>downlink</u> transmissions
- <u>Nearby cells</u> should generally use the <u>same TDD configuration</u>, to <u>minimize</u> the <u>interference</u> between uplink and downlink

Figure 6.7 Timing relationship between the uplink and downlink in FDD mode.

• Because the <u>uplink</u> transmission time is based on the <u>downlink arrival time</u>, the TA has to compensate for the <u>round-trip travel time</u> between BS and mobile

$$TA \approx \frac{2L}{c}$$

 \checkmark *L* : the distance between mobile and BS

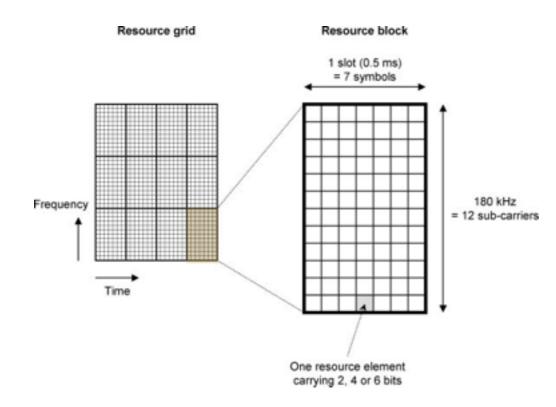
 \checkmark *c* : the speed of light

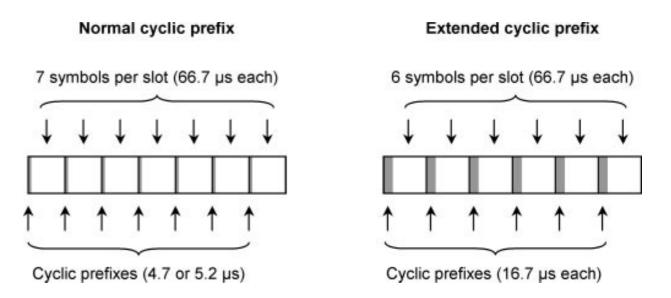
• The TA does not have to be completely accurate, as the cyclic prefix can handle any remaining errors

• The specifications define the TA as follows:

 $TA = (N_{TA} + N_{TA offset}) T_s$

- $\checkmark N_{TA}$
 - Lies between 0 and 20,512
 - This gives a max TA of about 667 μs (two-thirds of a subframe), which supports a max cell size of 100 km
 - *N_{TA}* is <u>initialized</u> by <u>random access procedure</u>, and <u>updated</u> by <u>timing advance procedure</u>


$\checkmark N_{TA offset}$


- *N_{TAoffset}* is zero in FDD mode, but 624 in TDD mode
- This creates a <u>small gap</u> at the <u>transition</u> from uplink to downlink transmissions, which gives BS time to <u>switch</u> from one to the other
- The <u>guard period</u> in each special subframe creates a <u>longer gap</u> at the transition from <u>downlink</u> to <u>uplink</u>, which allows the mobile to <u>advance its uplink frames</u> without them colliding with the frames received on the downlink

	1 frame (10 ms = 307 200 T _s)								
Configuration 0									
Configuration 1			ļį	ļ	i		!		1
Configuration 2							1		1
Configuration 3			i						1
Configuration 4				i					
Configuration 5				i			i.		
Configuration 6						81	1	i	
		subframe subframe]]	Special	subfrar		uard p	eriod

- In LTE, information is organized as a function of <u>frequency</u> as well as <u>time</u>, using a <u>resource grid</u>
- The figure shows the resource grid for the case of a <u>normal cyclic</u> <u>prefix</u>
- There is a similar grid for the <u>extended cyclic prefix</u>, which uses <u>six</u> <u>symbols per slot</u> rather than seven

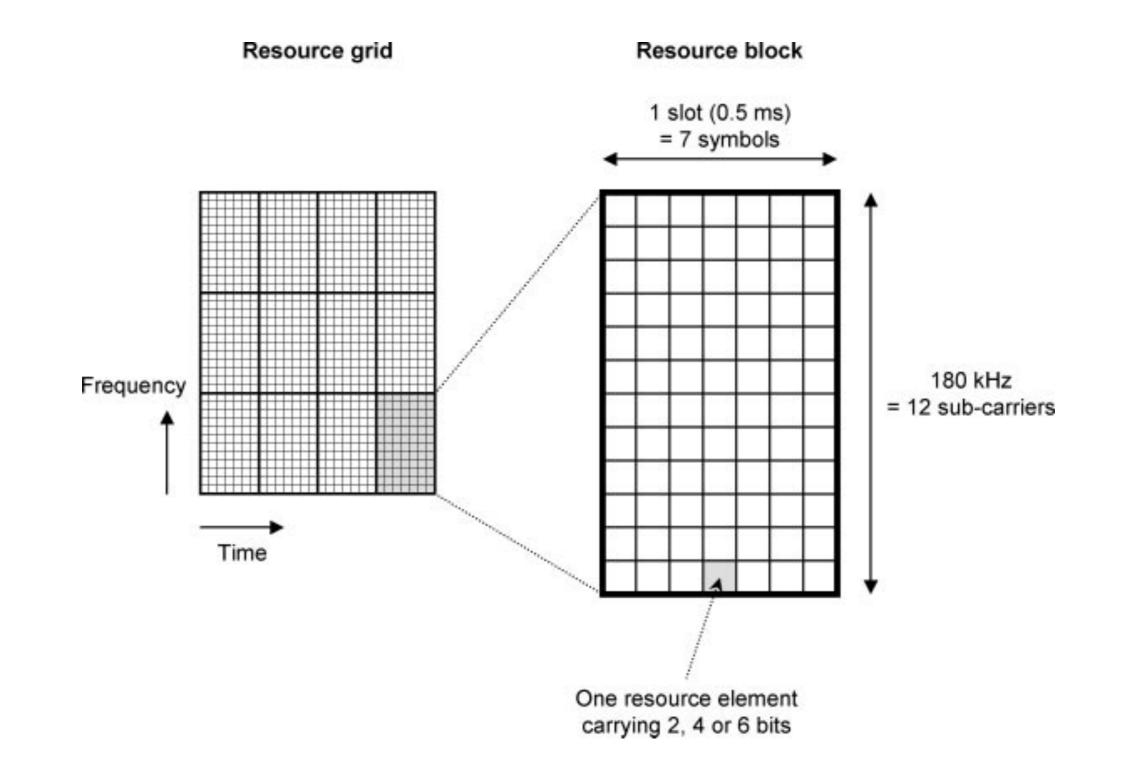
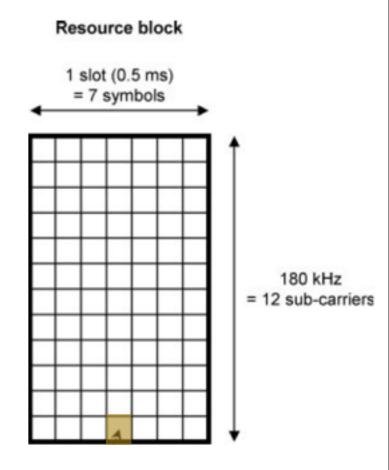



Figure 6.8 Structure of the LTE resource grid in the time and frequency domains, using a <u>normal cyclic prefix</u>.

- Resource element (RE)
 - ✓ The basic unit of resource grid
 - ✓ Each RE spans <u>one symbol</u> by <u>one subcarrier</u>
 - Each RE usually carries <u>two</u>, <u>four</u> or <u>six</u> <u>physical channel bits</u>, depending on whether the modulation scheme is QPSK (2 bits), 16-QAM (4 bits) or 64-QAM (6 bits)
- Resource block (RB)
 - ✓ REs are grouped into resource blocks (RBs)
 - ✓ Each RB spans 0.5 ms (one slot) by 180 kHz (twelve sub-carriers)
 - ✓ BS uses RBs for <u>frequency dependent</u> <u>scheduling</u>, by allocating the symbols and subcarriers within each subframe in units of RBs

3.5 Bandwidth Options

- A <u>cell</u> can be configured with several <u>different bandwidths</u> as shown in the table
- In a 5MHz band, for example, BS transmits using 25 RBs (equal to 25 x 12 = 300 sub-carriers), giving a <u>transmission bandwidth</u> of 4.5MHz (= 25 x 0.18MHz)
- This arrangement leaves room for <u>guard bands</u> at the upper and lower edges of the frequency band (5MHz 4.5MHz = 0.5MHz = 2×0.25 MHz), which <u>minimize</u> the amount of <u>interference</u> with the next band along
- The two guard bands are usually the <u>same width</u>, but the network operator can adjust them if necessary by <u>shifting the centre frequency</u> in units of 100kHz

Total bandwidth	Number of resource blocks	Number of sub-carriers	Occupied bandwidth	Usual guard bands
1.4 MHz	6	72	1.08 MHz	2×0.16 MHz
3 MHz	15	180	2.7 MHz	2×0.15 MHz
5 MHz	25	300	4.5 MHz	2×0.25 MHz
10 MHz	50	600	9 MHz	2×0.5 MHz
15 MHz	75	900	13.5 MHz	2×0.75 MHz
20 MHz	100	1200	18 MHz	$2 \times 1 \text{ MHz}$

- The existence of all these bandwidth options makes it easy for network operators to deploy LTE in a variety of <u>spectrum</u> <u>management</u> regimes, e.g.
 - ✓ 1.4MHz is close to the bandwidths previously used by cdma2000 and TD-SCDMA
 - ✓ 5MHz is the same bandwidth used by WCDMA
 - ✓ 20MHz allows an LTE BS to operate at its highest possible data rate
- In <u>FDD</u> mode, the uplink and downlink bandwidths are usually the same

Total bandwidth	Number of resource blocks	Number of sub-carriers	Occupied bandwidth	Usual guard bands
1.4 MHz	6	72	1.08 MHz	2×0.16 MH
3 MHz	15	180	2.7 MHz	2×0.15 MHz
5 MHz	25	300	4.5 MHz	2×0.25 MH
10 MHz	50	600	9 MHz	2×0.5 MHz
15 MHz	75	900	13.5 MHz	2×0.75 MH
20 MHz	100	1200	18 MHz	$2 \times 1 \text{ MHz}$

Total bandwidth	Number of resource blocks	Number of sub-carriers	Occupied bandwidth	Usual guard bands
1.4 MHz	6	72	1.08 MHz	2×0.16 MHz
3 MHz	15	180	2.7 MHz	2×0.15 MHz
5 MHz	25	300	4.5 MHz	2×0.25 MHz
10 MHz	50	600	9 MHz	2×0.5 MHz
15 MHz	75	900	13.5 MHz	2×0.75 MHz
20 MHz	100	1200	18 MHz	$2 \times 1 \text{ MHz}$

Table 6.7 Cell bandwidths supported by LTE

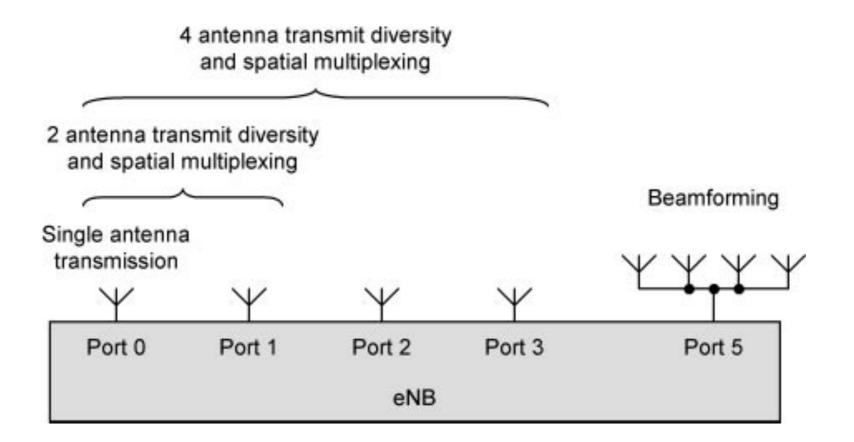
- 1. Air Interface Protocol Stack
- 2. Logical, Transport and Physical Channels
- 3. The Resource Grid
- 4. Multiple Antenna Transmission
- 5. Resource Element Mapping

4. Multiple Antenna Transmission

- 4.1 Downlink Antenna Ports
- 4.2 Downlink Transmission Modes

4.1 Downlink Antenna Ports

- In the downlink, <u>multiple antenna transmissions</u> are organized using <u>antenna ports</u>, each of which has its own copy of the resource grid
- The following table lists the <u>BS antenna ports</u> that LTE uses


Antenna port	Release	Application			
0	R8	Single antenna transmission 2 and 4 antenna transmit diversity and spatial multiplexing	4 antenna transmit diversity and spatial multiplexing		
1	R8	2 and 4 antenna transmit diversity and spatial multiplexing			
2	R8	4 antenna transmit diversity and spatial multiplexing	2 antenna transmit diversity		
3	R8	4 antenna transmit diversity and spatial multiplexing	and spatial multiplexing		
4	R8/R9	MBMS	Beamformin		
5	R8	Beamforming	Single antenna		
6	R9	Positioning reference signals	transmission $\forall \forall \forall \forall$		
7-8	R9	Dual layer beamforming			
0.14	D 10	8 antenna spatial multiplexing	Port 0 Port 1 Port 2 Port 3 Port 5		
9-14 15-22	R10 R10	8 antenna spatial multiplexing CSI reference signals	eNB		

- Ports 0 to 3 are used for single antenna transmission, transmit diversity and spatial multiplexing
- Port 5 is reserved for <u>beamforming</u> (or <u>spatial filtering</u>)
 - <u>Beamforming</u> is a signal processing technique used in <u>sensor arrays</u> for <u>directional signal</u> <u>transmission</u> or <u>reception</u>
 - A sensor array is a group of sensors deployed in a certain geometry pattern. The <u>advantage</u> of using a sensor array over using a single sensor lies in the factor that <u>an array can increase the</u> <u>antenna gain in the direction of the signal</u> while decreasing the gain in the directions of noise and interferences
 - ✓ Beamforming is achieved by <u>changing the directionality of the array</u> when <u>transmitting</u>, a beamformer controls the <u>phase</u> and <u>relative amplitude</u> of the signal at each transmitter, in order to create a pattern of <u>constructive</u> and <u>destructive interference</u> in the wavefront
 - ✓ When <u>receiving</u>, information from different sensors is <u>combined</u> in a way where the expected pattern of radiation is preferentially observed
- The remaining antenna ports are introduced in Releases 9 and 10

Antenna port	Release	Application	
0	R8 R8	Single antenna transmission 2 and 4 antenna transmit diversity and spatial multiplexing 2 and 4 antenna transmit diversity and spatial multiplexing	4 antenna transmit diversity and spatial multiplexing
2 3	R8	4 antenna transmit diversity and spatial multiplexing	2 antenna transmit diversity
	R8	4 antenna transmit diversity and spatial multiplexing	and spatial multiplexing
4	R8/R9	MBMS	Single antenna Beamforming
5	R8	Beamforming	
6 7-8	R9 R9	Positioning reference signals Dual layer beamforming 8 antenna spatial multiplexing	
9–14	R10	8 antenna spatial multiplexing	Port 0 Port 1 Port 2 Port 3 Port 5
15–22	R10	CSI reference signals	eNB

Antenna port	Release	Application
0	R8	Single antenna transmission 2 and 4 antenna transmit diversity and spatial multiplexing
1	R8	2 and 4 antenna transmit diversity and spatial multiplexing 2 and 4 antenna transmit diversity and spatial multiplexing
2	R8	4 antenna transmit diversity and spatial multiplexing
3	R 8	4 antenna transmit diversity and spatial multiplexing
4	R8/R9	MBMS
5	R 8	Beamforming
6	R9	Positioning reference signals
7-8	R9	Dual layer beamforming 8 antenna spatial multiplexing
9-14	R10	8 antenna spatial multiplexing
15-22	R10	CSI reference signals

Table 6.8 Antenna ports used by the LTE downlink

Figure 6.9 Antenna ports used by a Release 8 base station

4.2 Downlink Transmission Modes

• To support the use of <u>multiple antennas</u>, the BS can optionally configure the <u>mobile</u> into one of the following downlink transmission modes

			Uplink feedback required		
Mode	Release	Purpose	CQI	RI	PMI
1	R8	Single antenna transmission	\checkmark		
2	R 8	Open loop transmit diversity	\checkmark		
3	R 8	Open loop spatial multiplexing	\checkmark	\checkmark	
4	R 8	Closed loop spatial multiplexing	\checkmark	\checkmark	\checkmark
5	R 8	Multiple user MIMO	\checkmark		\checkmark
6	R 8	Closed loop transmit diversity	\checkmark		\checkmark
7	R 8	Beamforming	\checkmark		
8	R 9	Dual layer beamforming	\checkmark	Config	urable
9	R10	Eight layer spatial multiplexing	\checkmark	Config	urable

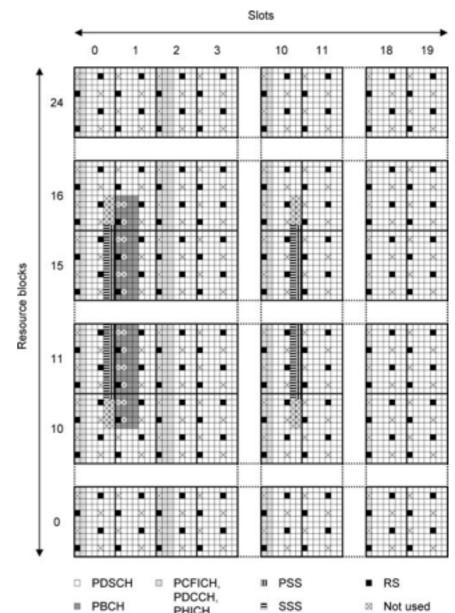
CQI : Channel Quality Indicator RI : Rank Indication PMI : Precoding Matrix Indicator

			Uplink feedback required			
Mode	Release	Purpose	CQI	RI	PMI	
1	R8	Single antenna transmission	\checkmark			
2	R 8	Open loop transmit diversity	\checkmark			
3	R 8	Open loop spatial multiplexing	\checkmark	\checkmark		
4	R 8	Closed loop spatial multiplexing	\checkmark	\checkmark	\checkmark	
5	R 8	Multiple user MIMO	\checkmark		\checkmark	
6	R 8	Closed loop transmit diversity	\checkmark		\checkmark	
7	R 8	Beamforming	\checkmark			
8	R9	Dual layer beamforming	\checkmark	Configurable		
9	R10	Eight layer spatial multiplexing	\checkmark	0	Configurable	

Table 6.9 Downlink transmission modes

- The transmission mode defines
 - ✓ Type of <u>multiple antenna processing</u> that the <u>BS</u> will use for its <u>transmissions</u> on PDSCH (Physical Downlink Shared CHannel)
 - ✓ Type of processing that the mobile should use for PDSCH reception
 - ✓ It also defines the <u>feedback</u> that the BS will expect from the mobile

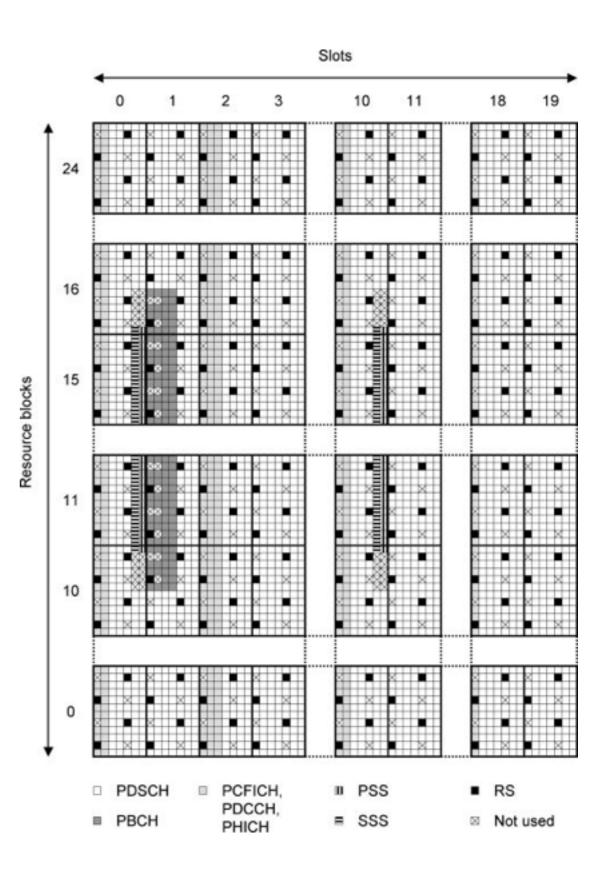
			Uplink feedback required		
Mode	Release	Purpose	CQI	RI	PMI
1	R8	Single antenna transmission	\checkmark		
2	R 8	Open loop transmit diversity	\checkmark		
3	R 8	Open loop spatial multiplexing	\checkmark	\checkmark	
4	R 8	Closed loop spatial multiplexing	\checkmark	\checkmark	\checkmark
5	R 8	Multiple user MIMO	\checkmark		\checkmark
6	R 8	Closed loop transmit diversity	\checkmark		\checkmark
7	R 8	Beamforming	\checkmark		
8	R9	Dual layer beamforming	\checkmark	Configurable	
9	R 10	Eight layer spatial multiplexing	\checkmark	Configurable	


- 1. Air Interface Protocol Stack
- 2. Logical, Transport and Physical Channels
- 3. The Resource Grid
- 4. Multiple Antenna Transmission
- 5. Resource Element Mapping

5. Resource Element Mapping

- 5.1 Downlink Resource Element Mapping
- 5.2 Uplink Resource Element Mapping

5.1 Downlink Resource Element Mapping


- LTE physical layer transmits the physical channels and physical signals by mapping them onto resource elements
- The exact mapping depends on the exact configuration of the BS and mobile
- Some example mappings for the uplink and downlink, for a typical system configuration

- The figure shows an example resource element mapping for downlink
 - ✓ Assumes use of <u>FDD mode</u>, <u>normal cyclic prefix</u> and a <u>bandwidth of 5MHz</u>

✓ Time

- Plotted horizontally and spans the <u>20 slots</u> that make up <u>one frame</u>
- ✓ Frequency
 - Plotted vertically and spans the <u>25 RBs</u> that make up transmission band

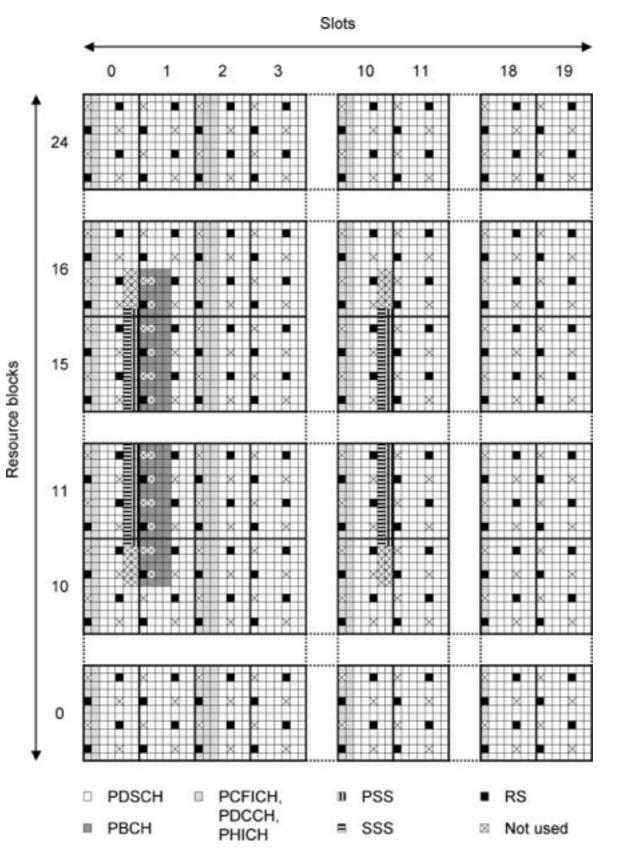
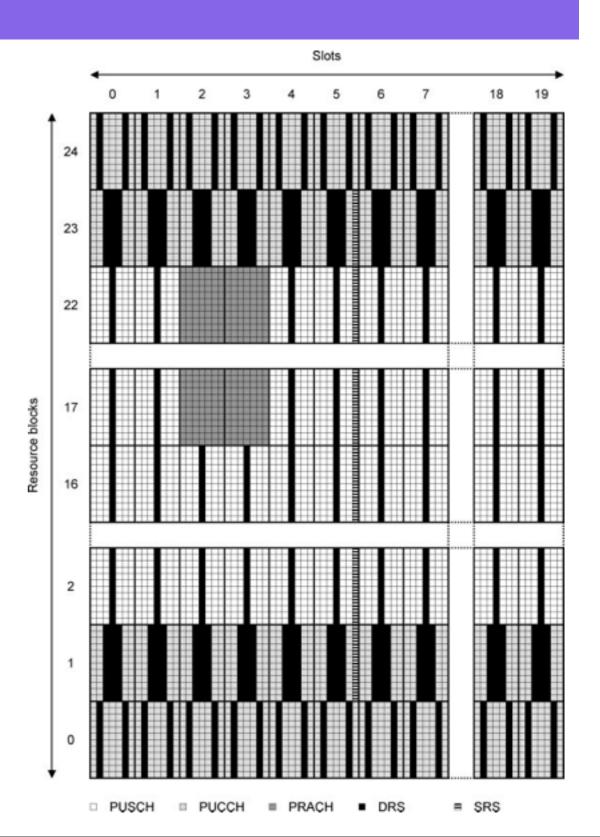


Figure 6.10 Example mapping of physical channels to <u>resource elements</u> in the <u>downlink</u>, using FDD mode, a normal cyclic prefix, a 5MHz bandwidth, the first antenna port of two and a physical cell ID of 1

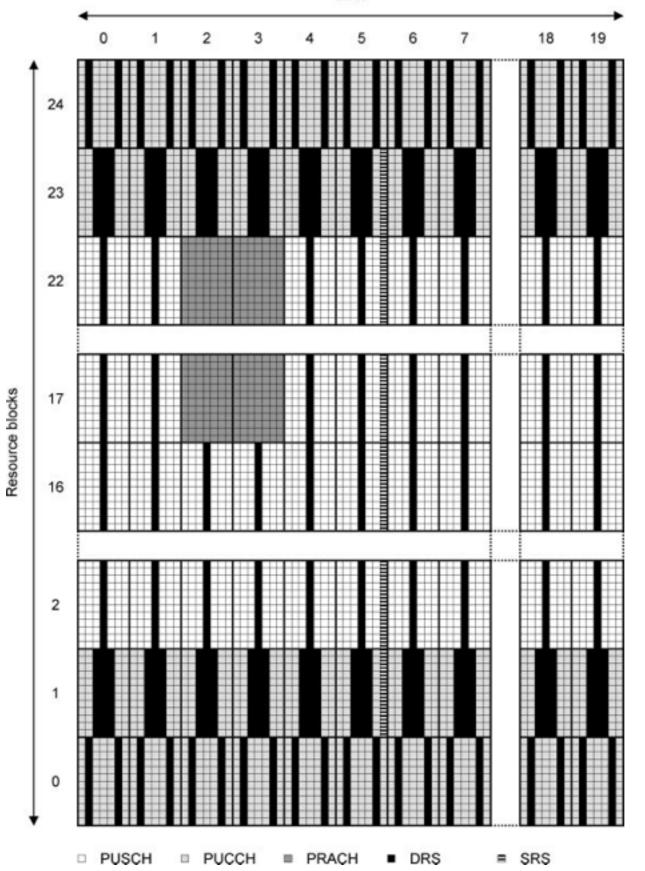
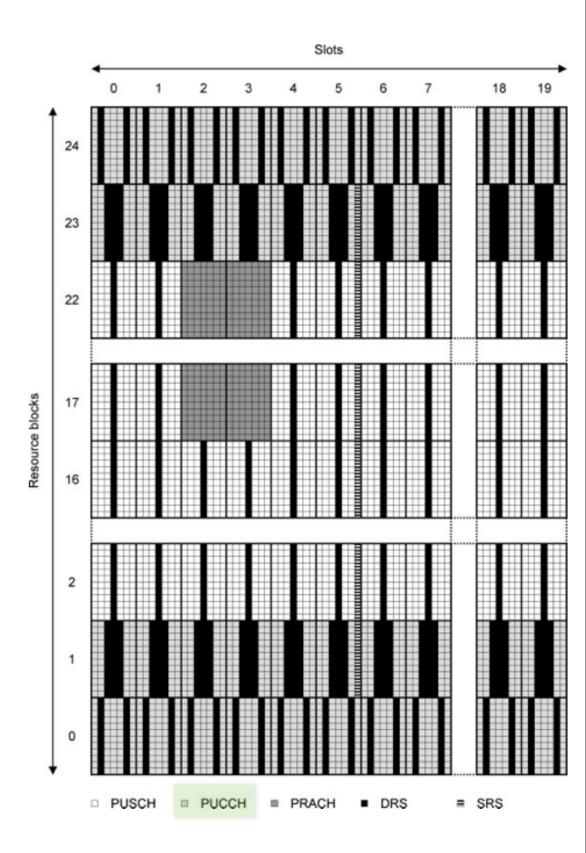

- The <u>cell specific reference signals</u> are scattered across <u>time</u> and <u>frequency</u> domains
 - ✓ While one antenna port is <u>sending</u> a reference signal, the others keep <u>quiet</u>, so that the mobile can measure the received reference signal from <u>one antenna port</u> at a time
- Within each <u>frame</u>, certain resource elements are
 - ✓ Reserved for
 - The primary and secondary synchronization signals
 - The physical broadcast channel
 - ✓ <u>Read</u> during the <u>acquisition procedure</u>

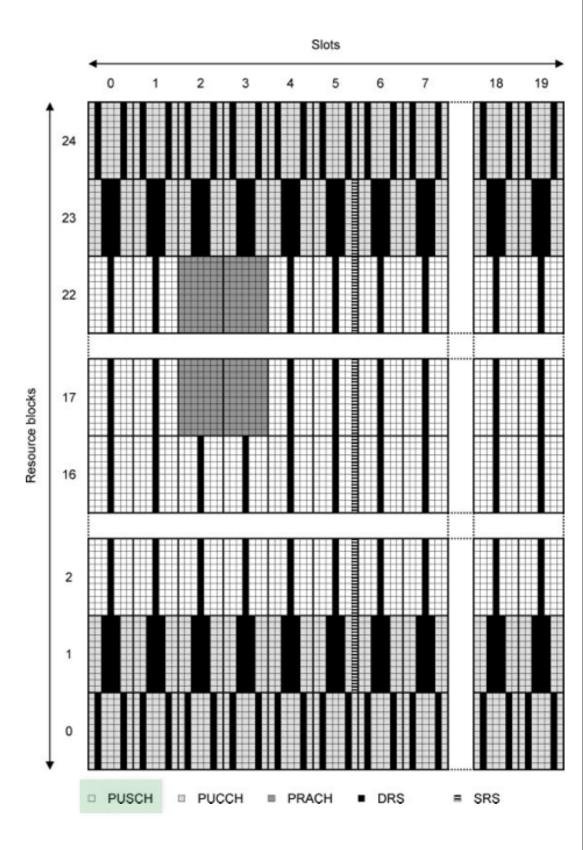
- At the <u>start</u> of each <u>subframe</u>
 - A few <u>symbols</u> are reserved for the <u>control</u> <u>information</u> that the BS transmits on PCFICH, PDCCH and PHICH
- The <u>rest</u> of the subframe is
 - ✓ Reserved for <u>data transmissions</u> on the PDSCH
 - ✓ Allocated to <u>individual mobiles</u> in units of RBs within each subframe

Channel	Release	Name	Information carried	Direction
PUCCH	R 8	Physical uplink control channel	UCI	UL
PCFICH PHICH PDCCH R-PDCCH	R8 R8 R8 R10	Physical control format indicator channel Physical hybrid ARQ indicator channel Physical downlink control channel Relay physical downlink control channel	CFI HI DCI DCI	DL

5.2 Uplink Resource Element Mapping

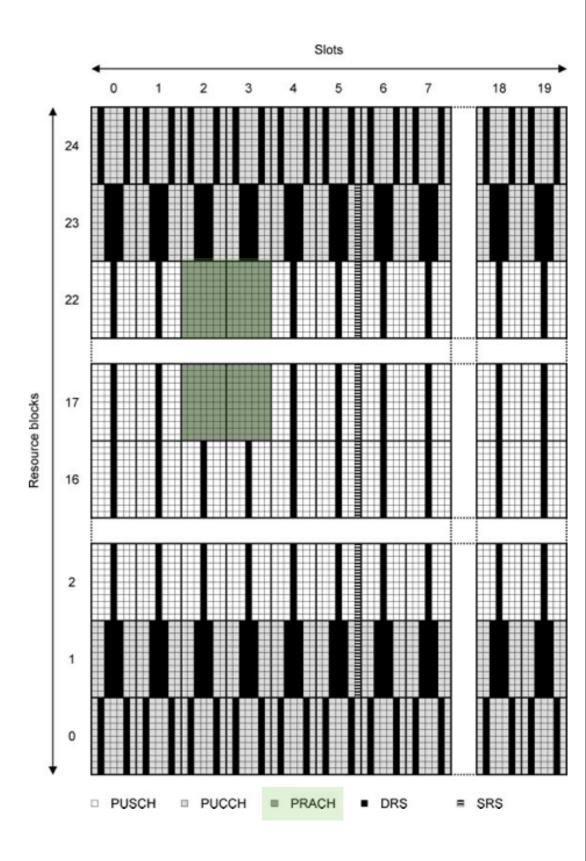
- The figure shows the mapping of physical channels to resource elements in the <u>uplink</u>
- Assume the use of <u>FDD</u> <u>mode</u>, a <u>normal cyclic</u> <u>prefix</u>, a 5MHz bandwidth


Figure 6.11 shows the corresponding situation on the uplink. The figure assumes the use of FDD mode, the normal cyclic prefix and a bandwidth of 5MHz.

Slots

- PUCCH (Physical Uplink Control CHannel)
 - PUCCH can be <u>sent</u> in <u>various</u>
 <u>different formats</u>, depending on
 the information that the mobile
 has to transmit, for example
 - PUCCH formats 1, 1a and 1b
 - Four control symbols per slot
 - Three reference symbols
 - PUCCH formats known as 2,
 2a and 2b
 - Five control symbols per slot
 - Two reference symbols



- PUSCH (Physical Uplink Shared CHannel)
 - The rest of the band is mainly used by the PUSCH and is allocated to individual mobiles in units of RBs within each subframe
 - ✓ PUSCH transmissions contain
 - Six data symbols per slot
 - One reference symbol

PRACH (Physical Random Access CHannel)

- The BS also reserves
 certain RBs for <u>random</u>
 <u>access transmissions</u> on
 the PRACH
- The PRACH has a
 bandwidth of six RBs and
 a duration from one to
 three subframes, while its
 locations in the resource
 grid are configured by the
 BS

