
Predicting Future Participants of Information Propagation Trees
Hsing-Huan Chung
josh860826@gmail.com

National Taiwan University
Taipei, Taiwan

Hen-Hsen Huang
hhhuang@nccu.edu.tw

National Chengchi University
MOST Joint Research Center for AI
Technology and All Vista Healthcare

Taipei, Taiwan

Hsin-Hsi Chen
hhchen@ntu.edu.tw

National Taiwan University
MOST Joint Research Center for AI
Technology and All Vista Healthcare

Taipei, Taiwan

ABSTRACT
Understanding how information propagates among social media
users can allow researchers to provide interesting insights into
online social networks and lead to applications such as precise ad-
vertising and misinformation management. In this work, we focus
on information diffusion through post sharing. Given an informa-
tion propagation tree, our goal is to predict a list of potential users of
the tree. A framework based on graph convolutional network (GCN)
is proposed to learn the latent representation of a propagation tree
and match it with the latent representation of a user. A novel strat-
egy for tree pruning is further investigated to improve the GCN.
Experimental results show that our framework outperforms the
existing methods for modeling information diffusion.

CCS CONCEPTS
• Information systems → Collaborative filtering; Social recom-
mendation; Social networks; • Human-centered computing →
Social content sharing; Social media; • Computing methodolo-
gies → Neural networks.
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1 INTRODUCTION
Social media attracts hundreds of million users to publish, share,
and consume information. The easiness of producing information
leads to a rapid increase in online content. Moreover, social media
has shortened the communication distance between people, which
results in frequent interactions such as sharing posts, replying and
direct messaging. These factors make social media a platform for
extensive information diffusion.
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In this work, we are interested in modeling how a post is shared
and propagates among social media users. Early work models infor-
mation diffusion with given Independent Cascades (IC) or Linear
Threshold (LT) model [7]. Based on IC or LT model, several works
introduce machine learning techniques to learn the diffusion model
from cascaded data [2, 4]. These methods rely on hand-crafted fea-
tures, which require extensive domain knowledge and are hard to
generalize to all platforms. In order to skip the troublesome fea-
ture engineering process, recent works adopt deep learning and
representation learning techniques to model information diffusion
[1, 3, 6, 9, 10, 12, 13, 16]. The tasks and utilized information in these
works vary. In [1, 10], they both regard the diffusing process as
a sequence of events where each event indicates a user getting
“infected” at a certain time point. In [13, 16], their models not only
take a sequence of events as input but also utilize the structure of
social graphs to achieve better performance. However, their models
do not make use of the sharing relationship among users. That is,
they only know a node in a social graph is infected at a certain time
point but do not know which node infects it or which node it shares
information from. By contrast, the models proposed by [3, 6, 9, 12]
take the sharing relationship among users as input instead of social
graphs. The setting of our work is close to [3, 6, 9, 12]. Our frame-
work only has access to the sharing relationship among users and
does not need the information of social graphs. Having a similar
setting with [6, 12], the sharing relationship we consider can be
modeled as a tree structure called propagation tree. The root node
of a propagation tree represents the user who publishes the source
post. Each edge between a parent node and a child node represents
a sharing action. As the information goes viral, the propagation
tree gets larger. Figure 1 illustrates a propagation tree.

Our goal in this work is to predict which users will participate
in a propagation tree in the future. This task is similar to a recom-
mendation problem: Given a propagation tree, recommend a list
of users who may be interested in participating in it, or in other
words, spread the information that the tree carries. According to
the setting of traditional collaborative filtering, a tree can be char-
acterized by the set of users who have participated in it. In our case,
however, a tree is not just a set of users. There exists a rich sharing
relationship among users within a tree. Therefore, we learn user
and tree latent representations that take the sharing relationship
into account. Then, we match a user representation with a tree
representation to estimate the probability of the user participating
in the tree in the future.

The main innovation of this work lies in learning tree-level repre-
sentations. We evaluate our framework on two real-world datasets
and compare it with existing methods. Experimental results show
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Figure 1: A simple example of an information propagation
tree where each node has a user ID. The root node hav-
ing user ID 86921288 represents the user who publishes the
source post of the propagation tree.

that our framework outperforms other methods. The advantages
of our framework are threefold:

(1) Our model simultaneously performs top-down and bottom-
up representation aggregation which models our intuition
that sharing is a form of bidirectional information exchange.

(2) We propose a novel tree pruning strategy that is able to
eliminate noise.

(3) The final tree representation is tailored to each user who is
matching with the tree, which models the phenomenon that
each user sees an information diffusing process differently.

The problem formulation, proposed approach, and experiments
will be presented in the rest of this paper.

2 PROBLEM FORMULATION
Let T = {T1,T2,T3, . . .T |T | } and U = {u1,u2,u3, . . .u |U | } be the
sets of |T | propagation trees and |U| users. A propagation tree is
composed of nodes and edgeswhere each node represents a user and
each edge represents a sharing action. We consider a propagation
tree an undirected, acyclic, and connected graph. Formally, Ti =
(Ui ,Ei )whereUi ⊆ U and Ei ⊆ Ui×Ui .Ui and Ei each corresponds
to the set of nodes and the set of edges in Ti . (up ,uc ) ∈ Ei , i.e., uc
is the child of up inTi if and only if uc shares the post published by
up underTi . Hereafter, we refer to an arbitrary user or an arbitrary
node in a propagation tree interchangeably using the notation u.
Likewise, an arbitrary tree is denoted as T .

Our problem is formulated as follows: Given a propagation tree
Ti , we aim to generate a ranked list of users {um ,un ,ul , . . . } who
may participate in the propagation tree in the future.

3 PROPOSED APPROACH
To determine whether a user um will participate in a propagation
tree Ti , we compute representations of Ti and um , ®Ti and ®um , then
match them to obtain a score ŷim which is between 0 and 1. Our
framework can be decomposed to several components. First, we pre-
train user representations utilizing the global interactions between
users. Next, we compute the tree representation ®Ti making use of

local interactions between users within Ti . Finally, we match ®Ti
with ®um to get ŷim .

The ground truth score is denoted as yim where yim = 1 if um
will participate in Ti , otherwise 0. Our goal during training is to
minimize the cross entropy loss:

L = −
∑

(i,m)∈S+∪S−

yim log ŷim + (1 − yim ) log(1 − ŷim ) (1)

where S+ and S− are the sets of positive training samples and
negative training samples, respectively. In the following subsections,
we will go through the details of each component.

3.1 Pre-training User Embeddings
We first construct a network of users from all propagation trees. Let
the global user network N = (U, E) be a weighted and undirected
graph. The set of nodes U represents of all users. E ⊆ U × U

denotes the edges of the user network. There is an edge (up , uc )
between up and uc in N if one of them has shared the other one’s
post. The weight of (up , uc ) is the frequency of up and uc sharing
each other’s posts.

Afterwards, we use Large-Scale Information Network Embed-
ding (LINE) [14] to take N as the input graph and pre-train low
dimensional user embeddings {®u1, ®u2, . . . }.

3.2 Graph Convolutional Network
After obtaining the pre-trained user embeddings, we compute the
contextual node embeddings within each tree. To gather contex-
tual information for nodes in a propagation tree, we make them
exchange information along the tree edges.

Tree edges represent the sharing actions and there are two in-
terpretations of sharing. Firstly, sharing is an action of information
diffusion from a post publisher to a sharer. Secondly, sharing is
feedback from a sharer, showing her interest in a post and its pub-
lisher. Therefore, we claim that sharing is a form of bidirectional
information exchange.

The purpose of considering a propagation tree T an undirected
graph is to satisfy the above setting. Given the adjacency matrix
A ∈ �n×n of T and its initial node representation matrix U0 ∈

�n×h0 where each row is a pre-trained user embedding ®u⊺ of a tree
participant of T . A 2-layer graph convolutional network[8] can be
written as:

U2 = tanh(D−1Ã tanh(D−1ÃU0W1)W2) (2)
where W1 ∈ �h0×h1 and W2 ∈ �h1×h2 are two linear transfor-

mations containing graph convolution parameters, Ã = A + I is
the adjacency matrix of the given graph with each node having
an added self loop, D is a diagonal matrix where Dii =

∑n
j=1 Ai j .

The output of this component, U2, contains the contexual node
embeddings within a tree.

3.3 Tree Pruning and Attention Mechanism
In this subsection, we will describe how we compute the repre-
sentation of a propagation tree based on the outputs of previous
components. The inputs of this component are listed as follows.

(1) Ti = (Ui ,Ei ), a propagation tree
(2) um , the user who is going to match with Ti
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(3) Ui2, the node representations within Ti after 2 graph convo-
lutions

(4) ®um , the pre-trained embedding of um
(5) N = (U, E), the global user network.

First of all, we apply a tree pruning strategy on the input propaga-
tion tree. The goal of this operation is to select representative nodes
and eliminate the rest to obtain better tree representation. Our tree
pruning strategy is based on two intuitions. Firstly, we select nodes
that have strong influences on the process of information diffusion.
Secondly, we select nodes that are close toum because they are very
likely to be the “entrances” for um to participate in the propagation
tree.

We define a node as highly influential in the information dif-
fusing process if the user it represents is an opinion leader or an
Internet celebrity. Such kind of users will make the information
continue diffusing because they would bring more people's atten-
tion to it. In other words, an information diffusion path will not end
in highly influential nodes. Therefore, we define highly influential
nodes as those internal nodes, Uint .

Afterwards, we are going to select nodes that are close toum . We
define two nodes being close if they belong to the same community
or even have interacted before. We construct an undirected graph
T ′
i = (U ′

i ,E
′
i ) where

U ′
i = Ui ∪ um (3)

E ′i = Ei ∪ {(u,um ) | u ∈ Ui ∧ (u,um ) ∈ E} (4)

um , which doesn’t belong toTi , is currently connected to the nodes
in Ti that are neighbors of um in the global user network N . After-
wards, we apply breadth-first search (BFS) from um to search and
select its k-hop neighbors. If k = 1, only those that have directly
interacted with um are selected. By keep searching to a larger k ,
more node information will be considered, but more noise might be
included as well. After finishing BFS, the nodes that are close to um
are selected. We call this set of nodesUbf s . SinceUbf s is dependent
on um , the final tree representation will vary according to the user
who is going to match with the tree. This fits the reality because
a user does not have a god's-eye view of an entire information
diffusing process. Instead, how a user sees a piece of information is
influenced by the community she belongs to.

As shown in Figure 2, we can obtain a pruned propagation tree
Tip = (Uip ,Eip ) by removing nodes that belong toUi−(Uint∪Ubf s )
and edges attached to them. Likewise, we can get a pruned node rep-
resentation matrix Ui2p ∈ �|Uip |×h2 by removing representations
of pruned nodes.

Next, we apply an attention mechanism to compute the final
tree representation. The attention function we adopt is scaled dot-
product attention [15]:

®Ti = Attention(Q,K,V) = So f tmax(
QK⊺
√
h2

)V (5)

where K and V are both Ui2p , Q is ®u⊺m . Note that h2 must be equal
to the dimension size of pre-trained user embeddings so that the
inner product of a node representation and a user embedding can
be performed.

Figure 2: An example of tree pruning with the BFS parame-
ter k set to 2. In the left tree, the node with purple edge be-
longs toUint , the nodes with dark blue edges belong toUbf s ,
and the nodeswith light green edges belong to bothUbf s and
Uint . The rest of the nodes are removed during the pruning
process.

3.4 Matching
After finish computing ®Ti , we will finally match it with ®um to obtain
ŷim . We adopt neural matrix factorization (NeuMF) [5], which is a
fusion of generalized matrix factorization (GMF) and multiple layer
perceptron (MLP), to compute ŷim .

To provide a ranked list of users forTi , our frameworkmatches ®Ti
with the representation of each user in a candidate pool. Afterwards,
our framework selects the users with the highest probabilities and
sorts them to form a ranked list.

4 EXPERIMENTS
4.1 Datasets
In the following experiments, we used the datasets Twitter15 and
Twitter16, provided by [11]. These datasets were used for rumor
detection in previous works [11, 12]. To the best of our knowl-
edge, we are the first to use these datasets for future participant
prediction.

4.2 Comparison Methods
We used different methods to model the information diffusing pro-
cess and compared their performances. The methods include ran-
dom, GRU-RNN [10], BU-RvNN [12], TD-RvNN [12] and our
method, GCN-Prune-Attention. On the other hand, we tested
our method with several variations, including the model without
tree pruning and the model with a different hyperparameter k for
BFS.

4.3 Experimental Settings
For each dataset, we selected 85% of trees as the training set and
the rest as the test set. For each tree, we ordered the nodes chrono-
logically and selected the last 20% of nodes as future participants
to predict.

Aside from random, all methods take the same set of pre-trained
user embeddings as input and use NeuMF as the matching function.
The difference between these methods lies in diffusion process
modeling.

In our experiments, we limited the participant candidate pool
of a tree to the set of users who have interacted with the tree
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participants in other trees, or in other words, the neighbors of all
tree participants in the global user network N . Using all users as
the candidate pool leads to slow convergence during training and
we leave efficient sampling a less limited candidate pool to future
work. In most social media platforms, a user’s feed only consists of
posts published by other users she follows and is optimized to show
her posts she may be interested at the top of it. Since we don’t have
social graph information, we tested with the same candidate pool
as the training one to approximate the application scenario.

During training with a tree, we sampled negative instances from
the candidate pool uniformly with a negative ratio of one. Although
[5] suggests to sample more negative instances, both BU-RvNN and
TD-RvNN take too much time to train because they are hard to
compute in parallel. Hence, we keep negative instances as many as
positive instances in order to save time.

During testing with a tree, we sampled negative instances from
the tree's candidate pool along with given positive instances to
provide 100 testing users. Performance is evaluated by precision
and mean average precision (mAP) at the ranked list.

The hyperparameter settings of our model are described as fol-
lows. The dimensions of pre-trained embeddings are 128 for Twit-
ter15 and 64 in Twitter16, respectively. Both h1 and h2 are equal to
the initial embedding dimensions. The multiple layer perceptron
in NeuMF consists of three hidden layers. The number of neurons
is 128 in the first layer, 64 in the second layer, and 32 in the third
layer. The learning rate was set to 0.001, and the parameters were
optimized with the ADAM algorithm.

4.4 Experimental Results
Table 1 shows the experimental results on Twitter15 and Twitter16.
In both datasets, Random performed the worst and GCN-Prune-
Attention performed the best among all methods. TD-RvNN per-
formed better than BU-RvNN in both datasets. This matches the
discovery of a previous work[12].

On the other hand, TD-RvNN and GCN-based methods per-
formed better than GRU-RNN does because, during the preprocess-
ing step of GRU-RNN, the structural information of a propagation
tree is lost. The setting discards the sharing relationship and makes
GRU-RNN less powerful than TD-RvNN and GCN-based methods,
which both fully preserve the propagation tree structure during
neural computations.

With respect to the performances of two competitive structure-
preserving models, GCN-based methods outperformed TD-RvNN.
TD-RvNN has a property that the amount of information a node
representation contains depends on its ancestors and is limited by
the tree height. One possible reason that TD-RvNN underperformed
GCN-based methods is that an information propagation tree is a
rather wide and shallow structure. There are more than 400 nodes
in a tree in both datasets, while the average height of a tree is only
6.5 in Twitter15 and 6.9 in Twitter16, respectively. The shallow tree
structure limits the effectiveness of TD-RvNN. Furthermore, a node
in GCN can gather information from its siblings since its representa-
tion depends on its first and second-hop neighbors. Information of
siblings is important in the context of information diffusion because
siblings, who share information from the same tweeter (parent),
may share similar interests. Nevertheless, RvNN models, where a

Table 1: Results on Twitter15 and Twitter16

Twitter15 Twitter16
Method prec@10 mAP@10 prec@10 mAP@10

Random 0.237 0.359 0.245 0.372
GRU-RNN 0.393 0.556 0.389 0.549
BU-RvNN 0.315 0.449 0.331 0.486
TD-RvNN 0.421 0.606 0.404 0.563
GCN-Attention 0.431 0.562 0.431 0.580
GCN-Prune-Attention 0.478 0.642 0.475 0.674

Table 2: GCN-Prune-Attention with different k

Twitter15 Twitter16
k prec@10 mAP@10 prec@10 mAP@10

0 0.425 0.578 0.419 0.579
1 0.425 0.558 0.418 0.592
2 0.424 0.590 0.423 0.548
3 0.478 0.642 0.475 0.674
∞ 0.431 0.562 0.431 0.580

node representation cannot take its siblings into account, are infe-
rior to GCN in modeling wide tree structures. Another reason that
may contribute to the superiority of GCN over RvNN models is the
property of GCN being able to model the bidirectional information
exchange between users. On the other side, RvNN models only
consider unidirectional information propagation.

Table 2 shows how the performances of GCN-based methods
change as the BFS parameter k varies. If k = 0, then the pruned
tree only contains nodes in Uint . If k = ∞, no nodes are pruned.
As both table shows, the performance peaks when k = 3. Using a
k smaller than 3 leads to overly aggressive pruning that discards
much useful information. On the other hand, not pruning at all
results in too much noise, which degrades the performance. These
experimental results confirm the effectiveness of our tree pruning
strategy.

5 CONCLUSION
We propose a framework for predicting future participants of an in-
formation propagation tree. By properly utilizing the tree structure
and characteristics of information diffusion, our framework out-
performed existing methods on conducted experiments. Although
we experimented with Twitter datasets, our framework is suitable
for all social media platforms as long as their information diffuses
as a tree structure. Future works will focus on several possible
extensions: (1) Incorporate content information and temporal in-
formation into our framework; (2) Efficient sampling a less limited
candidate pool.
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