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ABSTRACT 
The advance in wearable technology has made lifelogging more 
feasible and more popular. Visual lifelogs collected by wearable 
cameras capture every single detail of individual’s life experience, 
offering a promising data source for deeper lifestyle analysis and 
better memory recall assistance. However, building a system for 
organizing and accessing visual lifelogs is a challenging task due 
to the semantic gap between visual data and semantic descriptions 
of life events. In this paper, we introduce semantic knowledge to 
reduce such a semantic gap for daily activity recognition and 
lifestyle understanding. We incorporate the semantic knowledge 
derived from external resources to enrich the training data for the 
proposed supervised learning model. Experimental results show 
that incorporating external semantic knowledge is beneficial for 
improving the performance of recognizing life events. 
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1 INTRODUCTION 
The development of devices for multimedia data capturing, such 
as video cameras or smartphones, has been long benefiting us for 

personalized daily life recording. The collected data are generally 
referred to as lifelogs, most of which are typically stored in digital 
format nowadays. 

Personalized multimedia data captured by lifelogging devices 
present various aspects of an individual’s life experience, offering 
a rich resource for lifestyle understanding and memory recall. 
With such a huge amount of data, one could hardly access the 
desired information without an efficient system for indexing and 
organizing collected data. Building such a system for lifelogs can, 
however, be very challenging due to the lack of contextual 
information as well as the noise in the records. 

For supporting memory recall such as searching specific 
moments in a lifelogger's life or providing summarization on 
common daily activities, it requires the system to automatically 
detect and recognize specified activities. The main challenge is 
that people usually describe their past experiences with textual 
expressions, while the lifelogs recorded by wearable devices are 
visual data. It is hard to perform activity recognition without 
knowing semantic contents present in lifelog images. Thus, 
introducing external knowledge for semantic content analysis of 
lifelog images is highly demanded for lifelog system development. 

The semantic gap between visual and textual domains poses a 
serious challenge for multimedia lifelog access. In order to reduce 
the semantic gap, it is tempting to employ pre-trained computer 
vision (CV) models to extract semantic contents from lifelog 
images. Specifically, we could identify the place or the scene of an 
image with a dedicated classifier for place recognition, or detect 
multiple objects in an image with a detector trained for common 
objects recognition. In this paper, we refer to the CV models and 
their outputs as visual concept detectors and visual concepts, 
respectively. A fusion of the visual concepts from different types 
of concept detectors could give us a shallow semantic 
interpretation for each lifelog image, but would also suffer from 
false detections when the image has poor quality. 

On the other hand, we observed that there is still a gap 
between extracted visual concepts and the description of related 
events. The underlying reason for this semantic gap can be found 
in the dataset for training visual concept detectors, for most of the 
annotations in these datasets are rather low-level descriptions 
such as concrete objects and places. This results in the problem 
that most of the time we could not find exact matching words 
between low-level visual concepts and their related event 
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descriptions. For example, the place concept “kitchen” might give 
us a clue for knowing the image is about “cooking”, or the object 
concept “steering wheel” might imply the semantic activity 
“driving”.  

Motivated by the recent success of word embeddings [12] for 
capturing semantic word relationships in various natural 
language processing (NLP) tasks, we attempt to incorporate word 
embeddings into our proposed framework to improve semantic 
reasoning. We expect the introduction of such semantic 
knowledge to be beneficial for two aspects of visual lifelog 
analysis: (1) to reduce the noise caused by false detections of 
visual concept detectors, and (2) to enhance the relatedness 
between the visual concepts and the descriptions of their related 
events. 

Following the pilot task proposed by Gurrin et al. [5], we 
formulate the task toward real-world lifelog use, namely, lifelog 
activity recognition. The lifelog activity recognition is aimed at 
automatic recognition of lifelog data in terms of activities of daily 
living. We discuss the effect of the introducing semantic 
knowledge for recognizing lifelog activity with experiments. 

The contributions of this paper are threefold. (1) We propose a 
comprehensive system for visual lifelog activity recognition. (2) 
We introduce word embedding into our proposed framework to 
reduce the semantic gap between visual and textual domains. (3) 
The proposed model for lifelog activity recognition incorporates 
additional textual features without manual annotation and 
generally improves the performance. 

The rest of this paper is organized as follows. Section 2 reviews 
the related work on lifelog research. Section 3 introduces the 
dataset adopted in this work, as well as the data pre-processing. 
Sections 4 describes the methods for lifelog activity recognition. 
Experimental results are shown and discussed in Section 5. 
Section 6 concludes the remarks and addresses some future work. 

2 RELATED WORK 
Lifelogging describes the process to (passively) capture and record 
personal life experiences of an individual, namely, the lifelogger. 
As summarized in the study [6], lifelogging could serve to support 
memory recall or behavior analysis, or for healthcare uses such as 
lifestyle monitoring, dietary monitoring, etc. 

Human activity recognition has been an important topic in 
computer vision due to its various applications such as content-
based video analysis, video surveillance, and human-computer 
interaction [3]. Numerous research efforts are made to build 
datasets consisting of annotated short videos for activity 
recognition, such as UCF101 [17], Sports-1M [9], and ActivityNet 
[2]. 

We view visual lifelog activity recognition as a special case of 
human activity recognition with the egocentric. The egocentric 
activity recognition has been attracting much attention due to its 
potential of providing personalized support for various 
applications. For example, Pirsiavash and Ramanan [14] proposed 
a dataset consisting of 18 types of activities of daily living, as well 
as a method for detecting egocentric activities using temporal 

1 Google Cloud Vision API. https://cloud.google.com/vision/ 

structure and interactive models of objects. Singh et al. [16] 
proposed a three-stream convolutional neural network using 
egocentric cues by capturing hand pose and head motion. 
However, most previous methods focus on video recognition in 
short time period, which might not be suitable for long-term 
lifelog data. Effective approaches to the recognition of lifelog data 
collected in a longer time span still remain to be explored. Besides, 
previous works on visual lifelog recognition [1,11] represent 
visual concepts as the output vectors from pre-trained 
convolutional neural networks (CNNs). The semantic meaning of 
each concept is ignored. 

In this paper, we refer to the distributed word representation 
derived from external resources as the semantic knowledge. The 
distributed word representations, also known as word 
embeddings, are shown to be capable of modeling semantic word 
relationships. In addition, the learned embeddings also display 
some linguistic patterns, which can be represented as linear 
translations in the embedding space. 

Moreover, introducing semantic knowledge has been shown 
beneficial for activity recognition in a low-resource scheme. For 
example, Jain et al. [8] and Demirel et al. [4] proposed similar 
methods for zero-shot activity classification based on semantic 
word embeddings. Zellers and Choi [20] explored large-scale zero-
shot activity recognition by modeling the visual and linguistic 
attributes of action verbs with dictionary definitions and word 
embeddings. 

3 DATASET 
We adopt the NTCIR-14 Lifelog Dataset proposed by Gurrin et al. 
[6], due to the amount and the richness of the contents. The 
NTCIR-14 Lifelog Dataset contains a collection of multimodal data 
over 43 days acquired by two active lifeloggers. It consists of 
81,474 images, covering realistic topics towards real-world 
information needs for lifelog applications. We refer to the two 
lifeloggers as User 1 and User 2, respectively, in the later 
discussions. Besides, the dataset consists of Multimedia content, 
Biometrics information, and Human activity data. 

3.1 Data Enhancements 
In the NTCIR-14 Lifelog Dataset, each wearable camera image is 
already associated with three types of visual concepts: placeAttr, 
placeType and objectsMS. The first two visual concepts describe 
attributes and categories of the place in the image. The remaining 
one describes the category and location of the detected objects. 

 Though the visual concept detectors could help for visual 
understanding, they are pre-trained on datasets with only a small, 
closed-class set of labels. In order to benefit from larger external 
resources, we further employ Google Cloud Vision API1 to extract 
more visual concepts, including labelsG and objectsG. The former 
concept is the visual semantic label, describing the properties 
about entities across a wide group of categories in the image. The 
latter concept describes both prominent and less-significant 
objects within a larger set of object types. At most ten semantic 
labels and ten objects are extracted, and are associated to each 
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lifelog image along with the original concepts. Fig. 1 shows an 
example of visual concepts. 

PlaceAttr: no horizon, man-made, 
natural light, enclosed area, foliage, 
open area, wood, leaves, trees, 
metal 
PlaceType: patio, junkyard, tree 
house, staircase, restaurant patio 
ObjectMS: person 
LabelsG: barbecue grill, cuisine, 
barbecue, outdoor grill, kitchen 
appliance, grilling 
ObjectsG: kitchenware, tableware 

Figure 1: An example of lifelog image and associated 
concepts. 

3.2 Visual Lifelog Activity Recognition Dataset 
Based on previous studies [5,6] and our observation on the dataset, 
we identify ten common daily activities for both lifeloggers, as 
listed below: 

1. Traveling. Travelling or transporting (car, bus, boat,
airplane, train, etc.)

2. Face-to-face interacting. Face-to-face interaction with
people at home or in the workplace (excluding social
interactions)

3. Using a computer. Using desktop computer, laptop, tablet or
smartphone

4. Cooking. Preparing meals (include making tea or coffee) at
any location

5. Eating. Eating meals in any location, excluding moments
when drinking alone

6. Houseworking. Working in the home (e.g., cleaning,
gardening)

7. Relaxing. Relaxing at home (e.g., TV, having a drink)
8. Reading or writing. reading or writing on any form of paper
9. Socialising. Socialising outside the home or office
10. Shopping. Shopping in a physical shop (not online)

We manually annotated partial dataset that covers data from 
both lifeloggers, resulting in a total of 33,463 labels within 15,189 
images from User 1 and 16,293 images from User 2 while ignoring 
images with poor qualities. Data without our manual annotation 
are neither used for training nor testing the model. The statistics 
of our annotations are listed in Table 1. 

Table1: Statistics of our manual annotations. 

User ID Labeled / Total Images Number of Labels 
User 1 15,189 / 64,073 13,835 
User 2 16,293 / 17,599 19,628 

We also show the number of labels of each activity class in 
Table 2, with the ten activities mentioned in the previous section 
numbered from 01 to 10, sequentially. Note that the large disparity 
in the number of labels for each class is caused by the difference 
in duration and frequency between activities. 

Table 2: Number of labels in the manual annotation. 

01 02 03 04 05 06 07 08 09 10 
U1 2,393 1,324 5,204 405 676 23 1,305 815 1,234 456 
U2 305 2338 11,340 485 1,042 371 2,666 652 350 79 

4  METHODOLOGY 
As multiple activities may take place at the same time, we 
formulate visual lifelog activity recognition as a multi-label 
classification problem. Given an image in the collected lifelog data, 
our goal is to build a model to tell whether a daily activity 
happened in that image, and which type of the activity was. 

4.1 Input Features 
Visual Feature. We extract dense feature vectors with the 
common VGG-19 model [15]. We down-sampled each lifelog 
image by a factor of 4, and then applied global average pooling to 
the last convolutional layer, producing a 512-dimensional 
descriptor for each lifelog image. 
Textual Feature. We select four types of the visual concepts 
mentioned in Section 3.1 – say, placeAttr, placeType, labelsG and 
objectsG, and project them to the embedding space with the pre-
trained embedding GloVe [13] to include semantic information of 
each concept. By doing so, we could obtain an unordered set of 
visual concepts associated to each lifelog image. The standard 300-
dimensional GloVe, pre-trained on the 6B tokens, is adopted in 
this work. By employing pre-trained word embeddings, the model 
is enabled to leverage the external semantic knowledge derived 
from huge volume of real-world corpora.  

4.2  Model Structure 
The proposed DNN models take the features of lifelog images in 
both visual and textual modalities as input, as shown in Fig. 2 (b). 
Note that the textual features of visual concepts are represented 
as unordered sets of vectors, which means that the model should 
be order-independent to its input, and thus common neural 
network structures for ordered texts, e.g., convolutional neural 
networks (CNNs) or recurrent neural networks (RNNs), are hardly 
applicable in this case. 

Figure 2: The structure of proposed DNN models. 

Inspired by the simple but effective deep averaging networks 
on text classification tasks [7], we adopt similar composition 
functions to deal with unordered input. For a set of visual concepts 
𝑋, we obtain the set representation 𝒛𝑡 by aggregating embedding 
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vectors 𝒗𝑤 of 𝑤 ∈ 𝑋 with an unordered composition function 𝑔. 
A simple choice of 𝑔 can be an averaging operator: 

𝒛𝑡 = 𝑔(𝑤 ∈ 𝑋) =
1

|𝑋|
∑ 𝒗𝑤𝑤∈𝑋  (1) 

We transform 𝒛𝑡 with two fully-connected layers, followed by 
the batch normalization as a regularizer. Note that we obtain the 
above representation for each type of visual concept, so the 
textual representation obtained by the DNN model is actually a 
concatenation of transformed 𝒛𝑡’s from different types of visual 
concepts. 

We also transform visual feature vector 𝒛𝒗  by two fully-
connected layers and the batch normalization layer. Features from 
the two modalities are combined with vector concatenation, and 
passed to a sigmoid output layer for multi-label classification. The 
dimension of the output layer is aligned to the number of activity 
types. A naïve model that exploits only visual feature vector 𝒛𝒗 
serves as our baseline model, as shown in Fig. 2 (a). 

4.3  Weighted Concept Aggregation 
The method in Section 4.2 gives equal importance to each visual 
concept word. However, as argued in Tang et al. [19], combining 
outputs of different visual concept detectors may give us more 
information about the image. There are also risks to include noise 
into the set of visual concepts due to the false detections. For 
estimating the importance of each word, we integrate a word 
relatedness matrix of visual concept words into our DNN model. 
The semantic relatedness or similarity between words is 
commonly captured as the cosine similarity in the embedding 
space [12]. Instead of simple inner products, we adopt a bilinear 
form of vectors to include a trainable matrix 𝐁 shared among all 
pairs of concept words. The normalized relatedness between 
visual concepts 𝑤 and 𝑤′ can be written as: 

𝑟𝑒𝑙(𝑤, 𝑤′) =
1

|𝒗𝑤||𝒗𝑤′|
𝒗𝑤

T 𝐁𝒗𝑤′ (2) 

For each concept set 𝑋, the expanded concept set 𝑋′ is formed 
by adding 𝑘 − |𝑋| “empty” word ε with 𝒗ε = 𝟎, where 𝑘  is the 
maximum number of concept words and 𝑑 is the dimension of 
word embeddings. Then, the row vectors 𝒗𝑤

T  of the concept words 
𝑤 ∈ 𝑋′ are vertically stacked into a 𝑘 × 𝑑 semantic matrix 𝐌, and 
the relatedness matrix 𝐑  can be calculated as 𝐑 = 𝐌𝐁𝐌T , of 
which each entry serves as relatedness between pairs of visual 
concepts. 

We may interpret each row in 𝐑 as “how much each concept 
word is supported by other words,” and we expect the model to 
give more weights to those visual concepts that accumulate higher 
correlations with other concepts in the same image. In this sense, 
the sum over each row of the relatedness matrix 𝐑 is collected to 
derive weighting vector 𝒂T = [∑ 𝐑1,𝑗

𝑘
𝑗=1 ⋯ ∑ 𝐑𝑘,𝑗

𝑘
𝑗=1 ] for vector 

aggregation, where the 𝑖-th entry 𝒂𝑖 is the weighting factor of the 
𝑖-th word 𝒗𝑤𝑖

 in 𝑋′. The representation 𝒛𝒕
′ is then derived by the 

weighted composition function ℎ, conditioned on 𝒂: 

𝒛𝒕
′ = ℎ(𝑤 ∈ 𝑋′; 𝒂) =

1

∑ 𝒂𝑖
(𝒂1𝒗𝑤1

+ ⋯ + 𝒂𝑘𝒗𝑤𝑘
) (4) 

where the plus sign denotes the vector addition. Note that the 
weighted composition function ℎ actually computes the column 
sum of the semantic matrix 𝐌 weighted by vector 𝒂. We may 
rewrite ℎ in a matrix multiplication form: 

𝒛𝒕
′T = ℎ(𝐌; 𝒂) =

1

∑ 𝒂𝑖
𝒂T𝐌

=
1

∑ 𝒂𝑖
[∑ 𝒂𝑖𝐌𝑖,1

𝑘

𝑖=1
⋯ ∑ 𝒂𝑖𝐌𝑖,𝑑

𝑘

𝑖=1
] 

=
1

∑ 𝒂𝑖
(𝒂1𝐌1,∗ + ⋯ + 𝒂𝑘𝐌𝑘,∗)  

(3) 

where 𝐌𝑖,∗ denotes the 𝑖-th row in 𝐌. By substituting 𝒗𝑤𝑖
 with 

𝐌𝑖,∗
T  in the rightmost part of (4), we have  𝒛𝒕

′ =
1

∑ 𝒂𝑖 (
 𝒂1𝐌1,∗

T + ⋯ +

𝒂𝑘𝐌𝑘,∗
T ), which turns out to be equivalent to (5). By rewriting the

formula, the weighted composition can be combined to the neural 
network with a simple matrix multiplication. 

The aggregated concept representation 𝒛𝒕
′ is also transformed 

through two fully-connected layers followed by batch 
normalization, and concatenated with visual feature 𝒛𝒗 before the 
sigmoid output layer. The whole structure is shown in Fig. 3. 

Figure 3: The DNN model using weighted aggregation. 

Alternatively, we may also exploit the relation between visual 
concepts and the descriptions of activities listed in Section 3.4. For 
example, the concept food is considered highly related to the 
description “eating meals in any location …,” due to the high 
similarities between food and eating, and food and meals. For 
description 𝐷  of each daily activity, we add empty words ε  to 
align the length of 𝐷 to the maximum length of description, and 
encode 𝐷  into a sequence of word embeddings V𝐷 =

{𝒗𝐷
1 , 𝒗𝐷

2 ⋯ 𝒗𝐷
|V𝐷|

} . The normalized relatedness of each visual 
concept 𝑤 and description 𝐷 is written as:  

𝑟𝑒𝑙(𝑤, 𝐷) = max
𝒗𝐷∈V𝐷

1

|𝒗𝑤||𝒗𝐷|
𝒗𝑤

T 𝐁𝒗𝐷  (4) 

in which the most similar word to 𝑤 in description 𝐷 is selected. 
The relatedness matrix 𝐒  can be calculated as matrix 

multiplication with stacked representations of 𝑘 concept words 
and 𝑙 activity descriptions, as shown in Fig. 4. This results in a 𝑘 ×

𝑙 concept word-description relation matrix 𝐒. We compute the dot 
product of 𝐒T and the semantic matrix 𝐌 to obtain 𝑙 aggregations 
of visual concepts weighted by the relatedness to each activity, 
transform the weighted aggregations with two fully-connected 
layers and the batch normalization, and concatenate them to 

produce the final representation 𝒛𝒕
′′. 

 
Special Session 2: Activities of Daily Living  

ICMR ’20, October 26–29, 2020, Dublin, Ireland 
                   Proceedings published June 8, 2020

453



Figure 4: The alternative weighted aggregation for the 
DNN model. 

5  EXPERIMENTS 
Experimental results are shown in Sections 5.1. Section 5.2 
analyzes the performances on different sizes of the training data. 
Section 5.3 analyzes the performances of the model with different 
concept types. Section 5.4 analyzes performance of training and 
testing on different lifeloggers. 

5.1  Experimental Results 
We adopt the rectified linear unit (ReLU) as the activation 
function of the latent layers, and the sigmoid function at output 
layer for multi-label classification. The dimension of the latent 
layers is set to 128 and 75 for visual and textual features, 
respectively. We list the variations of models in Table 3. The 
visual feature of lifelog images extracted by the VGG-19 model is 
used in all the above models. For comparison, we also report the 
performance of the model based on only textual features 
(TextOnly). 

Table 3: Variations of the DNN models. 

Model Description 
ImageOnly Model using only visual features (Fig. 2 (a)) 
TextOnly Model using only textual features 
TextAvg Model using visual features and averaged textual 

features (Fig. 2 (b)) 
TextCorr Model using visual features and averaged textual 

features, weighted by the correlation between 
visual concepts (Fig. 3) 

TextSim Model using visual features and averaged textual 
features, weighted by the relation between concepts 
and activity description (Fig. 4) 

The performance of different variations of the proposed DNN 
models is shown in Table 4. All the reported performance scores 
are the average of 5-fold cross validation. F-score (F1) is the main 
metric for performance evaluation. The micro-F1 score is 
computed as the harmonic mean of precision (P) and recall (R). 
The macro-F1 score is computed separately and averaged with 
even weights. 

Since the dataset contains about 10% positive labels, the 
expected value of the precision score for random guess is about 
10%. As can be seen, the DNN models using both visual and textual 
features generally outperform those using only unimodal feature. 
The textSim model and textCorr model improve the F1-scores the 
most, reaching 70.96% micro-F1 score and 52.1% macro-F1 score, 
respectively. The result implies that textual features from the 

visual concepts can provide complementary information to visual 
features and generally improve model performance. To our 
surprise, the textOnly model performs on a par with the 
imageOnly model, implying that the visual concepts might contain 
as much information as the visual features, while we may expect 
some information loss during the extraction of visual concepts. 

We also observe that textCorr and textSim do not improve 
much on micro-F1 score in comparison with TextAvg, but achieve 
higher macro-F1 scores. This result implies that the models with 
weighted composition functions have better performance on 
recognizing rare activities. On the other hand, the weighted 
composition functions help improve the recall scores of the model, 
but slightly decrease the precision score: textCorr achieves the 
best recall score of 66.18%, while textAvg achieves the best 
precision score of 80.55%. The result suggests that we may choose 
different composition functions so that the model will favor 
precision or recall for different purposes of use. 

Table 4: Performance of different variations of models. 

P R Micro-
F1 

Macro-
F1 

Random 10.53% 50.21% 17.39% 13.92% 
Uni-

modal 
ImageOnly 76.73% 59.21% 66.63% 41.60% 
TextOnly 77.56% 59.44% 67.28% 44.45% 

Bi-
modal 

TextAvg 80.55% 62.65% 70.42% 49.72% 
TextCorr 75.90% 66.18% 70.65% 52.10% 
TextSim 78.99% 64.55% 70.96% 51.23% 

We also report the label-wise performance of different models 
in Table 5 and Table 6. The best improvement by incorporating 
textual features can be seen in the activities cooking and shopping, 
with an increase on the F1-score of about 15%. 

Table 5: Label-wise performance of different DNN models. 

ImageOnly TextAvg 
P R F1 P R F1 

Travel 89.39% 65.11% 73.67% 96.24% 79.05% 86.01% 
Interaction 50.04% 23.61% 31.20% 61.71% 32.97% 42.22% 
Computer 84.47% 84.03% 84.17% 87.64% 84.31% 85.83% 
Cooking 51.65% 28.67% 35.86% 65.55% 42.14% 50.72% 
Eating 62.05% 31.03% 40.54% 63.89% 37.40% 46.13% 

Housework 43.32% 12.05% 18.34% 46.43% 16.91% 24.36% 
Relaxing 50.65% 36.03% 40.91% 51.68% 37.29% 42.67% 
Reading 46.65% 11.31% 15.78% 48.70% 13.19% 18.93% 

Socializing 42.49% 15.78% 22.53% 56.94% 23.52% 32.20% 
Shopping 62.86% 55.18% 53.02% 76.25% 68.53% 68.09% 

Table 6: Label-wise performance of different composition 
function. 

TextAvg TextCorr 
P R F1 P R F1 

Travel 96.24% 79.05% 86.01% 87.37% 86.38% 86.57% 
Interaction 61.71% 32.97% 42.22% 51.86% 43.05% 46.30% 
Computer 87.64% 84.31% 85.83% 85.64% 85.27% 85.28% 
Cooking 65.55% 42.14% 50.72% 63.66% 45.83% 52.06% 
Eating 63.89% 37.40% 46.13% 63.45% 39.32% 47.47% 

Housework 46.43% 16.91% 24.36% 45.41% 18.92% 25.23% 
Relaxing 51.68% 37.29% 42.67% 50.10% 45.08% 46.66% 
Reading 48.70% 13.19% 18.93% 50.14% 18.89% 24.19% 

Socializing 56.94% 23.52% 32.20% 50.20% 27.74% 35.29% 
Shopping 76.25% 68.53% 68.09% 77.95% 71.56% 71.90% 
It is also worth noting that both activities have rather few 

positive samples in the dataset, less than 3%. On the other hand, 
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the weighted composition function improves the recall score of all 
activities, particularly in the activity face-to-face interacting with 
an increase of about 10%. However, the precision score generally 
decreases, so the improvement of F1-score is not as significant as 
in Table 5. 

5.2  Performance vs. Dataset Size 
In this section, we report the performance and the difference of 
performance on different sizes of the training data in Fig. 5. We 
randomly sample partial training data to obtain smaller training 
set, and keep the left-out testing data unchanged. 

Figure 5: Performances on different sizes of the training 
data. 

The dashed line and the solid line in the left plot in Fig. 5 show 
the performance of imageOnly and textAvg (textCorr), respectively. 
The right plot in Fig. 5 shows the increase of performance in 
textAvg (textCorr) model. As can be seen, textAvg (textCorr) 
generally outperforms imageOnly with different sizes of the 
training data, and particularly boost the performance with smaller 
training data. 

5.3  Performance vs. Concept Types 
To test the importance of each type of concept, we train different 
DNN models, each of which includes only single type of concept 
aggregated with the weighted averaging function (textCorr). The 
results are shown Table 7.  

Table 7: Performance vs. different types of visual concepts. 

Precision Recall 
Micro-

F1 
Macro-F1 

ImageOnly 76.73% 59.21% 66.63% 41.60% 
+ placeAttr 77.89% 63.27% 69.68% 49.35% 
+ placeType 77.72% 61.08% 68.30% 47.62% 

+ labelsG 77.20% 62.12% 68.72% 47.30% 
+ objectsG 78.49% 61.74% 68.95% 45.99% 
In Table 7, the model using only the placeAttr concepts reaches 

overall highest scores in most of the metrics. As for the macro-F1 

score, the placeAttr feature achieves an improvement of about 8%, 
which implies that knowing the attribute of the place is 
particularly crucial for recognizing rare activities in the dataset. 
Regardless of which type of visual concept is used, the model 
incorporated with textual features generally outperforms the 
model that uses only visual features in our experiments. 

5.4  Results on Different Users 
Since different lifeloggers might have quite different lifestyles, the 
collected images of the same activity from different lifeloggers are 
not always visually similar. That is, we expect the model detects 
less correctly when training data and test data are collected by 
different lifeloggers. To test the adaptability of the model across 
lifeloggers, we train the model on User 1’s data and test on User 
2’s data, and vice versa. The results are shown in Table 8, in which 
the performance has significantly dropped compared with the 
scores reported in Table 4. Interestingly, the textOnly model 
achieves better performance than the ImageOnly model in both 
cases, implying that textual features are more consistent than 
visual features across different lifeloggers. 

Table 8: performance of training and testing on different 
lifeloggers. 

P R Micro-F1 Macro-F1 

U1 U2 
ImageOnly 81.90% 41.03% 54.67% 22.86% 

TextOnly 84.48% 43.85% 57.73% 32.04% 

U2  
U1 

ImageOnly 53.85% 39.93% 45.86% 19.95% 

TextOnly 60.19% 47.87% 53.33% 29.62% 

6  CONCLUSION AND FUTURE WORK 
Automatic detection and recognition of the lifelog activities plays 
an important role for understanding the patterns of daily living. 
In this paper, we attempt to introduce the semantic knowledge 
into lifelog systems. For visual lifelog activity recognition, we 
incorporate the textual features of the visual concepts aggregated 
in an unordered fashion to enrich the training data for supervised 
DNN models. Experimental results show that our purposed 
method for incorporating semantic knowledge is effective for 
improving the performance of lifelog systems, compared with the 
baseline models. 

Our future work is to incorporate knowledge base resources 
such as ConceptNet [18] to support semantic reasoning by 
modeling the commonsense relationships between words, or 
introduce visual-grounded embeddings to encode textual data [10]. 
In this way, the system can capture the relationships between 
visually similar words. Moreover, other metadata or contextual 
information, such as the biometrics and GPS information, can also 
be incorporated as a part of the multimodal representation. 
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