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ABSTRACT 
With the aid of recently proposed word embedding algorithms, 
the study of semantic relatedness has progressed and advanced 
rapidly. In this research, we propose a novel structural-fitting 
method that utilizes the linguistic ontology into vector space 
representations. The ontological information is applied in two 
ways. The fine2coarse approach refines the word vectors from 
fine-grained to coarse-grained terms1 (word types), while the 
coarse2fine approach refines the word vectors from coarse-
grained to fine-grained terms. In the experiments, we show that 
our proposed methods outperform previous approaches in seven 
publicly available benchmark datasets. 
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1 INTRODUCTION 
The distributed representation of word (word embedding) has 
drawn great interests in recent years due to their abilities to acquire 
syntactic and semantic information from large unannotated corpora 
[1–3]. The research community quickly observed the effectiveness 
of word embedding for semantic relatedness measurement, one of 
fundamental natural language processing tasks that predicts the 
similarity between a pair of words. More recently, the research of 
combining word embedding and linguistic resource is gaining 
strength, exploring the usage of linguistic resources such as 
WordNet [4], FreeBase [5] and the paraphrase database (PPDB) [6, 
7] on tasks such as word similarity [8] and sentiment analysis [9]. 
This paper differs from previous works in that it employs linguistic 
ontology in a gradual way into a trained word embedding. Our 
                                                                 
1Since we do not consider the phrase level structural-fitting in this research, the 
term word and term are used interchangeably. 
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proposed structural-fitting is a post-processing method for 
generating low-dimensional word embedding in the spirit of 
retrofitting [10]. Although some researches adopted the semantic 
relationship (e.g., synonym, antonyms, etc.) into word embedding 
[11], the granularity of the relationship in ontology is not 
considered. For example, in PPDB the terms automobile, car and 
wagon are in the same coarse-grained paraphrase set. However, it is 
clear that the pair (automobile, car) is more similar than (automobile, 
wagon). Different collecting criteria of the paraphrase set can result 
in different recall-precision tradeoffs. The fine-grained collection of 
paraphrases usually carries high precision but low recall (e.g., only 
automobile and car), whereas the coarse-grained collection of 
paraphrases usually results in low precision but high recall (e.g., 
automobile, car and wagon). Our proposed models, fine2coarse and 
coarse2fine, come from the idea that the word vectors should be 
gradually retrofitted from fine-to-coarse or from coarse-to-fine 
manner. Intuitively, when first applying the fine-grained retrofitting, 
highly synonymous word vectors should become closer to each 
other, such as (automobile, car). At this point, however, some words 
that are only moderately similar are not retrofitted yet, such as 
(automobile, wagon). After running the coarse-grained retrofitting, 
the word pair (automobile, wagon) will be closer to each other. 
However, it is not as close as (automobile, car), since (automobile, car) 
retrofitted twice in this scheme. In coarse2fine, all the words 
automobile, car and wagon will be retrofitted in the first run. 
However, only automobile and car will be retrofitted in the fine-
grained run. As a result, the strength of the synonymous 
relationship can be learned. Of course, our proposed model can be 
extended to other relationships given a similar scheme. 
By utilizing structural-fitting to GloVe word embedding, we show 
that our proposed methods can outperform previous approaches in 
publicly available English semantic relatedness datasets, including 
MEN [12], RG65 [13], WordSim-353 (WS353) [14], SimLex-999 
(SL999) [15], MTurk [16] and Rare Words (RW) [17]. We also test 
our methods in a Chinese WordSim dataset CWS297 [18] using 
Tongyici Cilin [19]. In CWS297, we show that the improvement 
ratio in Chinese dataset is larger than that in English datasets when 
utilizing the hierarchical synonym ontology Tongyici Cilin. 

2  STRUCTURAL-FITTING OF WORD 
VECTORS 

Let ܸ = ሼݓଵ, … ,  ௡ሽ be a vocabulary of a trained word embeddingݓ
and |ܸ|  be its size. Let Ω = ሼΩଵ, … , Ω௠ሽ  be a fine-to-coarse 
ontology of m layers. Each layer can be represented as an undirected 
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graph ( ௟ܸ, (௟ܧ  for 1 ≤ ݈ ≤ ݉  with ଵܸ ⊆ ⋯ ⊆ ௠ܸ  and ܧଵ ⊆ ⋯ ௜ݓ ௠. For each termܧ⊇ , the edge ൫ݓ௜, ௝൯ݓ ∈ ௟ܧ ⊆ ௟ܸ × ௟ܸ indicating a 
semantic relationship of interest (e.g., paraphrase). In Ω, Ωଵ contains 
an ontology with finest relationship rules and has the lowest recall, 
but the highest average precision, while  Ω௠ contains an ontology 
with coarsest relationship rules and has the highest recall, but the 
lowest average precision.  

2.1 Fine2coarse Approach 
The retrofitting model is a recently proposed learning framework to 
run belief propagation on a graph constructed from lexicon-derived 
relational information to update word embedding. The matrix ܳ ෠  will 
be the pre-trained collection of vector representations ݍො௜ ∈ ℝௗ , 
where ݀ is the length of a word vector. Each ݓ௜ ∈ ܸ is learned using 
a standard word embedding technique (e.g., GloVe [2] or word2vec 
[1]). The objective of retrofitting is to learn a new matrix Q ,ଵݍ)= … ,  ௡) such that the word vectors are close to its adjacentݍ
vertices, meanwhile constraining the distance between the pre-
trained and the new word vectors. The objective to be minimized for 
a given ontology layer Ω௟ is: Ψ(ܳ௟) = ෍ ቎ߙ௜‖ݍ௜ − ො௜‖ଶݍ + ෍ ௜ݍ௜௝ฮߚ − ௝ฮଶ(௜,௝)∈ா೗ݍ ቏௡

௜ୀଵ     (1) 

where ߙ and ߚ values control the relative strengths of associations. 
The updating formula from ݍො௜ to ݍ௜ would be: ݍ௜௟ = ∑ ௝௝:(௜,௝)∈ா೗ݍ௜௝ߚ + ∑ො௜ݍ௜ߙ ௜௝௝:(௜,௝)∈ா೗ߚ + ௜ߙ                               (2) 

for the ݈th layer. More details of the derivation of the formula can be 
found in [10]. Then the ontological information is updated gradually 
and iteratively. A formal description of our proposed structural-
fitting method is shown in Algorithm 1. In our algorithm, we also 
introduce a discounting parameter ߛ to control the strength of each 
layer. 

Algorithm 1 Fine2coarse  

Input: A pre-trained word embedding ෠ܳ , a fine-to-coarse 
ontology of m layers Ω, hyper-parameters α, β and  ,ߛ
number of iterations ݉ܽݐ݅_ݔ. 

Output: A structural-fitted word embedding ܳ  
1: for ݈ =  do ݉ ܗܜ 1
2: ܸᇱ = ௟ܸ  
3: for ݅ݐ =  do ݐ݅_ݔܽ݉ ܗܜ 1
4: for ݅ =  ᇱ| doܸ| ܗܜ 1

௜௟ݍ :5 ← ∑ ௝௝:(௜,௝)∈ா೗ݍ௜௝ߚ௟ߛ + ∑ො௜ݍ௜ߙ ௜௝௝:(௜,௝)∈ா೗ߚ௟ߛ + ௜ߙ              

6: return ܳ 

2.2  Coarse2fine Approach 
The coarse2fine approach retrofits the word vectors in a reverse 
way. The algorithm for coarse2fine is similar to Algorithm 1. In 
coarse2fine, the main difference is that the ontological information is 
adopted from the coarsest layer to the finest layer whilst the other 
steps remain the same.  

Experimentally, 10 iterations are sufficient to minimize the objective 
function from a set of starting vectors to produce effective 
structural-fitted vectors. 

3 BENCHMARK DATASETS 
We downloaded six word similarity benchmark data sets from the 
web: RG65 [13], WS353 [14], MEN [12], SL999 [15], MTurk [16] and 
RW [17]. Published over 50 years, RG65 can be considered the most 
widely adopted semantic relatedness benchmark. Note that WS353 
contains all the word pairs from RG65.  
For evaluating Chinese structural-fitting, CWS297 [18] is 
applied. CWS297 is a transcription from English WS353 by two 
undergraduate students with excellent English understandings. 
The similarity scores containing in CWS297 were re-scored by 
twenty native Chinese speakers and used in Semeval-2012 [20]. 
This dataset consists of 297 word pairs. In order to perform a fair 
comparison, other parameters remain the same as the default 
settings in English. 

4 EXPERIMENTS 
This research considers cosine similarity for computing word 
similarity between two word vectors [8, 10, 11]. The metric used 
in this paper is Spearman correlation coefficient. In the 
experiments, if a test dataset has missing words (the words that 
do not appear in the word embedding), we remove those missing 
words from the dataset. Note that our reported results of vanilla 
word embedding may be slightly different from other papers due 
to the treatment of missing words and the similarity 
computation method. Some researches use zero vector to 
represent the missing words, whereas some use the average of 
all word vectors of the word embedding to represent the missing 
word. However, within this research the reported performance 
can be compared due to the same similarity computation method 
and the same missing word processing method. 
GloVe. The main word embedding used in this research, GloVe, is a 
log-bilinear regression model that tries to resolve the drawbacks of 
local context window approaches (e.g., skip-gram model [1]) and 
global factorization approaches (e.g., latent semantic analysis) on 
word analogy and semantic relatedness tasks. The global vectors in 
GloVe are trained using unsupervised learning on aggregated global 
word-word co-occurrence statistics from a corpus. GloVe utilizes the 
probability ratio derived from the co-occurrence matrix to capture 
the relatedness between words. The objective of GloVe is to 
factorize the log-count matrix and to find the word embedding that 
satisfies this ratio.  
For English structural-fitting, GloVe pre-trained word vectors are 
used as input. The word vectors were trained on 6 billion tokens 
from Wikipedia 2014 + Gigaword 5. The linguistic resource used in 
this study is PPDB [6, 7]. PPDB is an automatically created massive 
resource of paraphrases. In our selected lexical level English PPDB, 
each pair of words is semantically equivalent in some degree. 
Following the resource used in retrofitting, we use PPDB 1.0’s 
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Table 1: Spearman (ρ) correlation of six English semantic relatedness datasets of structural-fitting with GloVe 

XL version (xl) [7], which contains over 500k paraphrases 
derived from a large collection of texts. In 2015, a new version of 
PPDB was released [6]. This latest version of resource is 
integrated with our proposed models as well in the following 
sizes: M (m, over 400k paraphrases) and S (s, over 200k 
paraphrases). In the 2-layers experiment, we set the first ߛ to 1 
and the second to 0.7, whereas in the 3-layers experiment, ߛs are 
set to 1, 0.7 and 0.5, respectively. In order to ensure a careful 
comparison, for ߙ   and ߚ  we follow the parameter usage in 
retrofitting. All ߙ௜ set to 1 and ߚ௜௝ to be degree(݅)ିଵ. 
For training Chinese word embedding, Chinese Gigaword 2 
(CGW) corpus is adopted. CGW is a 4GB raw text acquired from 
Chinese news by Linguistic Data Consortium3 (LDC). Jieba4 
Chinese Text Segmentation toolkit was employed to perform the 
Chinese word segmentation on CGW. We trained 50-, 100-, 200-, 
and 300-dimensional GloVe word embeddings using CGW. In 
the structural-fitting experiments, the Chinese synonym dataset 
Tongyici Cilin was applied [19]. Developed by Harbin Institute 
of Technology Center for Information Retrieval, Tongyici Cilin 
organizes words in a hierarchical structure. With around 90k 
terms, each term has been assigned a seven-bit code for five 
levels. All the terms in the same class of the fifth level category 
(7 bits) can be regarded as of similar meaning (the finest grained 
level), while the first level category (1 bit) is the coarsest grained 
level. In the experiments, we use the top 7, 5 and 4 bits in the 3-
layers model and the top 7 and 5 bits in the 2-layers model.  

5 RESULTS AND DISCUSSION 
Table 1 shows the performance of the English structural-fitting 
models with GloVe.6B.50d. Besides the 50d version, we also show 
the result of GloVe.6B.300d on WS353. Bold scores are best overall. 
We list the results of the vanilla GloVe word embedding (row 1), its 
retrofitted word embedding (r1-ppdb [10], row 2 to 4) and the 
structural-fitted word embedding (rows 5 to 10). In our experiments, 
the xl-m-s model achieves robust performance on different datasets 
and is the best model on average. In general, the structural-fitted 
models outperform the models that only run retrofitting once. We 

                                                                 
2 https://catalog.ldc.upenn.edu/LDC2009T14 
3 https://www.ldc.upenn.edu/ 
4 https://github.com/fxsjy/jieba 

also find that coarse2fine is better than fine2coarse, but the 
performance difference between them is relatively small. In WS353, 
our results show that the GloVe.6B.50d model is more effective than 
the GloVe.6B.300d model (i.e., the improvement ratio of 50d is larger 
than that of 300d). Our hypothesis is that the GloVe.6B.300d uses 
more dimensionality, which may already contain more information 
than GloVe.6B.50d, so the beneficial of GloVe.6B.300d from 
structural-fitting is smaller. 

Table 2: ρ of CWS297 of Chinese structural-fitting 

 50 100 200 300 
GloVe 0.488 0.505 0.499 0.505 
r1-TongyiciCilin 0.543 0.544 0.531 0.530 
fine2coarse 2 layers 0.555 0.552 0.542 0.534 
fine2coarse 3 layers 0.553 0.557 0.555 0.549 
coarse2fine 2 layers 0.550 0.543 0.527 0.529 
coarse2fine 3 layers 0.552 0.544 0.536 0.534 

 
Table 2 shows the results of Chinese structural-fitting. The method 
of using retrofitting is listed in row 2 (r1-TongyiciCilin). Compared 
to English structural-fitting, the performance gain is more 
significant. In addition, the 3-layers approach performs better than 
the 2-layers approach. We suspect that the reason might be Tongyici 
Cilin is a well-structured ontology with clear lexical hierarchy. We 
also found that when the dimensionality is smaller, the performance 
gain is larger. This phenomenon happens in both English and 
Chinese datasets. Finally, the fine2coarse approach performs better 
than the coarse2fine approach. We hypothesize that this occurs 
because the words in the fine-grained Tongyici Cilin are more 
critical and thus carefully retrofitted at the beginning. Then in the 
coarse-grained steps, the influence of moderate synonymous words 
are smaller due to the decaying of ߛ. 
For the parameter sensitivity analysis, Figure 1 shows the ρ of 
fine2coarse and coarse2fine of 2 layers on CWS297 with GloVe 100d 
under different γs (the second γ). Retrofitting models of using the 
fine-grained Cilin (r1-fine) and coarse-grained Cilin (r1-coarse) are 
compared. When ߛ = 0 the structural-fitting model degenerates to 
retrofitting’s method. As can be seen, the structural-fitting models 
can further improve the word similarity tasks under different γs, 
showing the benefit of using structural-fitting. Fine2Coarse performs 

 GloVe.6B.50d GloVe.6B.300d 
 RG65 MEN WS353 SL999 MTurk RW WS353 
GloVe 0.595 0.652 0.496 0.265 0.619 0.340 0.601 
r1-ppdb (xl) 0.689 0.686 0.515 0.399 0.651 0.357 0.632 
r1-ppdb (m) 0.614 0.660 0.511 0.298 0.630 0.356 0.610 
r1-ppdb (s) 0.618 0.662 0.510 0.292 0.629 0.349 0.610 
fine2coarse (m-xl) 0.692 0.689 0.528 0.394 0.659 0.366 0.634 
fine2coarse (s-xl) 0.693 0.690 0.530 0.392 0.658 0.362 0.638 
coarse2fine (xl-m) 0.700 0.688 0.525 0.411 0.657 0.361 0.634 
coarse2fine (xl-s) 0.703 0.689 0.525 0.410 0.658 0.358 0.638 
fine2coarse (s-m-xl) 0.684 0.687 0.533 0.378 0.656 0.365 0.640 
coarse2fine (xl-m-s) 0.699 0.688 0.527 0.413 0.658 0.361 0.634 
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well when γ is in the range of 0.4–0.5. The performances in large γs 
are not the best, indicating that the coarse-grained information may 
contain some noise (words that are only moderate synonymous). In 
coarse2fine, the best performance is around γ = 0.8. Different from 
fine2coarse, coarse2fine performs well when γ is large, showing the 
effectiveness of giving more strength to a carefully created synonym 
ontology. 

 

Figure 1: Selection of ઻. 

6 CONCLUSIONS AND FUTURE WORKS 
This paper proposes a novel structural-fitting model that takes into 
account the structural information of a given ontology. The 
ontological information is applied in two ways. The fine2coarse 
approach refines the word vectors from fine-grained to coarse-
grained terms, while the coarse2fine approach refines the word 
vectors from coarse-grained to fine-grained terms. In the 
experiments, we show that our proposed methods outperform 
previous approaches in several publicly available benchmark 
datasets. Since only the paraphrase and synonym relationships are 
considered in our proposed model currently, the performance of 
using antonym or other relationships remain unknown. In the 
future, we would like to test our model with contrasting information 
to see if structural-fitting can benefit from it. Furthermore, whether 
better performance could be achieved by structural-fitting the entire 
system with a joint loss rather than current post-processing 
approach is another issue that worth exploration.  
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