
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 133–138
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

133

A Complete Shift-Reduce Chinese Discourse Parser
with Robust Dynamic Oracle

Shyh-Shiun Hung,1 Hen-Hsen Huang,2,3 and Hsin-Hsi Chen1,3

1 Department of Computer Science and Information Engineering,
National Taiwan University, Taiwan

2 Department of Computer Science, National Chengchi University, Taiwan
3 MOST Joint Research Center for AI Technology and All Vista Healthcare, Taiwan

shhung@nlg.csie.ntu.edu.tw, hhhuang@nccu.edu.tw,
hhchen@ntu.edu.tw

Abstract

This work proposes a standalone, complete
Chinese discourse parser for practical applica-
tions. We approach Chinese discourse pars-
ing from a variety of aspects and improve
the shift-reduce parser not only by integrating
the pre-trained text encoder, but also by em-
ploying novel training strategies. We revise
the dynamic-oracle procedure for training the
shift-reduce parser, and apply unsupervised
data augmentation to enhance rhetorical rela-
tion recognition. Experimental results show
that our Chinese discourse parser achieves the
state-of-the-art performance.

1 Introduction

Discourse parsing is one of the fundamental tasks
in natural language processing (NLP). Typical
types of discourse parsing include hierarchical dis-
course parsing and shallow discourse parsing. The
former is aimed at finding the relationships among
a series of neighboring elementary discourse units
(EDUs) and further building up a hierarchical tree
structure (Mann and Thompson, 1988). Instead
of establishing a tree structure, the latter finds the
across-paragraph relations between all text units in
a paragraph or a document. Based on Rhetorical
Structure Theory Discourse Treebank (RST-DT)
(Carlson et al., 2001a), hierarchical discourse pars-
ing in English has been well-studied.

This paper focuses on hierarchical discourse
parsing in Chinese. Previous work on hierarchical
Chinese discourse parsing is mostly based on the
RST-style Chinese Discourse Treebank (Li et al.,
2014). To distinguish from the other Chinese Dis-
course Treebank (Zhou and Xue, 2012), which is
annotated with the PDTB-style for shallow dis-
course parsing, we use the term CDTB-14 to refer
to the RST-style one and the term CDTB-12 to re-
fer to the PDTB-style one. Kong and Zhou (2017)

propose a pipeline framework and generate the dis-
course parsing tree in a bottom-up way. Lin et al.
(2018) propose an end-to-end system based on a
recursive neural network (RvNN) to construct the
parsing tree with a CKY-like algorithm. Sun and
Kong (2018) use transition-based method with the
stack augmented parser-interpreter neural network
(SPINN) (Bowman et al., 2016) as the backbone
model, helping their model make a better predic-
tion with the previous information.

In this work, we attempt to construct a com-
plete Chinese discourse parser, which supports all
the four sub-tasks in hierarchical discourse pars-
ing, including EDU segmentation, tree structure
construction, nuclearity labeling, and rhetorical re-
lation recognition. Given a paragraph, our parser
extracts all EDUs, builds the tree structure, iden-
tifies the nucleuses, and recognizes the rhetorical
relations of all internal nodes. We propose a re-
vised dynamic-oracle procedure (Yu et al., 2018)
for training the shift-reduce parser. Because of the
limited training instances in CDTB-14, we also
address the data sparsity issue by introducing un-
supervised data augmentation (Xie et al., 2019).
Experimental results show that our methodology
is effective, and our model outperforms all the pre-
vious models. The contributions of this work are
three-fold shown as follows.

1. We explore the task of Chinese discourse pars-
ing with a variety of strategies, and our parser
achieves the state-of-the-art performance. Our
robust dynamic-oracle procedure can be ap-
plied to other shift-reduce parsers.

2. Our complete Chinese discourse parser han-
dles a raw paragraph/document directly and
performs all the subtasks in hierarchical dis-
course parsing. No pre-processing procedures
such as Chinese word segmentation, POS-
tagging, and syntactic parsing are required.
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3. We release the pre-trained, standalone, ready-
to-use parser as a resource for the research
community.1

2 Methodology

Figure 1 gives an overview of our parser. Five
stages are performed to transform a raw document
into a parse tree: EDU segmentation, tree structure
construction, rhetorical relation and nuclearity clas-
sification, binary tree conversion, and beam search.

2.1 Elementary Discourse Unit Segmentation

Typically, EDU segmentation is a sequence label-
ing task (Wang et al., 2018; Peters et al., 2018). We
propose a model for labeling each Chinese charac-
ter in a raw document. The Begin-Inside scheme
is employed that the word beginning with a new
EDU will be labeled as B, and the rest of the words
will be labeled as I. Our model is based on the pre-
trained text encoder BERT (Devlin et al., 2018).
More specifically, we adopt the version BERT-base,
Chinese since this is the only pre-trained BERT ded-
icated to Chinese so far. As the BERT for Chinese
is character-based, we feed each Chinese character
into a BERT layer to obtain its contextual embed-
ding. Then, we fine tune the representation with an
additional dense layer and measure the probability
of each label of each character with a softmax layer.
The model is further trained as conditional random
fields (CRFs) (Lafferty et al., 2001) for finding the
global optimal label sequence.

2.2 Tree Construction

We propose a shift-reduce parser for building the
structure of the discourse parse tree. A shift-reduce
parser maintains a stack and a queue for represent-
ing a state during parsing, and an action classifier
is trained to predict the action (i.e., shift or reduce)
for making a transition from the given state to the
next state. In the initial state, the stack is empty,
and the queue contains all the EDUs in a raw docu-
ment. In the final state, the queue is empty, and the
stack contains only one element, i.e., the discourse
parse tree of the whole paragraph.

To decide whether to shift or to reduce, we pro-
pose an action classifier by considering the infor-
mation of the top two elements of the stack s1
and s2 (i.e., the two most recent discourse units)
and the first element of the queue q (i.e., the next

1https://github.com/jeffrey9977/
Chinese-Discourse-Parser-ACL2020

Raw document

Classifier

Sense , Center

Reduce

EDUs

Segmenter

B I I I I I B I I I I I I I I I I I I I B I I I I I I I I I I I I I I I I I I B I I I I I I I I I I B I I I I I I I I I I I I I I I  

Converter

stack queue

Shift

Figure 1: Overview of our Chinese discourse parser.

EDU). The textual form of each of these three dis-
course units will be fed into the BERT encoder for
representing as Enc(s1), Enc(s2), and Enc(q).
Next, we concatenate the max pooling of Enc(s1),
Enc(s2), and Enc(q) and feed the resulting vector
into a dense layer to predict the next action.

Since shift-reduce is a greedy algorithm, it can
hardly recover from an error state. The shift-reduce
parser is typically trained with the teacher mode,
where only correct states are given, and the result-
ing parser may perform poor when it reaches unfa-
miliar states. For this reason, we propose a revised
dynamic-oracle procedure (Yu et al., 2018) for
training our discourse parser. One drawback of the
original dynamic oracle is that some golden train-
ing examples may be neglected. Because CDTB-14
has relatively few action steps to build a tree, the
probability of falling into a wrong state is much
small compared to that of RST-DT. In our revision,
we want to guarantee all correct states have been
trained. As shown in Algorithm 1, the document
will be gone through twice when training a docu-
ment example. We first follow the golden actions,
and choose action predicted by the model with a
probability α at the second time. We refer to them
as teacher mode and student mode, respectively.
Note that we follow the suggestion of Yu et al.
(2018) to set α to 0.7.

https://github.com/jeffrey9977/Chinese-Discourse-Parser-ACL2020
https://github.com/jeffrey9977/Chinese-Discourse-Parser-ACL2020
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Algorithm 1 Training Procedure for Our Shift-Reduce Discourse Parser.
1: S,Q← empty stack, elementary discourse units
2: while Q is not empty ∨ S has more than 1 unit do . Teacher mode
3: predicted, golden← ACTIONCLASSIFIER(S.top1(), S.top2(), Q.front()) , GOLDENACTION

4: COMPUTELOSSANDUPDATE(predicted, golden)
5: PERFORMACTION(golden)
6: S,Q← empty stack, elementary discourse units
7: while Q is not empty ∨ S has more than 1 unit do . Student mode
8: predicted, golden← ACTIONCLASSIFIER(S.top1(), S.top2(), Q.front()) , GOLDENACTION

9: COMPUTELOSSANDUPDATE(predicted, golden)
10: if rand() > α then PERFORMACTION(golden) else PERFORMACTION(predicted)

2.3 Rhetorical Relation Recognition

If two discourse units are decided to be merged
during the tree construction stage, a new internal
node will be generated and the relationship of the
two discourse units will be determined. Predicting
the relation between two textual arguments is a
typical classification task in NLP. We propose a
BERT-based classifier, which predicts the relation
of two arguments separated by the symbol [SEP],
with additional dense layers as the output.

In CDTB-14, the “coordination” relation ac-
counts for 59.6% of the training data, while mi-
nor relations suffer from data sparseness. To ad-
dress this issue, we introduce unsupervised data
augmentation (UDA) (Xie et al., 2019) to enhance
the performance. We adopt the discourse pairs in
CDTB-12 as the material for UDA. Note that other
unlabeled text pairs can also be used for UDA. We
chose those from CDTB-12 simply because the
format is convenient for us to use.

The original loss is shown as Eq. 1. Given a
span of text x, our main model P (·) predicts the
rhetorical relation yc. Eq. 2 shows the additional
consistency loss to enforce the smoothness of our
main model, and x̂ stands for the augmented un-
labeled sentence pair. L and U stand for labeled
data and unlabeled data, respectively. As shown
in Eq. 3, we train both objectives at the same time
with a weight λ to adjust the effect of UDA.

H = − 1

N

N∑
x∈L

M∑
c=1

yc log (P (yc|x)) (1)

DKL = − 1

N

N∑
x∈U

P (y|x) log
(
P (y|x)
P (y|x̂)

)
(2)

L (θ) = H + λDKL (3)
The UDA procedure first generates the aug-

mented unlabeled sentence pairs. Various ap-

proaches to paraphrasing can be employed. In this
work, we utilize the back-translation strategy (Sen-
nrich et al., 2016), where we translate the Chinese
sentence pair to English and then translate back
to Chinese. This is equivalent to add noises to
the original inputs. As the original and the back-
translated sentence pairs express the same meaning,
our model is expected to predict the same label for
both pairs. By minimizing the consistency loss, our
model can behave consistently no matter whether
an original instance or its paraphrases are given. In
this way, the model can be more generalized and
robust. Besides, when our model is able to predict
the same label for both sentence pairs, it means that
our model has also learned their label.

2.4 Nuclearity Labeling

Nuclearity labeling is aimed at determining the
nucleus from a sentence pair. The nuclearity of
two sentences has a correlation with their relation-
ship, thus we jointly train the rhetorical relation
and the nuclearity classifiers, where the loss for
back-propagation is the sum of the losses of both
classifiers. Similar to the imbalance issue of rhetor-
ical relation recognition, the ’Equal’ class accounts
for 51% of training data. We also employ UDA for
performance enhancement.

2.5 Binary Tree Conversion

For simplicity, our shift-reduce parser constructs a
binary tree. However, the parse trees annotated in
CDTB-14 are not always binary. In the training and
the test sets, 8.9% and 10% of the internal nodes
have more than two children, respectively. Most of
the previous works do not handle the binary tree
conversion, and some of the work further convert
the golden trees into binary trees to calculate their
scores, resulting in less accurate evaluation. In the
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training stage, we convert the multiway trees to
their corresponding left-heavy binary trees (Morey
et al., 2018). In the testing stage, we convert the
binary tree constructed by our parser to the corre-
sponding multiway tree. For example, a three-way
node, A→ XY Z, will be converted to A→ A′Z
and A′ → XY . The conversion is deterministic
and bidirectional, so it is free from ambiguity.

2.6 Beam Search

To decode a transition sequence during the testing
stage, the standard method is to choose the action
that has the maximum probability of the current
time step as the input for the next time step. How-
ever, this greedy approach might fail to find the
sequence that has the maximum overall probability
only because one of the action probability is small
in that sequence. Beam search (Wiseman and Rush,
2016) is a heuristic search algorithm that explores
a graph by maintaining the top k results at every
time step. This approach helps keep a number of
potential candidates from discarding. Note that the
greedy approach is equivalent to beam search with
a beam width k = 1.

When performing the shift-reduce parsing, two
kinds of states have only one action to choose: (1)
less than two elements in the stack, and (2) no
element in the queue. Under the above two condi-
tions, the probability of the selected action will be
1, making our model to be overly biased on those
sequences having many non-optional stages. For
this reason, we apply an alternative way to compute
the sequence probability during beam search. Our
modified beam search is still fulfilled by maintain-
ing the top k sequences, but the score of a sequence
is calculated by the average probabilities of the se-
lected actions that have more than one choice.

3 Experiments

3.1 Experimental Settings

Following the setting of Kong and Zhou (2017), we
divide CDTB-14 into the training set, including 450
articles (2,125 paragraphs), and test set, including
50 articles (217 paragraphs). We keep 10% of the
training data for validation. PARSEVAL (Carlson
et al., 2001b) is used for evaluation.

3.2 Experimental Results

Table 1 shows the performances of our parser in
micro-averaged F-score, compared with previous
work Zhou (Kong and Zhou, 2017) and Lin (Lin

Model EDU +T +R +N All
Zhou

Given

52.3 33.8 23.9 23.2
Lin 64.6 42.7 38.5 35.0
BERT-CKY 76.5 50.8 48.5 43.1
Ours 82.8 57.6 56.0 50.5
Zhou 93.8 46.4 28.8 23.1 22.0
Lin 87.2 49.5 32.6 28.8 26.8
BERT-CKY 92.4 68.9 43.3 42.0 37.0
Normal 97.4 78.8 54.6 52.0 47.1
Dynamic 97.4 78.9 54.5 51.8 47.1
Ours 97.4 80.0 55.9 53.6 48.9

Table 1: Performances of EDU segmentation (EDU),
tree construction (T), rhetorical relation recognition
(R), nuclearity labeling (N), and all subtasks, reported
in Micro-averaged F-score.

et al., 2018). We also implement BERT-CKY, a
CKY parser by using BERT for representation, as
an additional baseline model. The evaluation is
based on multiway trees.

Both the performances with and without golden
EDUs are measured. The results show that BERT is
highly competitive and has the ability to catch the
potential relations between discourse units since
Lin and BERT-CKY basically use the same ap-
proach while the latter model uses BERT as the
text encoder. Our parser outperforms all the base-
line models and achieves a significant improve-
ment without the golden EDUs given. Note that
BERT-CKY is based on Lin et al. (2018), which
has its own EDU segmentation module different
from ours, hence the EDU score is different.

We examine the performance of three different
training techniques for shift-reduce parsing. As
mentioned in Section 2.2, Normal stands for ac-
tion classifier trained with gold standard actions,
Dynamic stands for Dynamic Oracle introduced
by Yu et al. (2018), and Ours stands for our re-
vised dynamic-oracle procedure where the model
is trained with both gold standard actions and dy-
namic oracle actions.

Compared to Normal, experimental results show
no improvement made by the original dynamic ora-
cle, while our revised dynamic oracle outperforms
the other two strategies. Our strategy does not ig-
nore the golden action in every correct state and
also has the chance to explore error states.

In order to compare with SUN (Sun and Kong,
2018), we convert the golden standard trees into
binary trees and measure the performances on bi-
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Model EDU +T +R +N All
Sun 93.0 78.2 53.2
Ours 97.4 83.3 58.1 55.7 52.0

Table 2: Performances measured on binary trees, re-
ported in macro-averaged F-score.

nary trees in macro-averaged F-score. The results
are shown in Table 2. Sun and Kong (2018) do not
address all subtasks in Chinese discourse parsing,
and our model outperforms SUN in every subtask.

Relation P R F

Coordination
-UDA 84.3 77.8 80.9
+UDA 90.7 76.9 83.2

Causality
-UDA 38.7 43.2 40.8
+UDA 38.7 55.4 45.6

Transition
-UDA 80.0 80.0 80.0
+UDA 80.0 88.9 84.2

Explanation
-UDA 46.0 57.6 51.1
+UDA 45.2 70.9 55.2

Table 3: Performances of the four rhetorical relations
(%) with and without UDA. Occurrences of these rela-
tions are 59.6%, 17.1%, 1.6%, and 21.7%, respectively.

3.3 Discussions

To examine the effectiveness of UDA, Table 3
shows the performances of rhetorical relation recog-
nition with and without UDA. Experimental re-
sults show that application of UDA successfully en-
hances the recall scores of the three minor classes
with a little trade-off in the recall score of the dom-
inant class, Coordination. In addition, the F-scores
of all the four relations are increased. In other
words, applying UDA deals with the data imbal-
ance issue and improves the overall performance.
Applying UDA to nuclearity classification also has
a similar improvement as Table 3.

Theoretically, beam search with a larger beam
width helps find a better solution. As shown in

Beam Size EDU +T +R +N All
k = 1

Given
82.8 57.6 56.0 50.5

k = 2 81.8 56.8 55.1 49.7
k = 5 81.7 56.7 54.9 49.6

Table 4: Performances of beam search with different
beam widths.

Table 4, however, our parser is worse when a larger
beam width is used, which means the sequence
having higher overall score does not ensure the
better decoding result. Our experiment only shows
the beam widths up to five because the scores of
worse sequences are already higher than that of the
correct sequence in some cases. That is, the larger
beam widths seem to be unnecessary.

The reason may be that beam search is not really
suitable for the shift-reduce paradigm. For exam-
ple, a sequence might fall into a seriously bad stage
but the rest of actions can be easily determined so
that the sequence will get a high overall probabil-
ity. This assumption also implies that unlike beam
search applied on sequence to sequence model, we
cannot judge a transition sequence is good or bad
by solely considering its overall score. In addition,
for longer textual units such as paragraph, human
readers and writers may not follow the assumption
of overall optimization. Instead, human beings read
and write sequentially, similar to the greedy nature.

We also evaluate our approach in English dis-
course parsing. The famous dataset, RST-DT, is
used. Our model achieves F-scores of 85.0%,
58.8%, 69.9%, and 56.7% in tree construction,
rhetorical relation recognition, nuclearity labeling,
and all subtasks, respectively. The overall per-
formance is similar to that of the state-of-the-art
model (Yu et al., 2018).

4 Conclusion

This work proposes a standalone, complete Chi-
nese discourse parser. We integrate BERT, UDA,
and a revised training procedure for constructing a
robust shift-reduce parser. Our model is compared
with a number of previous models, and experimen-
tal results show that our model achieves the state-
of-the-art performance and is highly competitive
with different setups. We will explore cross-lingual
transfer learning for supporting more languages.
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