
Route-Information Management and Provision for Public
Transportation Systems

Chao-Lin Liuy Tun-Wen Paiz Shang-Ming Huangy Chun-Tien Changz

yDepartment of Computer Science
National Chengchi University

Wen-Shan, Taipei 11605, Taiwan
chaolin@nccu.edu.tw

zDepartment of Computer Science
National Taiwan Ocean University

Chung-Cheng, Keelung 20224, Taiwan
twp@cs.ntou.edu.tw

Abstract

We propose a framework for management of route information and provision of travel in-
formation in the context of public transportation systems. The information-management com-
ponent combines information collected from diverse sources, and processes the information for
the interests of service providers and travelers. Travelers may place queries via different types
of devices and interfaces, and receives travel information in HTML, WML, graphic, and audio
formats. The information-provision component computes the desired information and converts
the information into appropriate output formats. In particular, we present two algorithms that
take advantage of special characteristics of public transportation systems to compute travel
plans efficiently. We discuss possible ways for integrating our algorithms with existing path-
planning algorithms for prioritizing alternative travels plans based on time-independent and
time-dependent costs. Results and feedbacks collected from an open field test, that is avail-
able at <http://iris.cs.ntou.edu.tw>, indicate that our algorithms can compute
satisfactory travel plans within a couple of seconds for a public transportation system with
approximately 280 routes serving 2500 stops.

INTRODUCTION

Public transportation systems have become an indispensable part of a modern metropolis.
By providing a complex service network that covers the metropolis, public transportation sys-
tems have made commuting so convenient that driving has become a less desirable alternative.
This in turn contributes to the reduction of gasoline consumption and air pollution—two of the
major goals of intelligent transportation systems.

Most people take advantage of public transportation systems only for recurrent trips, how-
ever. For non-recurrent trips, it is quite hard even for local people to find out how to travel
between unfamiliar locations via the public transportation systems. Ironically, this phenomenon
is not a result of the unavailability of services, but typically results from the complexity of the
service networks of the public transportation systems. This paper presents a framework for fa-
cilitating information management and provision for public transportation systems, hoping to
further encourage people to use public transportation systems.

Our system serves both service providers and commuters. The framework includes two
major components, as shown in the following figure. Theroute-information manager allows
service providers to monitor and manage the route information when necessary. This manager

will also relay information about real-time vehicle locations to message boards located at bus
stations. (For brevity, we will not distinguish trains, ground buses, and massive rapid trans-
portation vehicles now.) Our system allows various ways for specifying the queries for travel
plans, and returns the travel plans that are computed by thetravel-plan finder.

5
R
X
WH
,Q
IR
UP

D
WL
R
Q
4
X
H
U
\
,Q
WH
U
ID
F
H
V

)
R
U

:
H
E
D
Q
G
0
R
E
LO
3
K
R
Q
H
8
VH
U
V

7UDYHO�3ODQ)LQGHU

5RXWH�,QIRUPDWLRQ 'DWDEDVH

5RXWH�,QIRUPDWLRQ 3UHSURFHVVRU

5DZ 5RXWH�,QIRUPDWLRQ 'DWD

5RXWH�,QIRUPDWLRQ 0DQDJHU

+70/�7R�:0/

&RQYHUWHU

7UDYHO 3ODQV

�+70/)RUPDW�

7UDYHO 3ODQV

�:0/)RUPDW�

7UDYHO 3ODQV

�$XGLR)RUPDW�

7UDYHO 3ODQV

�*UDSKLFV)RUPDW�

Figure 1. System Block Diagram

A collection of path-planning algorithms form the core of the travel-plan finder. We present
algorithms that compute travel plans between two locations, and discuss algorithms that priori-
tize alternative paths based on time-dependent costs. Our algorithms for computing travel plans
differ from traditional shortest-path planning algorithms, both label-setting and label-correcting
algorithms [1, 13], in that we explicitly model the constraint imposed by the fact that pub-
lic buses serve on pre-selected paths. Explicitly modeling and taking advantage of suchroute
constraint allow ourselves a chance to find travel plan more efficiently than otherwise.

It is typical that there are multiple alternative ways to travel from one location to another.
Hence, there is a strong demand for ordering the alternative plans based on users’ preferences.
Users of public transportation systems may have a wide variety of preferences, however [2].
Techniques employed by traditional shortest-path algorithms suffice to prioritize travel plans
only with time-independent costs [5]. We discuss algorithms useful for prioritizing travel plans
with time-dependent costs based on the notion ofstochastic consistency [14].

We introduce the route-information manager and the preprocessing of route information in
the next section. We then spend two sections on deliberation of the design of route planning and
prioritizing algorithms. We conclude this paper after discussing the user interface and extended
applications of our system.

INFORMATION MANAGEMENT

The management of route information consists of two components. Theroute-information
manager allows service providers to monitor and manage operation-related information, and
the route-information preprocessor converts raw route-information data into a database of in-
formation tailored for searching travel plans.

ROUTE-INFORMATION MANAGER

The route-information manager takes as input information from several sources, and inte-
grates and processes the raw data into several useful formats. The information may come from
the request to update route information when buses are to be rerouted. The information may
also be real-time operation data, such as current locations of vehicles in service [8], the actual
number of passengers on a bus, the actual travel time between bus stops, and the number of
people waiting at the stops.

A very important function of the route-information manager is to allow service providers to
update the route information. Once in while, the bus services may be interrupted for some unex-
pected reasons, and service providers may need to change the routes of some bus services tem-
porarily. No matter what reasons that cause these changes of bus services, a route-information
provision system must attempt to instantly reflect such changes in its recommended travel plans.
Therefore, the route-information manager ought to offer a secure and distributed interface on
the Internet so that service providers may conveniently update route information.

The route-information manager also disseminates appropriate information to users of differ-
ent needs. Service providers can lay out their business strategies based on the utilization of their
services [4]. For instance, one may adjust the frequencies of bus services if the demand for that
bus route has changed significantly either temporarily or over an extended period. Information
about real-time bus locations is very important for the implementation of bus priority systems
[8, 12]. Passing current locations of buses to people who are waiting at the bus stops helps to
alleviate potential anxiety, thereby improving the service quality.

ROUTE-INFORMATION PREPROCESSING

To facilitate efficient search of travel plans of interest, the route-information preprocessor
specifically compile the raw route-information data into a database for the path-planning task.
We illustrate the definitions of the data formats and basic terms used in our algorithms in a
simplified context shown in the following figure. Each black circle represents a group of stops
that serve the marked locations, and directed lines represent service routes. For clarity, we do
not distinguish stop names and location names until later in this paper.

$ ('

&

%

5�

5�

5�

Figure 2. Route information assignment

We assign a number to each different service route. Service routes, e.g.,R1 andR3, that do
not serve the same set of stops will be assigned different numbers. Service routes, e.g.,R1 and
R2, that serve the same set of stops but not in the same order will get different numbers.

We also assign an ordinal number to each stop on a route. Smaller numbers will be assigned
to stops that are served earlier on a bus route, and we useK(r; s) to denote the number assigned
to the stops on the router. When a router does not serve a stops, we setK(r; s) = 0.
Assume that the route number ofR1, R2, andR3 are1, 2, and3, respectively. IfK(1;A) = l,
K(2;A) = m, andK(3;A) = n, then we will also haveK(1;B) = l + 1, K(2;B) = m � 1,
andK(3;B) = n + 1. Our algorithms use these numbers to determine whether one may travel
from one stop to another on a particular route.

Our algorithms employ two functions that relate bus stops and bus routes. The algorithms
need to know the set of service routes,SR(s), that serve a given bus stops. For instance,

SR(B) = f1; 2; 3g andSR(C) = f3g in Figure 2. The algorithms also need to know the bus
stops that are served by two routes, sayr1 and r2, and we denote these common stops by
CS(r1; r2). For instance,CS(1; 2) = fA;B;D;Eg. We can computeSR(s) andCS(r1; r2) from
K(r; s):

SR(s) = frjK(r; s) > 0g and

CS(r1; r2) = fsjK(r1; s) > 0 andK(r2; s) > 0g:

CONNECTIVITY MATRICES

In a related work, we proposeconnectivity matrices as the basis for a path-planning algo-
rithm designed for the context of public transportation systems [10]. Connectivity matrices,
produced by the route-information preprocessor, play a key role in our algorithms for finding
bus connections between locations. Leti andj be the numbers assigned to two service routes.
We set a cell, sayTi;j, of a connectivity matrixT to the number of stops inCS(i; j). Namely,
Ti;j is the number of ways that we can transfer from routei to j. We setTi;i to 0, although route
i and itself obviously have common stops.

Consider the network shown in the following figure. We assume that we may transfer from
one route to another at intersections. Therefore,T1;3 = 1 andT2;4 = 1 indicate that we can
transfer from R1 to R3 and from R2 to R4, respectively. The information encoded in the con-
nectivity matrices can be misleading, however. For instance,T1;4 = 1 suggests that we may
directly transfer from routeR1 to R4 no matter where we catch a bus on routeR1. In fact, we
cannot transfer directly fromR1 toR4 once we passC.

$

& '

%

5�

5�

5�

5�

(

)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

7

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

7
�

Figure 3. A portion of a transportation network and its connectivity matrices

The values ofT k
i;j in the kth power ofT are related to the numbers of ways that we can

transfer between routesi andj via k transfers, assuming that we compute powers of matrices
with the following standard formula.

T k+1
i;j =

X

l

T k
i;l � Tl;j (1)

In Figure 3,T 2
1;2 = 2 indicates that we have two ways to transfer from R1 to R2 by two transfers.

The first method is to transfer from R1 to R4 atC and from R4 to R2 atD, and the second
method is to transfer from R1 to R3 atA and from R3 to R4 atB. However, we need to be
careful in interpreting the numbers.T 2

1;2 = 2 doesnot mean that we may travel from any
locations served byR1 to those served byR2 by two transfers. Although we may go toE from
C by transferring atA andB, we cannot go toF from C viaR1,R3, and thenR2. Furthermore,
notice that we cannot transfer fromR2 toR1 at all, but we haveT 2

2;1 = 2.
The key is that being able to transfer from a routeX to another routeY does not guarantee

that we may travel from all locations served byX to all locations served byY . Computing the
powers of connectivity matrices with Equation (1) ignores the service directions of the routes
and relative locations of stops on the routes. Consequently, numbers in a connectivity matrix
may exaggerate the number of ways that one may travel from one location to another.

We can make the information encoded inT 2 precise by calculatingT 2 with an improved
mechanism. In reality, there is exactly one way to transfer from routei to j via router for each
unique pair of stopss 2 CS(i; r) andt 2 CS(r; j) such that the following condition holds.

K(r; s) < K(r; t) (2)

If the inequality reverses, we would have to travel on router in its opposite service direction to
transfer fromi to j, which is not allowed in practice. Applying (2), we will obtain the correct
T 2 for Figure 3.

Notice that we need to check the feasibility of travel plans even if we compute connectivity
matrices precisely. There are three possible ways to transfer from routei to j via r in the
following figure, i.e., transferring at location pairs(B;G), (B;H), and(D;H). Not all of them
may constitute feasible travel plans for all needs to travel from locations served byi to locations
served byj. If we are to travel fromA to H, all three alternatives will work. Only one of these

M

L
U$

% & ' ()

* +

Figure 4. A difficult example for computing T 2
i;j

alternatives is right for traveling fromC to H because we cannot travel backwards fromC to
B on i, as is implied byK(r;B) < K(r;C). Hence, when the connectivity matrixT 2 suggests
that we may transfer from one service route to another, we need to double check theK values
of the origin, the destination, and the transfer locations to make sure the travel plan is feasible.

In fact, we can show thatT k
i;j = � implies that there areat most � ways to transfer from

stops served by routei to stops served byj by exactlyk transfers. Taking advantage of this
observation, we can prove the following property that is useful for planning service routes in
designing service routes for a public transportation system [10].

Property 1 Let T represent the connectivity matrix for a public transportation system. Assume
that there is no service route running from a location x to another location y. If there exists an
integer k such that

Pk

l=1 T
l
i;j = 0 for all i 2 SR(x) and j 2 SR(y), then traveling from x to y

requires no less than k transfers.

If we do not want people to transfer more than twice to travel between locations, we must
at least make such ak smaller than 3 for all location pairs served by the public transportation
system. LetMi;j =

Pk

l=1 T
l
i;j. If there are some very largeMi;j in M , there may be many ways

to travel fromx to y. In this case, we may consider to shift the service routes so that we can
balance services between other location pairs without seriously degrading current services.

The connectivity matrices capture the route constraint on how one may travel from the
origin to the destination. Using this information, the search algorithm can reduce the amount
of search work that would be needed otherwise. Overestimating ways of transferring between
routes may offset the improvement in efficiency, but this will not make our algorithms slower
than traditional uninformed search algorithms. We will apply the connectivity matrices and
connecting-route functions to path-planning problems.

CONNECTING-ROUTE FUNCTIONS

For a pair of routes,i andj, our algorithms employ connecting-route functionsCR1(i; j)
that relatesi and j to route numbers of the routes that provide ways to transfer fromi to j.

CR1(i; j) represents the route numbers of the routes that directly run from some stops on routei

to some stops on routej. WhenT 2
i;j > 0, the algorithm checksCR1(i; j) for detail information

about how to transfer from routei to j. We can computeCR1(i; j) at system design time with
the following formula:

frjTi;r � Tr;j > 0 and min
s2CS(i;r)

K(r; s) < max
t2CS(r;j)

K(r; t)g: (3)

Applying (3) to the example shown in Figure 3,CR1(1; 2) will be set tof3; 4g, and both
CR1(1; 1) and CR1(2; 1) will be set to empty sets. Notice that the second condition in (3)
ensures thatCR1(i; j) does carry correct information. If we drop this condition, we would ob-
tain CR1(1; 1) = f3; 4g andCR1(2; 1) = f3; 4g. It is easy to verify thatCR1(1; 1) = f3; 4g
suggests impractical travel plans and thatCR1(2; 1) = f3; 4g suggests impossible travel plans.

A natural extension ofCR1(i; j) is CR2(i; j) that relates routesi andj to a pair of routes
(r1; r2) that will connect some stops oni to some stops onj. This function andT 3

i;j are very
useful for algorithms that are designed to compute travel plans that require three transfers as we
explain shortly.

FINDING CANDIDATE PATHS

We present the algorithm for finding traveling plans that require no more than two transfers
next. In the algorithm, we have assumed thati 2 SR(O) andj 2 SR(D).

Algorithm 1 PathPlanning (Route information, Origin O, Destination D)

1. If O = D, there is no need to commute.

2. Direct connection.For any route r 2 SR(O) \ SR(D) 6= ;, if K(r; O) < K(r;D), we
can go from O to D by r.

3. One transfer.If Ti;j � 1, K(i; O) < K(i; s) and K(j; s) < K(j;D) for a stop s 2
CS(i; j), we can take i at O, transfer from i to j at s, and get to D by j.

4. Two transfers.If T 2
i;j � 1 and there exist stops s 2 CS(i; r) and t 2 CS(r; j) for a route

r 2 CR1(i; j) such that

(a) K(i; O) < K(i; s),
(b) K(r; s) < K(r; t), and
(c) K(j; t) < K(j;D),

then we can take i at O, transfer from i to r at s, transfer from r to j at t, and get to D by
j.

The first step checks if the origin and the destination are the same location, and is included
for completeness of the algorithm. The second step examines if both the origin and the desti-
nation are served by a service router. If yes, we have to examine if this route runs from the
origin to the destination. Work conduct at this step may be carried out for all location pairs at
the system design time to improve the efficiency of the algorithm.

The third step looks for travel plans that require one transfer from a routei to a routej. If
Ti;j is positive, then we may transfer from routei to j. We must then check the location of the
transfer stops, and make sure that it is possible to travel fromO to s by routei and froms to
D by routej by comparing the involvedK values.

The fourth step looks for travel plans that require two transfers. In fact, there is a general
procedure for searching for plans that requirek transfers. We make sure thatT k

i;j is positive,
look into CRk�1(i; j) for possible connecting routes, and examine if there are locations where
we can transfer.

The algorithm relies on theK values of stops for checking the feasibility of travel plans.
The assignment ofK values implicitly assumes that all service routes are directed and acyclic.
There is no need to compareK values of two stops on a router when the path ofr forms a loop,
since we can go between any stops on such a route.

An example will make the algorithm easier to understand. We have computedT 2 for the
network shown in Figure 3. The fact thatT 2

1;2 = 2 indicates that we can transfer from route
R1 to R2 by two transfers in two different ways. Also, the facts thatA 2 CS(R1; R3), that
B 2 CS(R3; R2), and thatR3 2 CR1(R1; R2) indicate that we may transfer from R1 to R2 via
A andB. The algorithm determines that we can travel fromC to E via A andB after checking
the involvedK values. The algorithm will also find that we cannot travel fromC to F via A and
B becauseK(R2;B) � K(R2;F).

Since we can extend the algorithm to find travel plans that require more than three transfers,
the algorithm iscomplete in the sense that it can find all plans suitable for the desired trip. In
addition, because the algorithm starts its search for travel plans from those that require lesser
transfers, the algorithm is alsooptimal in the sense that it can find the travel plans that require
the least number of transfers.

Property 2 PathPlanningis both complete and optimal for searching travel plans that require
the least number of transfers.

IMPLEMENTATION ISSUES

Whether one needs to employ the aforementioned methods for computing connectivity ma-
trices and connecting-route functions in implementing the path-planning algorithm depends on
the requirements of the system. If the route database is changing frequently and if travel plans
recommended by the algorithm must reflect such changes immediately after the raw data is
modified, a precise update of involved functions and matrices may not be desirable for complex
public transportation systems. Doing so may take too much time. Employing approximation
techniques to quickly update the functions should better meet the need for on-line systems. For
such special cases, it may be better for the system to adopt approximation strategies during the
day, and conduct a precise data update during the night.

It is possible for the algorithm to sidestep the exact methods, while the algorithm still com-
putes the best travel plans at a slower speed for each individual query [10]. For instance, there
exists a simple method for approximatingT 2

i;j. The following condition ensures that there is at
least one way to transfer from routei to j via r.

min
s2CS(i;r)

K(r; s) < max
t2CS(r;j)

K(r; t) (4)

If we add the quantityTi;r � Tr;j to the summation for computingT 2
i;j when (4) holds, we

will compute an exactT 2 for the example in Figure 3. We can make up artificial examples,
such as the one shown in Figure 4, to illustrate thatT 2 computed with the restriction of (4)
may exaggerate the number of ways for transferring between routes. For this particular case,
mins2CS(i;r)K(r; s) = K(r;B) andmaxt2CS(r;j) = K(r;H), so (4) holds. As a result, we would
add the quantityTi;r � Tr;j = 3 � 2 = 6 to T 2

i;j, even though there are only three ways to transfer
from i to j via r. Values computed with this method may be larger than their exact values. As a
result,PathPlanning may conduct more search than necessary, althoughPathPlanning will find
the best plan eventually. Nevertheless (4) can be effective in some special cases.

Property 3 With (4), we compute T 2
i;j precisely if no routes in the public transportation system

overlap with each other at two or more separately continuous segments.

Proof. Assume that route r overlaps with i and j at only one continuous segment. Given (4), we
have a generic situation shown in the following figure. Hence, we can transfer from i to r at any
stop s 2 CS(r; i) and from r to j at any stop t 2 CS(r; j): �

L

M
U

Figure 5. Applying (4) can lead to exact T 2
i;j for some cases.

ROUTE PLANNING WITH HUBS

In a metropolis, there are local business centers where a lot of service routes concentrate.
Thesehubs provide a great chance for people to switch between different routes. For instance,
we may prefer travel plans that transfer at hubs at steps 3 to 4 inPathPlanning. In a preliminary
report [9], we outlined an algorithm that compute travel plans with hubs, and we provide a
clearer algorithm here.

We promote a stop to a hub in the route-information database based on relative importance
of stops. Bus stops served by more than 15 routes are selected as hubs. Stops of subway and
traditional train systems are automatically considered as hubs. To simplify the task of route
planning, we assign at least two hubs on every service route. If a route has less than two hubs,
we will designate selected stops served by the route as hubs. This extra selection is based on the
total number of routes that serve the stops, and we select the stop served by the most number
of routes as a hub. At this moment, our system has about 170 hubs that are selected from about
2500 ordinary stops.

Technically, the route map has two levels in the database. The base level contains all stops,
and the upper level only hubs. The algorithm needs to know ways for connecting hubs. We
can solve this bootstrap problem with human knowledge or a very simple path planner, since
typically there are direct or one-transfer routes that serve major hubs. The base level will be
used for finding travel plans for trips that require zero and one transfer. For other cases, the

2 '
'+ $+

Figure 6. Travel through hubs when there is no simple plan.

algorithm looks for travel plans with hubs, and Figure 6 illustrates the idea. When we cannot
travel from the origin to the destination directly or with only one transfer, we seek hubs,DH
andAH, that are guaranteed to lead us fromO to D. To implement the idea, the algorithm
finds ways to travel from the origin to itsnearest departing hubs and ways to travel from the
nearest arriving hubs to the destination. We can then use the information for connecting hubs
to create complete travel plans. A stops and any of its nearest hubs,h, must be served by a
common router 2 SR(s). A nearest departing hub and a nearest arriving hub ofs on a route
r is respectively the hubh that minimizes positiveK(r; h) � K(r; s) andK(r; s) � K(r; h).
The algorithm will use the set of all nearest departing hubs, denotedNDHS(s), and the set of
all nearest arriving hubs, denotedNAHS(s), of a stops. In preparation of the route database, we
ensure thatNDHS(s) andNAHS(s) are not empty for any stops. To this end, we may need to
promote terminal stops of some service routes to hubs. The algorithm follows.

Algorithm 2 PathPlanning2(Route information, Origin O, Destination D)

1.–3. Same as those in PathPlanning

4. Transfer via hubs: Recommend a path from O to s 2 NDHS(O), from s to t 2 NDHS(D),
and from t to D .

The last step subsumes the functionality of all steps for finding travel plans that require more
than one transfer inPathPlanning. SinceNAHS(s) andNDHS(s) are not empty for any stops,
there is at least one hub for going toD and one hub for leavingO. Given that our database will
contain information for traveling between any hub pairs, we can find at least one travel plan for
any desired trip. Therefore this algorithm is complete. However, this algorithm is not optimal
as the algorithm is not guaranteed to find the travel plans that require the least transfers.

PRIORITIZING CANDIDATE PATHS
A path-planning algorithm needs to prioritize travel plans when there are multiple ways

for the desired trip. Common factors for comparing travel plans include number of transfers,
monetary costs, expected travel time, and seat availability. Different categories of travelers
may weigh one factor more than others [2]. For instance, people who are not familiar with the
metropolis may strongly prefer travel plans with the least transfers for minimizing the burden
of locating bus stops.

We can categorize the preferences into two types, depending on the relationship between
the preferences and time. Manytime-independent factors, such as the monetary costs of taking
buses, do not change with time when we consider a duration of shorter than few hours. In con-
trast, finding the best travel plan that carriestime-dependent costs require us to model the change
of time rather precisely when we compare the merits of different travel plans. Researchers have
established an array of path-planning algorithms under these different constraints.

Our algorithms, bothPathPlanning andPathPlanning2, can be modified to incorporate a
mechanism for ordering travel plans based on traveler’s preferences. It is easy to suspend our
algorithms whenever they find travel plans at any step, thereby favoring travel plans with smaller
numbers of transfers. Heuristics can be applied to prioritize travel plans found at the executed
steps in our algorithms. For instance, one may prefer subway service to bus service for the same
trip. If the average travel times between stops are available, we can compute the expected travel
times for travel plans found at a step, and prioritize alternative travel plans accordingly.

To this end, we may employ ourPathPlanning algorithm as an embedded function in a stan-
dard shortest-path algorithm. This algorithm consultsPathPlanning for next stops to explore
during the search process. SincePathPlanning can distinguish what next stops can lead the
travelers from the origin to the destination, it only returns these viable intermediate stops to the
standard shortest-path algorithm. Through the cooperation of a standard shortest-path algorithm
andPathPlanning, we can avoid exploring partial travel plans that appear to be highly preferred
but do not lead to the destination.

;

2

'

<

Figure 7. Proximity may lead to futile search of travel plans.

Figure 7 illustrates a possible such scenario. A standard shortest-path algorithm may explore
the way toX that is near the originO becauseX appears to be a promising intermediate step
initially. However,X does not belong to any route that will lead to the destinationD. Therefore

a good path planner should avoid consideringX as an intermediate stop, and ourPathPlanning
algorithm can perform as a good consultant to standard path-planning algorithm in this aspect.

PathPlanning3 is a skeleton for the cooperation betweenPathPlanning and standard path
planner. If the preferences are not time-dependent, we can integrate our algorithms with any
shortest-path algorithm, such as the Dijkstra’s algorithm [1], to find the best travel plan.

Algorithm 3 PathPlanning3(Route information, Origin O, Destination D)

1. Attempt to find simple solutions:

(a) Call PathPlanning for travel plans that require no more than one transfer.

(b) Use a traditional shortest-path algorithm to select the best travel plans from those
found in 1(a).

2. Find more complex solutions:

(a) Call PathPlanning for travel plans that require two or three transfers.

(b) Use a traditional shortest-path algorithm to select the best travel plans from those
found in 2(a).

When users’ preferences are time-dependent, this two-level architecture is still applicable. We
just need to replace traditional shortest-path algorithms because they may not find time-dependent
shortest paths [5]. Our algorithms can still serve as the consultant, and we can employ al-
gorithms that are capable of computing time-dependent shortest paths. For time-dependent
constant costs, Kaufman and Smith identify a condition under which the Dijkstra’s algorithm
remains applicable. Thisconsistency condition requires that leaving a place later will not make
one to arrive at another place earlier [7]. This condition holds pretty well with public transporta-
tion vehicles, although this condition might be violated in some special conditions in general
transportation problems. Wellman et al. extend the idea to cope with time-dependent probabilis-
tic link-travel times [14, 15]. Theirstochastic consistency condition dictates that the probability
of arriving at the next location by any specific time will not be increased by leaving the current
location later. Under this condition, standard shortest-path algorithms, including the A* algo-
rithm, remain applicable for path-planning problems. If we do want to compute the fastest travel
plans when the travel costs are time-dependent and probabilistic in very complex transportation
networks, the computational load may be too high for the system to respond in a timely manner.
Liu and Wellman discuss techniques for computing bounds of travel-time distributions under
the time constraint [11].

USER INTERFACE AND APPLICATIONS

The outermost crust of our frame work shown in Figure 1 is a multi-media, multi-lingual,
and multi-platform user interface. We offer output in audio, graphical, and text formats to help
users gain better idea about what the system recommends them to do. We believe that the
system has to provide a multi-lingual user interface so that we can help foreign travelers. We
also hope to distribute the route information across platforms. In particular, we hope to make
route information accessible from mobile computing devices. To meet this goal, the output of
our algorithms can be converted into the WML format [3].

Realistic bus-information provision systems must have a good user interface to deal with
naming problems of bus stops. Although we may provide a graphic user interface, we cannot
assume all users will locate their origins and destinations on a digital map. Any user-friendly
system must prepare to accept queries that use text input. Such a demand requires our system
to manage the mapping between text inputs for location names and stop names gracefully.

Popular street names such asMain Street may be used as stop names in multiple cities in
the metropolis. Therefore, we need to cope with the problem of different stops carrying the
same stop names. We solve such homographic problems by annotating extra information with
the stop names. When encountering an ambiguous query, our system asks for clarification.

In addition, the user interface needs to cope with synonym problems. It is possible for bus
stops that surround a big site, such as the Darling Harbour in Sydney, to have different names.
When users ask about how to go to the Darling Harbour, a good system should be able to return
a travel plan that terminates at a stop that is geographically close to the Harbour, although the
stop might not be named asDarling Harbour.

We can incorporate other information into our system. Parking information may be valuable
for non-local people who need to come into town. Integrating information about parking and
public transportation system may help these non-local people to park at places where they can
continue their trips on public vehicles. Information about tourist spots and special events can be
interesting to both local and non-local people. Our system can direct people to take public trans-
portation vehicles for these non-recurrent trips. The channels for accessing the services of our
system may include the Internet, wireless mobile devices, and information kiosks installed at
subway stations. By making the bus information as easily accessible as possible, we maximize
the contribution of this information system to the community.

CONCLUSIONS

The popularization of the Internet and wireless communication devices offers new channels
for promoting the public transportation systems. By providing easier access to travel-related
information, we may help people to adopt public vehicles more easily than ever. We take
advantage of recent progress in computer and communication technologies in constructing this
route-information management and provision system. This system helps service providers to
manage and monitor operation data about their services so that they can plan and provide better
services to customers. We also propose path-planning algorithms for finding bus connection.
This service could be very valuable for non-recurrent trips. Our system shows the travel plans
in HTML, WML, graphic, and audio formats to meet requirements in different application
contexts.

Planning explicitly with the route constraint and hubs provides us a chance to find travel
plans more efficiently than planning at the stop level. Connectivity matrices and related func-
tions capture the route constraint by encoding the possibilities of transferring among routes.
With this information, thePathPlanning algorithm focuses on related routes to search for feasi-
ble travel plans. As a result, this algorithm can foresee which search direction may lead to the
solution, thereby offering better search efficiency than traditional search algorithms. Categoriz-
ing stops into hub and regular-stop classes allows us to tackle more complex queries efficiently.
This hierarchical structure is similar to thehierarchical encoded map views technique used for
finding shortest path in large areas [6]. We have implementedPathPlanning2 for a field test at
<http://iris.cs.ntou.edu.tw>. Results collected from field tests indicate that this
algorithm can compute satisfactory travel plans within a couple of seconds.

ACKNOWLEDGMENT

This work was supported in part by Grants NSC-89-2213-E-004-007 and NSC-89-2515-S-
019-001 from the National Science Council of Taiwan. The authors thank Po-Nien Chen and
Chih-Yao Yang for their active participation in implementing the system. The authors would

also like to thank the anonymous reviewers for their valuable comments on revision of this
paper.

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin (1993)Network Flows: Theory, Algorithms, and
Applications. Prentice-Hall.

[2] S. Bae (1995) An advanced public transportation systems application: Feasibility study of bus
passenger information systems operational test in the town of Blacksburg.Proceedings of the Sixth
Vehicle Navigation and Information Systems Conference, pp. 408–413.

[3] T.-Y. Chen and T.-C. Tsai (2001) Bus information systems and techniques for converting HTML
documents to the WML format. Technical report, Departmetn of Computer Science, National
Chengchi University.

[4] P. J. Elkins (1993) Service management systems for public transport–the German approach.Pro-
ceedings of the IEE Colloquium on Vehicle Location and Fleet Management Systems, pp. 401–410.

[5] R. W. Hall. (1986) The fastest path through a network with random time-dependent travel times.
Transportation Science, 20(3):182–188.

[6] N. Jing, Y.-W. Huang, and E. A. Rundensteiner (1998) Hierarchical encoded path views for path
query processing: An optimal model and its perfromance evaluation.IEEE Transaction on Knowl-
edge and Data Engineering, 10(3):409–432.

[7] D. E. Kaufman and R. L. Smith (1993) Fastest paths in time-dependent networks for intelligent
vehicle-highway systems applications.IVHS Journal, 1(1):1–11.

[8] N. Koga (1999) Public transportation priority system using optical bus detectors.Proceedings of
the Second International IEEE Conference on Intelligent Transportation Systems, pp. 135–138.

[9] C.-L. Liu, T.-W. Pai, and C.-T. Chang (2000) IRIS: Integrated route information service for multi-
modal public transportation systems.Proceeings of Taiwan’s International Conference & Exhibi-
tion on Intelligent Transportation Systems 2000, pp. 186–196.

[10] C.-L. Liu, T.-W. Pai, C.-T. Chang, and C.-M. Hsieh (2001) Path-planning algorithms for public
transportation systems.Proceesings of the Fourth International IEEE Conference on Intelligent
Transportation Systems.

[11] C.-L. Liu and M. P. Wellman (1999) Using stochastic-dominance relationships for bounding travel
times in stochastic networks.Proceedings of the Second International IEEE Conference on Intel-
ligent Transportation Systems, pp. 55–60.

[12] H. Ohdake (1999) On construction of a public transportation priority system.Proceedings of the
Second International IEEE Conference on Intelligent Transportation Systems, pp. 550–555.

[13] S. Russell and P. Norvig (1995)Artificial Intelligence: A Modern Approach. Prentice Hall.

[14] M. P. Wellman, M. Ford, and K. Larson (1995) Path planning under time-dependent uncertainty.
Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, pp. 532–539.

[15] P. R. Wurman and M. P. Wellman (1996) Optimal factory scheduling using stochastic dominance
A*. Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence, pp. 554–559.

