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Abstract

Authors of printed documents often strategi-
cally change fonts from one phrase to another
to attract attention of the readers or signify
special functions of the phrases. Typical
optical character recognition (OCR) systems,
however, remove font-related information from
the scanned image while attempting to maxi-
mize the recognition accuracy and system
performance. Consequently, we lose the font
cues after we scan and recognize a printed
Chinese document with such OCR sofiware.

In fact, carrying out font identification does
not have to place great extra burden on the
OCR software. We can apply functions that
are originally designed for character recogni-
tion to collect font-related information for font
identification, thereby achieving both tasks at
the same time. Specifically, we collect original
and thinned images of 5401 most commonly
used Chinese characters that are printed in
five fonts and 12-point size, and build our
system based on six font-related features
extracted from these characters. We evaluate
our implementation with documents, shown in
Appendix B, that contain random and unfor-
matted text printed in five fonts and three
different sizes. Our system achieves a 97.3%
average accuracy in these challenging tests.

1 Introduction

Fonts constitute an indispensable part of printed
Chinese characters. Typical printed documents
may employ a variety of fonts for different
purposes. For instance, characters printed in bold
or italic may attract more attention from readers of
the documents. A sequence of words with a
special meaning in its context may also be shown
in a distinctive font, e.g., book titles in English
technical papers are usually shown in italic. As a
result, a good knowledge management system
needs to consider the meaning conveyed by
different fonts [16].

Despite these important communication functions
carried by fonts, typical commercial optical
character recognition (OCR) systems for Chinese
characters do not preserve the original fonts in the
scanned documents. All recognized characters
would have been cast in one single typeface in the
output documents. Such a loss in information can
be undesirable for some applications, and manual
post edition is in need to restore the original fonts.

Due to the potentially broad applications of OCR
software, the literature has seen a correspondingly
great amount of work in the field of printed and
handwritten character recognition. For instance,
Bunke and Wang put together a handbook on
document image analysis [10], and Plamondon
and Srihari survey hundreds of different ap-
proaches to handwriting recognition that are
applicable to recognition of printed matters [13].
There are also more than one hundred domestic
Master’s and doctoral theses working on the
recognition of Chinese characters, counting from
the late 1980s, and a wide variety of approaches
have been proposed. For instance, Lin takes
advantage of the structural information from the
scanned characters [4], Hsu applies the statistical
properties, such as pixel density functions,
collected from the scanned characters [6], and
others attempt to integrate information of both
kinds [5,15].

Most of the previous work, however, focus on
recognizing the characters per se, and do not
consider identifying the fonts. The thrust for this
design decision is to reduce the search space for
character candidates. Chinese characters can be
printed in many different fonts, so research on
character recognition typically attempt to ignore
the font-related features for efficient character
recognition. For instance, Lin encodes the
structures  of  Chinese  characters  with
graph-associative memory that would be built
after the stage of thinning the original image of the
characters [4]. Both Chuang and Yang consider the
impact of different fonts on the recognition rate of
OCR software, and implicitly encode the
font-related information in the internal data



structure of the recognition system [7,9]. Conse-
quently, they do not concern with the problem of
font identification.

The work on identifying fonts of printed matters
can be traced back as far as 1989. Chang works on
the recognition of printed English text, and his
system can differentiate twenty fonts [8]. Fang
applies the functions of pixel density for encoding
font information. His system can tell which font is
used for the forty extremely commonly used
Chinese characters from Ming(HAHES), Kai(# £),
Fong-song({4 % ), Black(¥H38E8), and Round
CHERS) [1].

In fact, identifying fonts can be an easy task for an
OCR system. Many of the techniques designed for
collecting structural and statistical information for
character recognition can be applied to font
identification. Identifying fonts does not have to
dramatically increase the workload of an OCR
system. We propose methods for differentiating
Ming, Kai, Lee(32%), Black, and Round for
Chinese characters. Our methods take advantage
of six distinctive features of these fonts in them-
selves. Some of the feature extraction operations
rely on the existing thinning algorithm, so these
features are not difficult to compute. Also, as we
will discuss, these features are predictive in the
sense that they work for Chinese characters that
are unseen at the system training time. Our system
achieves 97.3% accuracy for documents, shown in
Appendix B, that contain characters randomly
sampled from the 5401 most commonly used
Chinese characters and printed in five fonts and
three different sizes (12, 14, and 16 point words).

The following section briefly describes typical
organization of an OCR system, and delineates the
scope of our work in the whole system. Section 3
discusses the algorithm and font-related features
that we use to identify fonts. We report experi-
mental results of the algorithm in Section 4, and
wrap up this paper with discussions in Section 5.

2 Problem Definition

Figure 1 shows the organization of a typical OCR
system. Although the actual functions contained in
the components may vary among different
implementations, there are common functions in
these components. At the preprocessing stage, we
attempt to remove noise resulted from imperfect
scanning or low quality document, extract
individual characters from the image of the input
document, normalize the sizes of characters to a
standard size, and carry out the thinning operation
on each character. Normalization is necessary for

recognition techniques
that employ informa-
tion about pixel density
and location functions.
Thinning is a standard
procedure for most
OCR software, and one

input document
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can find many refer- | recognition |
ences in the literature v :
[e.g., 2,3,7]. Roughly | postprocessing |

speaking, the thinning
procedure converts the
images of characters to  Figure 1: A simplified
their skeletons, and that OCR system
contributes a lot to the

loss of font-related information. We design a
simple character extraction algorithm that can
remove a few simple types of noise in the scanned
image. We also implement a normalization
program that is good for our experiments, and we
employ the thinning algorithm proposed by Lin
[2]. We select this algorithm because it performs
best in some harbinger tests.

output document

We focus on the feature extraction and recognition
stages in this paper, and we elaborate on this
aspect shortly. Feature extraction is a very
important component in an OCR system. Appro-
priate selection and successful extraction of the
features from individual characters are essential
for a high quality OCR system.

After extracting the features, the system compares
the features with the internal encoding of charac-
ters in the database. Criteria are applied to
determine which characters are “most similar” to
the character being processed, and this basic
principle applies to font identification too. The
design of this comparison procedure varies from
one system to another, and a very common
strategy is to employ a hierarchical decision
process at this step [e.g., 8,15].

Some OCR systems apply language models to
select the character for hard-to-recognize charac-
ters in postprocessing. A common practice is to
apply N-gram models to examine the context of
the difficult characters, and select the candidate
characters that best fit the context [12]. Although
the contextual information can be useful for font
identification, it is not the purpose of this paper to
discuss this issue.

3  Feature Selection and Recognition

We present the features we propose for font
identification. These features consider font-related



features that appear in the original characters and
their corresponding thinned characters. We call the
characters that we obtain from applying thinning
algorithms to the original characters thinned
characters. As we discuss shortly, these features
include thickness of original strokes, existence of
staircases in thinned characters, terminal types of
original strokes, corner types of original strokes,
and shapes of bounding boxes of the original
characters.

3.1 Feature Selection

We use the following enlarged sample characters
to illustrate the font-related features that we use
for font identification. These characters represent
the same Chinese word in different fonts, i.e.,
from left to right, Ming, Lee, Kai, Black, and
Round.

E/E7& /&)

Figure 2: A Chinese character in five fonts

The first distinction we can observe is the varying
thickness of the strokes in these fonts. As illus-
trated in the following chart, characters in Black
and Round have much thicker strokes than
others.

3000
—e— Ming
" /TA —m—Lee
E 2000 ——Kai
3 —— Black
& —e— Round
| 1000
&
=
O
0

10 20
Thickness (pixels)

Figure 3: Distributions of stroke thickness

Applying the thinning algorithm proposed in [2] to
the characters shown above will get corresponding
thinned characters shown in the following Figure
4. Notice that the horizontal strokes of the
character printed in Kai remain tilted. As a result,
when we examine the horizontal strokes at the
pixel level, the strokes would have been converted
to the staircase shape, and this clearly can be used
for font identification.

To detect and apply the staircase shape feature, we
can examine the formation of the thinned horizon-
tal strokes. The longest horizontal segment of
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Figure 4: Thinning the characters in Figure 2

thinned characters in Kai is typically shorter than
those of characters in other fonts. This is because
short horizontal strokes in Kai will remain as short
horizontal segments, but long horizontal strokes
will be transformed into a group of short horizon-
tal segments. Hence, the longest horizontal
segment in the thinned character can be used as a
feature for font identification. Moreover, if we
compute the standard deviation of the lengths of
the horizontal segments, thinned characters in Kai
will have a smaller standard deviation than
characters in other fonts. The following chart
shows the distributions of standard deviations of
segment lengths for different fonts. The curve for
Kai clearly skews toward the left side.
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Figure 5: Distributions of segment
lengths of different fonts vary.

The implication of the preceding observations is
quite contradictory to one’s instinct. Although
thinning is originally designed for removing the
influence of fonts on the appearances of characters,
the results of thinning can be useful for font
identification as well. The staircases created by
our thinning procedure strongly indicate that the
original characters are in Kai. In addition, we can
compute the thickness of strokes with the contours
of the original characters and the skeletons in the
thinned characters. These functions make thinning
a procedure useful for not only character recogni-
tion but also font identification.

Now take a closer look at the characters in Black
and Round in Figure 2. Notice that we look for
font-related features, so we are not interested in
word-specific features, e.g., the intersecting
locations of the strokes. As a result, we do not
consider the different overall shapes of the right
portions of these characters useful. The terminals
of the strokes of these characters do shed light on



the font classes. As its name has suggested,
characters in Round have rounded terminals,
while characters in Black do not demonstrate
such a feature. Therefore, we can collect statistical
information about the curvature of stroke termi-
nals of characters printed in Black and Round,
and apply this information for distinguishing these
two fonts.
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Figure 6: Encoding types of horizontal strokes

The shapes of the corners of horizontal strokes can
be useful for font identification, and we classify
the shapes into four categories. Figure 6 shows an
enlarged stroke. We decompose a horizontal stroke
into five components: the body, shown in gray,
and four corners. The figure also illustrates
different categories of the corners that may appear
in a horizontal stroke. The upper-left, upper-right,
lower-left, and lower-right corners respectively
show a component that is taller than 9 pixels,
between 4 and 8 pixels, between 1 and 3 pixels,
and simply flat. These four types are assigned
codes 2, 4, 3, 1, respectively. The type of a
horizontal stroke is encoded by the codes of its
four corners in the format (upper-left, upper-right,
lower-left, lower-right), so the stroke shown in
Figure 6 is of type (2,4,3,1). An examination of
the characters in Figure 2 reveals that characters in
Lee, Black, and Round are likely to have strokes
of type (1,1,1,1). On the other hand, Ming and Kai
are more likely to have special stroke types. We
provide more details on how we apply this feature
in Section 3.2.
width
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Figure 7: Shapes of bounding boxes differ.
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Finally, examining the bounding boxes of charac-
ters shown in Figure 7 should persuade one to
employ the height-to-width ratios of bounding
boxes of characters for font identification. The
observation is particularly self evident for charac-
ters in Lee that typically demonstrates low
height-to-width ratios, and is confirmed by the
statistics collected from actual data shown in
Figure 8.
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Figure 8: Distributions of height/width ratios

3.2 Recognition

We systematically extract the aforementioned
features from the characters and classify their
fonts. As shown in Figure 9, the top-level organi-
zation is a decision tree [17]. At the first step, a
character whose average thickness of strokes is
greater than a selected threshold will be classified
into the Black and Round group. Otherwise, it
will fall into the Ming, Lee, and Kai group. This
threshold is chosen from the training data using
statistical methods.
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Figure 9: Skeleton of the identifier

If a character is classified into the Black and
Round group, we use the curvature of terminals
of the horizontal strokes to decide its font. Again,
we choose a threshold for the curvature from the
training data using statistical methods.

If a character is classified into the Ming, Lee, and
Kai group, we utilize four different features to
determine its font. We have tried several ways to
integrate these features, and the best performing
model so far is to apply decision rules [17] for font
identification. For the corner features, we print
and scan the training data in different fonts, record
the types of horizontal strokes of each scanned
characters, and compute the distributions of these



three fonts for every stroke types. Each stroke type
will be assigned the font that has the most number
of strokes with this stroke type. Since each stroke
has four corners and each corner may belong to
one of four categories, there are 256 different
stroke types, and each type is assigned a font. For
the other three features, we select thresholds for
them by statistical methods.

We list the decision rules in the decreasing priority
in Appendix A. The rules are applied sequentially,
and a font will be selected once a particular rule
applies to the character being processed. Each rule
has the precondition and result parts. The result
part determines the font when the preconditions
are all met. In the precondition, corner—=>font
means that the majority of stroke types suggest
that the character be in font. Also, we use Max,
standard, and ratio to respectively denote
the maximum segment length, standard deviation
of the segment lengths, and height to width ratio
that we define in the Section 3.1. The unit for Max
is in number of pixels. Take the third rule for
example. It classifies the character into Lee, if (1)
the corner feature suggests that the character be
Lee, (2) the height to width ratio is smaller than
0.89, and (3) the longest horizontal segment in the
thinned character contains no less than 20 pixels.

4  Experimental Results

To test the effectiveness of our ideas, we set up an
environment for experiments.” We selected the
thresholds based on information collected from the
images of the most commonly used 5401 Chinese
characters. For this training purpose, we printed
the characters in 12-point size and five fonts.
These characters were then normalized to the size
of 128 by 128 pixels, while preserving their height
to width ratios. Depending on the shapes of the
original characters, the normalization step would
enlarge or shrink the original images until (1) the
normalized image was contained in the 128 pixels
by 128 pixels box, and (2) either the vertical or the
horizontal direction of the normalized image just
occupied 128 pixels. After this normalization step,
we extracted features and computed the statistics
from the normalized images. Finally, we subjec-
tively chose the thresholds based on the statistics,
hoping to improve the system performance when
we applied the completed system to the 5401

' We printed both training and test data with an HP
LaserJet 2100, and scan them with a Microtek
ScannerMaker 4700 in 600 dpi mode.

characters printed in 12-point size and five fonts.
4.1 Experiments using Training Data

The following table presents the results. The
leftmost column shows the actual font classes of
the characters. Each number in a row means the
number of characters that were classified into the
font class in its corresponding column head. For
instance, out of 5401 characters printed in Ming,
our system classified 4747 characters correctly,
but respectively misclassified 93 and 559 charac-
ters into Lee and Kai. After intensively tuning the
parameters, our system achieved accuracy of
87.9%, 91.0%, 89.2%, 71.9%, and 68.6% for Ming,
Lee, Kai, Black, and Round, respectively.

Table 1: Test results for 12-point sized characters

Ming Lee Kai: Black Round

Ming 4747 93 559 2 0
Lee 285 4916 199 1 0
Kai 278 304 4818 0 |
Black 2 2 0. 3886 1511

Round 7 3 1. 1684 3706

Besides the accuracy, there are few more points
worth some analyses. First, the result matrix
suggests that our method for differentiating the
Ming, Lee, and Kai group and the Black and
Round group is quite effective. Only 4 out of
16203 (i.e., 3*5401) characters in the Ming, Lee,
and Kai group were classified incorrectly, and
only 15 out of 10802 characters in the Black and
Round group were classified incorrectly.

On the other hand, it is much harder to distinguish
characters in the Black and Round group.
Examining the raw data in more detail, we find
that the relatively poor accuracy is a result of our
using one hard-coded threshold of curvatures of
terminals of horizontal strokes. This feature
actually performs better for characters with less
number of strokes. These characters have rela-
tively thicker horizontal strokes, so there is a
clearer difference in curvatures. When the
characters become complex in terms of number of
strokes, this distinction gradually disappears.
Consequently, characters with more strokes
contribute a lot to the inaccuracy for distinguish-
ing characters in Black and Round.

The upper left corner of the result matrix shows a
good reward to our using a complex set of
decision rules based on only four features. The
average accuracy for distinguishing Ming, Lee,
and Kai is better than 89.4%.



4.2 Experiments using Test Data

To examine the flexibility of our approach, we
tested our system with the 5401 characters in the
five fonts and three different sizes, i.e., 12, 14, and
16 points. Recall that we tuned our system with
12-point characters, so the thresholds may not
directly apply to characters of larger sizes. An
intuitive solution to this challenge is to adjust
thresholds that change with actual sizes of
characters. This dynamic adjustment can be
carried out by dividing the actual size of the image
of the character being process with the average
size of the 12-point characters, and adjusting the
thresholds based on this ratio. The experimental
results are shown in Tables 2 and 3.

Table 2: Test results for 14-point sized characters

Ming ILee Kai: Black Round|

Ming 4889 56 455 | 0
Lee 244 4998 156 2 1
Kai 254: 303 4844 0 0

Black 13 8 1. 3710 1669
Round 5 3 1. 1201 4191

Table 3: Test results for 16-point sized characters

Ming, Lee Kai: Black Round|

Ming 5004 31 364 2 0
Lee 243, 5034, 123 0 1
Kai 159 101 5138 0 3

Black 45 16 2 3654 1684
Round 15 10 2 1124 4250

Overall, our system adapted rather well to these
new problems. Although the sizes had changed,
the accuracy did not change significantly for most
cases. The results in these tables support our
previous observation that it is easier to distinguish
between the group with thinner strokes (Ming, Lee,
and Kai) and the group with thicker (Black and
Round) strokes. Only around five characters in
the thinner group were classified into the thicker
group, and less than 100 characters were misclas-
sified into the thinner group. Again, it is harder to
distinguish between the fonts within the thicker
group than those within the thinner group. For the
experiments using 14-point and 16-point charac-
ters, we respectively achieved average 90.9% and
93.7% accuracy within the thinner group, but only
73.1% and 73.2% within the thicker group.

Finally we tested our system with documents
containing characters in mixed fonts and sizes.
Appendix B shows two pages of test data. Each
page contains 150 characters that were randomly

sampled from the 5401 characters in five fonts and
three sizes. The accuracy for the first and the
second page were both 97.3%. Considering that
we only employed six features and tuned our
system with 12-point characters, we consider this
accuracy very encouraging.

5 Discussions

Our font identifier classifies fonts based on six
font-related features. The thresholds for the
features are trained based solely on 12-point
characters. We tested our system with characters
printed in five fonts and three sizes. The classifier
achieves an average 83.7% accuracy in compre-
hensive open and close tests, and 97.3% for two
randomly generated documents. In fact, in an
experiment not reported in this paper, our system
achieves comparable accuracy in identifying fonts
of characters that do not belong to the most
commonly used 5401 characters. Using
font-related features allows our system to classify
the fonts of unforeseen characters.

The current system can be enhanced in a few
conceivable ways. Expanding our system to
classify more fonts is the first alternative, and, as a
result, we would need to add employ more
features for the task. Moreover we would like to
automate the design of font identifiers. As we
discuss in Section 3.2, we manually tune the
parameters for the rules listed in Appendix A.
Although we seem to have tuned the system rather
well, the tuning task is resource consuming, and
does not necessarily lead to the best design.
Covering algorithms, such as the PRISM
algorithm discussed in [11,17], should provide a
more efficient and systematic way to find a set of
more effective rules.

We choose the decision tree shown in Figure 9
based on outcomes of a set of experiments. We
actually implemented six decision trees that have
different structures and thresholds, and the one
shown in Figure 9 performs the best. Automatic
construction and optimization of decision trees is
not a new topic in the machine learning commu-
nity. C4.5, a descendant of ID3, is a good example
[14], and we plan to exploit this approach.

We believe that we can boost the classification
accuracy and system efficiency by applying
contextual information in font identification.
Normal documents, such as newspaper and
magazine articles, will follow ordinary styling
principles, so they will not be as random as our
test documents. Considering such style constraints



in a font identifier will improve the efficiency.

We have begun to introduce these techniques from
machine learning and natural language processing
fields into our system, and we will report results of
our experiments later when they are available.
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Appendix A: decision rules for Ming, Lee, and
Kai listed in decreasing priority
1. 1f (ratio<0.75) font=Lee
2. 1f ((corner—=Llee) && (ratio<0.83))
font=Lee

3. if ((corner—>lee) && (ratio<0.89)
&& (Max>=20) font=Lee
4. 1f ((standard>120)
&& (ratio<0.87)) font=Ming

5. if ((standard<120)&& (Max<=40))
font=Kai

6. 1f ((corner>Ming) && (Max>=50))
font=Ming

7. 1f (corner—>lee) font=Lee

8. 1if ((corner—>Kai)&s& (Max<=25))
font=Kai

9. 1if (corner—>Ming) font=Ming
10.1if (corner—>Kai) font=Kai
11.1if ((standard>120)

&& (ratio<0.87)) font=Lee
12.1if ((standard<120)
&& (ratio<0.87)) font=Kai

13.1if (Max<=20) font=Kai
14. font=Ming



Appendix B: two pages of test data (shrunk to fit into one page)
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