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Abstract—The author examines methods for a special class of path plan- * I A
ning problems in which the routes are constrained. General search algo-
rithms assume that we can move around in the traffic network freely, so Lo R
they extend the partial paths from the very last location to each of its neigh- 2
bors to form more partial paths. The best partial paths are then selected to Ly L
expand, unless the selected partial path happens to be a solution. Without T T
proper guidance, this strategy may lead to inefficient planning algorithms 2 5 R,
when the way one can move around in the networks is constrained. This T T T >
scenario could happen in public transportation systems where passengers 1 3 o
cannot order drivers to change the routes of public buses to meet individual R/ R, Rs
travel needs. ) ) ) o )

A few recently proposed path-planning algorithms for public trans- Fig. 1. A simple grid-style network with five service routes

portation systems capture the route constraints by matrices. Although they
work for some applications, they are not perfect for cooperating with tra-

ditional algorithms for best-path planning. Applying special properties of . .
matrix multiplication, the author also employs matrices for capturing the that best meets our travel purposes. Consider the service routes

route constraints. The author improves previous designs, and come up with in Figure 1. The partial paths froixy to eitherLs or L; should
the sq—calledQ matricesthat serve well in the A* algorithm for best-path ot pe generated for consideration at all because there is no way
planning under route constraints. to travel that way by public buses. More importantly, if trans-
Keywords—Intelligent Transportation Systems, Advanced Public Trans- ferring will result in significant costd,s — Lg should not be
portation Systems, Path Planning under Constraints, Matrix Applications, gnsidered as good &5 — Lg because the former would need
A* Algorithm, Search . .
three transfers on the way tg,. Introducing a mechanism to
explicitly model the route constraints and predict the need to
|. INTRODUCTION transfer will improve the efficiency of the best-path planning al-

Standard search algorithms, such as the Dijkstra’s and the 8@rithms for public transportation systems.
algorithms, find the best path by expanding, comparing, and se-A good mechanism should demonstrate two important char-
lecting promising partial paths that emerge from the origin t@cteristics: simple and cooperative To construct a route-
ward the destination of the desired trip [1, 5, 13]. We determirigformation service that answers people’s queries, we can col-
whether a partial path is promising based on the objective furlect information about the stops served by each service route,
tion for the particular application, e.g., the shortest or the fastdbe service direction, and schedule of each service route in the
paths for the trips. The literature has seen a wide variety pfiblic transportation systems. Given such raw data, a good
planning algorithms for these classes of applications in differemtechanism should be able to serve, perhaps after some simple
contexts. In this paper, we discuss applications of matricespte-compilation of the raw data. Also, we would like to have a
the path planning problems when we are not permitted to moveute-information service that is able to find the best path where
absolutely freely in a given area. “best” is determined based on multiple decision factors accord-

The standard algorithms search for the best solution by grdflg to travelers’ preferences. Therefore, we should be able to
ually expanding the paths. For instance, in order to find the begasily integrate the new mechanism for capturing the route con-
path from the intersectioh; to another intersectioh, in Fig- ~ straints with existing algorithms for best-path planning.
ure 1, a typical search algorithm will consider five partial paths, In this paper we review the algorithms proposed by Liu and
each fronL; to one of its neighbors. All unselected partial pathhis colleague in the past IEEE ITS conference, discuss why none
and the newly generated partial paths are put into a pool. Nexttheir algorithms conform to the simple and cooperative cri-
the algorithm chooses the best current partial path to expanetia, and propose one new mechanism that meets the criteria.
based on the estimations of the merits of the partial paths. T8ection Il formalizes the problem that we will address and the
algorithm iteratively chooses the best partial path to expand, anetation that we will use. Section Ill discusses an approach that
stops when the chosen partial path happens to lead the travelgplies the concept of hierarchical planning to implicitly model
from the desired origin to the desired destination. the route constraints. We designate some special locations as

Searching the best path in this style may work well for sitiubs where transferring between routes are convenient. The
uations where we can choose the route freely such as a dfanning algorithms attempt to find a satisfactory solution based
ing scenario. This assumption about autonomy does not always pre-computed paths among pre-selected hubs [10, 11]. For
hold however. For example, traveling by the public transportgemparison purpose, Section IV reviews two methods that ex-
tion systems is clearly a counterexample to such an assumptiplicitly capture the route constraints by matrices in details [11].
As a passenger, we cannot demand the driver to take the p&tttion V examines the previously proposed methods, and ar-

gues that itis not easy to integrate them with standard algorithms
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applications to path planning problems using the A* algorithm. At the design stage, the system designers collect information
Finally, we wrap up this paper with a brief summary and conmabout the service routes, and determine the standards for cate-
parison. gorizing ordinary locations and hubs. Since hubs are typically
served by several routes, it is feasible to employ a simple algo-
Il. PROBLEM DEFINITION AND NOTATION rithm to compute and store the best path between any pair of
We address the path planning problem in which the traveleRjbs.
which could be passengers in public transportation systems oAt run time, the planning algorithm attempts to find a direct
data packets in computer networks, cannot change their routeste from the origin to the destination first. If not successful,
absolutely freely. The purpose is to apply matrices to capture ti algorithm tries to find a one-transfer solution for the desired
constraints so that we conduct path planning more efficiently.trip. If not successful again, the algorithm finds a travel plan
We use a few terms for describing aspects of constrainf@m the origin to a nearby hubll and a travel plan from a
routes. First we assume that there is a set of locations to ¢ H2, that is near the destination, to the destination. Since
served by a set of directed service routes. We assign to eachtl® system already knows how to travel between two hubs, it
cation in the area of interest a unique identification number, as@mbines the partial solutions to form a complete travel plan for
denote this set of numbers I$; Similarly we assign to each the desired trip. The skeleton of the algorithm follows.
route serving the area a unique identification number, and let
this set of numbers bB. To accommodate the existence of oneAlgorithm 1 (HPlanning) LetO andD denote the origin and
way streets and simplex communication lines, we assume tliastination, respectively.
all service routes are directed. We can use two separate routedrivial cases: ifO = D, show an appropriate message and
to model a two-way service route. For the simple grid showturn a null plan.
in Figure 1, we could have assigned 24 unique numbers to e Simple cases: if DServi@@, D) is not empty, return any ser-
intersections, and 5 unique numbers to the service routes. vice route in the set.
We also assign an ordinal numb&i(r ,s) to each location, 3. One-transfer cases: #i € SRO), 3j € SRD), and3s €
s, served by a route,. The K value of the departure terminal CSj , j ) such that both DServi¢®, s) and DServicés, D) are
of each route id. If a router does not serve a locatiathen not empty, there is a one-transfer solution.
K(r,s) = 0. Hence,K (r,sl) > K(r,s2) > 0 implies that 4. Non-trivial cases: Find a travel plan via hubs.
router serves froms2 to s1. Based on thd< function, we

define some useful functions. Although it is easy to implement a working system based on
1. For a locatiors, the set of srvice outes that serve is de- this idea, the approach does have some weaknesses. Using the
fined as follows. pre-computed travel plans between hubs might cause inconve-
nience when part of these plans becomes out of services unex-
SRs) ={r|K(r,s) > 0,r € R} pectedly. In this situation, we would have to call the planning

algorithm to find alternative travel plans for affected hubs. Most
of all, the designers must set the standards for what locations
should be treated as hubs. This step makes the approach less
CSri,r2)={s|K(r1,s)>0andK(r2,s) >0, se S} flexiblethan one may expect, as the standards would depend on
the current services which may change over time. If the services
3. For two locations andt, the following function returns the do change a lot, we would have to redesign the system, which
set of drect serviceroutes by which we can travel fromtot would require human intervention to determine the standards for
without transfers. hubs again. This also means that we need to set the standards
every time we need to have a path planning system for a new ap-
plication context. Furthermore, the selection could become very

The algorithms discussed in this paper employ some of thég@Mplicated if we would like to guarantee a solution for any de-
three functions. Since these functions depend solely on the rogitéd trips, considering the idiosyncracy of the actual services.
information, we can compute and save the results in a database
to speed up the path planning algorithms. When the storage
space is a concern, we may also compute these functions on thEor both theoretical and practical purposes, we would like to

2. The set of ommon_sops served by two routesl andr 2 is
defined as follows.

DServicés,t) = {r |K(r,t) > K(r,s) > 0,r € R}

IV. MATRICES FOR PATH PLANNING

fly at the expense of computation time. find an approach that minimizes, if not nullifies, human inter-
vention when we apply the approach to a new context. We dis-
[1l. HUB-BASED PLANNING cuss methods that employ matrices for automatic provision of

In previous work, Liu et al. propose a path planning algaPath-query services in this section.
rithm that employs pre-selected hubs for path planning under
route constraints [10]. This hub-based planning method smack
of recent interests in speeding up path-query services by preAdjacency matrices are typical examples for representing
computing partial solutions for the area of interest, e.g., [7§raphs with matrices, e.g., [1]. We sét; to 1 only if locations
Hubsare locations where several service routes concentrate, smdj are both adjacent and connected by a common service
they provide very good opportunities for service requesters toute serving fron to j. Assume that we assignoL; in Fig-
transfer from one route to another. ure 1. The adjacency matrix fdar, Lo, L3, andL, is shown

Adjacency matrices



below. For more complex travels, such ag,Z), we can rely on
higher powers of the connectivity matrix. Locatio¥isand Z

s = 8 6 6 ? 1 are served solely by routd®l andR2, respectively. Sinc&
“10 0 0 O (1) andZ are not served by a common route aiid, = 0, we ex-
0000 amine the value of’} ,, and find that it is possible to satisfy the

The powers ofA carry special implications. For instance [1iP by transferring fronR1 to R2 by two transfers ag andT.

A%A = 1 implies that we can travel frorh; to Ly via another Note that co_nnectivity matrices offer on_ly the possibility of

location, although_; andL, are not adjacent as indicated b)yvhether we might transfer from one service route to another.

Ay 4 = 0. In fact, one can prove that? . encodes the informa- There are two things that we need to take care of. First, the
) : 4 (2

tion about whether we can travel from locaticto j by passing POWers of connectivity matrices might include misleading in-
(n — 1) intermediate locations. formation. For instance, it is not easy to interpret vﬂ’\;{l =2

Despite such an interesting property, adjacency matrices §#¢2)- This is due to the facts that we can transfer frignto
not directly applicable to the path planning problems. Compug3(andR4) and fromR3(andR4) to R1. Although it seems true
ing multiple powers of the adjacency matrix at run time can g&at there are two methods to transfer fré@to R1 here, this
very costly in terms of both computational time and resource'é‘,format'on is incorrect and becomes disorienting when we are

yet offers little information about the exact travel plans. working on the path planning problems in the area to the left of
R2. The computation of powers of matrices do not take service

B. Connectivity matrices directions into consideration, 63, = 2 does not reflect the

t that we cannot travel westwards B8 andR4. Therefore,
hen the connectivity matrices show that it is possible to trans-
er between a pair of routes, we always need to double check the
feasibility.

In stead of using adjacency matrices directly, we can emplg
the connectivity matrices for path planning [11]. We designa
an ordinal number to each service route, and set the(Gejl
in a connectivity matrixC' to 1 if one can transfer from route ) ) )

The other problem is about data maintenance. For in-

toj . By default,C; ; is set to zero for all . Like adjacency houalC? . — : q hat th
matrices, the powers of connectivity matrices encode whetHgpCce: thougii, = 2 correctly encodes that there are
yLo ways to transfer fronRl to R2, the matrices do not tell

we can transfer from one service route to another. However, tﬁ

application of connectivity matrices requires validity checkingS NOW to achieve the desired transfer. Thus, the algorithm

needs to compute exactly how one can transfer from one route

A to another at system design time. These so-call@hect-
W R X E3 ing route functions are important ingredients for speeding up
. . the route-information service system. For instance, we have
Y Z CR(R1,R2) = {R3,R4} for the area shown in Figure 2.
S T R>4 The subscript to CR indicates the set is fofi + 1)-transfer
 / cases, e9gCRi(r1,r2) = {rjr € R,3x € CYr,rl) and
R R2 Jy € CHr,r 2) such thatk'(r ,x) < K(r,y)}. The path plan-
Fig. 2. An area with four directed service routes ning algorithm follows.

The following connectivity matrix and its square for the area ithm 2 (CPlanni LetO andD d h - d
shown in Figure 2 illustrate the applications and caveat. In the’§‘!=,go_”t m ( ann_lng) eto an . enote the origin an
matrices, we assigh 2, 3, andd to routeskl, R2, R3, andRé, estination, respectively. Assume thate SRO) andj €

respectively. SRD). : :
1.-2. Same as those in HPlanning.

3. One transfer: IfC; ; > 0, checkifds € CS(i ,j ) such that
(2) both DServic€O, s) and DServicés, D) are not empty. If yes,
there is a one-transfer solution.
_ _ 4. Two transfers: 07 ; > 0, check ifar € CRy(i,j ) such
For simple cases such as the first and the second cases sigfgd3s ¢ cgi,r), 5t € CSr,j), DServicéO,s) # 0,

in Algorithm 1, we do not need to use connectivity matricegyservicgs,t) # (), and DServicét, D) # 0. If yes, there is
Otherwise, we use the matrices for connectivity informatior, two-transfer solution.

For (S, 2)*, since there is no direct service, the algorithm checks

which routes serve these locations, and finds that Rétand In principle, this algorithm can be extended to identify travel
R4 serveS and thatR2 serve<Z. Also, the facts tha€’1» = 0 plans that require any number, sayof transfers. We just need
andCjy,» = 1 suggest that it is possible to go fr@to Zby R4 to prepareC™ andCR,_; (i ,j ) foralli andj . Therefore the
andR2. This possibility must be verified by checking whetheglgorithm iscompletein the sense that it can find a travel plan
we can go fron® to a transfer location, in this caSeand toZ,  between any location pairs as long as the solution exists. If the
and the answer is yes. Fof (X), althoughC'; 3 = 1, we cannot goal is to find a travel plan that minimizes the number of trans-
travel fromY to R and then toX because of the service directionfers, this algorithm is alsoptimalbecause it can stop whenever

C =

——0o0
OO

2 _
0_002
0 0 2

OO
OO ==
NNOO

of RL. it identifies a solution at an early step.
*For simplicity, we will use a pair of locations to show therigin, Cc_)nnectlwty matrices have connection Wlth the quality of
destination) pair from now on. services. Assume that andY are two locations that are not



served by a common route. Léfxy be the minimal such Also, the standard definition of thet" power ofT' is

thatC}; # 0 for alli € SRX) andj € SRY). Then, we can

prove that the least number of transfers necessary for traveling T = Z T T ;. 4)
from X to Y is no smaller thad/x vy [11]. If there exists a pair k

of X andY that has a largé/x vy, we may want to add or mod-
ify the service routes to reduce thig value for upgrading the
services betweeX andyY.

Using proof by induction, we can assume tiig —! is the num-
ber of routes that we can travel frano j by (n — 2) transfers,
since this is the case for = 2. Now, the first term within

Connectivity matrices are a better tool for path planning u L Nl
der route constraints than hubs and adjacency matrices. Mg]s‘? sumquon m.(4m¥k 1S the ”“T“ber of ways that we can
travel fromi to an intermediate locatickby (n — 2) transfers,

importantly, the construction of Algorithm 2 can be fully au- . .
tomatic. All we need is the routing information for individualand the second term is the number of direct ways that we can

routes. Unlike the approach discussed in Section I, theretlréveI fromk to]. Multiplying these ‘W_O quqntlt_les would give
iy the total number of ways for traveling frarto j and transfer
%a particulak by (n — 1) transfers. Therefore, summing over

stage. Also, since the number of service routes is intrinsical ossiblek qive the total number of wave (o travel from
much smaller than the number of locations, it is much easier Possi gives us u ways v
j by (n — 1) transfers.

compute and store connectivity matrices than adjacency ma{H_Similar to connectivity matrices, transition matrices have ap-
ces in terms of both computation time and storage space. S . y ma L P
plications for service planning. Define the c€ll; ; of the @

V. PLANNING WITH TRANSITION MATRICES matrix as follows.

Although Algorithm 2 leads to fully automatic realization of Qi,; = the minimaln € [1, co) such thatl}”; # 0
a path planning system, it is not easy to apply the algorithm_ o )
to best-path planning where the merits of a path include fali-iS €asy to see thap); ; encodes the minimal number, i.e.,
tors other than the number of transfers. A common example@.i — 1, of transfers necessary for traveling froo j. There-
computing the best path whose traveling costs include stochad@e: if Q. is very large for somei(j) pairs, we probably need
travel times [6, 8, 14]. to improve the service for these Ipcatlon pairs. For practical

As one may have noticed, Algorithm 2 biases against patA§™WOrks, we can expect that;; will not be a large number.
that require more transfers. Although paths requiring less&p€refore computing and updating tematrix should not be a
transfers are more likely to be faster paths, there could alSBa/lenging task. Moreover, the calculation of thenatrix can
be exceptions. To guarantee the optimality of the solution, carried out at system design time before we(pirito work.
could not afford to blindly ignore paths that require multiple (i 1S clearly superior taMlx,y defined in Section IV-B.
transfers. On the other hand, we might need connectivity matfy.x.v iS @ lower bound of the minimal number of transfer neces-
ces of very high dimensions to determine the potential merits 87 for traveling fronX to Y. In contrast() x v unambiguously
not very viable travel plans. Although this is achievable, it coulBiNPINts the minimal number of transfers for the same trip.
be very computationally expensive to do so.

Using theM matrix to guide the best-planning algorithm is
more viable than using the connectivity matrices. Thenatrix
contains the lower bounds of the number of transfers necessary
for traveling between two stops. However, as we will see next
that thetransition and@ matricesprovide more exact informa- Fig. 3. Locations served by a common route
tion for best-path planning.

For locations served by a common route, the transition ma-
A. Transition matrices trices may seem to exaggerate the number of ways of traveling
Retween these locations. Consider the very simple case shown
in Figure 3 where five locations are served by a common route.
(;I'Ipe square and cubic of the transitivity matrix for these loca-
tions are shown below.

We assign an ordinal number to each location in conside
tion. Then, we assign the cdll; of thetransition matrix7" to
be the number of direct routes one may commute from locati
i to locationj. We setT; ; to O by default. Th€ shown below is

the transition matrix for locations; throughLg in Figure 1. 001230 000130
AERRS I R EEY
2 __ 3 _
EEERE ™=1loooooo T=looo0o0o0o| ®

00 0 0 O0 1 000O0O00 000O0O0O
T=100000 0 (3 011110 001230
000001 N : : .

00 00 OO The fact thatl'y ; = 3 may seem weird at first. This is because

that, at least in principal, we can get on and off the same bus
We can prove, by induction, that theé” power of Tencodes at L, for traveling fromL; to Ls. Similarly, one can do such
the number of ways that we can travel from a locatiém an- “transfers” atL; andL,. Hence,Tf’5 = 3 indicates that there
other location by (n — 1) transfers, fom > 2. By definition, are three different one-transfer ways to travel fioprto Ls. The
Tk is the number of direct routes that we can travel flotj.  facts thatl}} ; = 3 andT}; ; = 3 have analogous interpretations.



This property will not affect the usefulness of tematrix. It well upon the applications and individual travelers. For public
is easy to see and show that, WI’}Q@ is an exaggerated value,transportation systems, individuals may consider such factors as

there must be a < k such thafl’; # 0. Forinstance]?; = 3  fare, seat availability, easiness and times of transfers, and so on

is an exaggerated value, but we hdue = 1, s0Q 5 =1 [2]. Among these factors, the necessity of transferring is directly
_ _ related to the route constraints.
B. Planning under route constraints Therefore, we need to forecast the need to transfer when we

Since@; ; encodes the minimal number of transfers nece§ompare the goodness of an intermediate location, even when
sary for traveling from locationto j, we can apply th€) matrix this need will not take effect at the current location. We can rely
to design a path planning algorithm as follows. Notice that thef# the@) matrices for this capability. LeD andD respectively
is no need to check feasibility of travel plans as one may needdgnote the origin and destination of the desired trip, lapte

CPlanningbecause thé) matrix provides decisive connection@ny intermediate location. Assume that the current partial path
information. isO —» L — --- = L,. The evaluation function for this par-

tial path isf(n) = g(n) + h(n), whereg(n) is total costs for
Algorithm 3 (TPlanning) Leto andd denote the numbers as-traveling fromO to L, qndh(n) !s the heuristic estimation for
signed to the origin and destination, respectively. future costs if this partial path is extended to reach the actual
glestination. Hencé(n) is the part of the evaluation function
that must consider the transfers that must occur in the future.
Let n andd be the ordinal number assignedliqg andD, re-
spectively. The quantity),, 4 will encode the minimal number
of transfers necessary for traveling frdm to the destination,

1. Trivial cases: ifo = d, show an appropriate message an
return a null plan.

2. Direct: if Q5,4 = 1, return any service in DServi¢e, d).

3. One transfer: ifQ, 4 = 2, there must be a locatiom

such thatQ,,,, = 1 and@,,,q« = 1. Combine any route in e i o
DServicéo, m) and any route in DServi¢en, d) to obtain a thereby providing a perfect basis for determining the effects of
one-transfer plan. ’ route constraints on the heuristic estimatidn).

4. Two transfers: ifQ, 4 = 3, there must be different loca- Consider the example in Figure 1 again, where we assign
tions m1 and m2 such7thatQ0 mi = 1, Qmime = 1, and L;. We assume that it is possible to travel between any location
Qmo.a = 1. Combine one route from each of 7DSer\(hr,eml) by public buses in the area had we drawn the whole area, and

DServicém1, m2), and DServicem2,d) to obtain a two- that Qy is very large if it appears that we cannot go fraro
transfer plan. y in the grid. Furthermore, for this illustration, we assume that

one would like to travel fronk.; to Ly, and that transferring is

Similar to Algorithms 1 and 2, the leading two steps take caxery costly. AtL;, we would see thaf)2 9 = 1 andQs,9 = 3,
of trivial and simple cases. At step 3, we check whether or nebL; — L, is preferable td.; — Lz in terms of number of
Qo,q = 2. If true, there is at least one intermediate location transfers. Nextwithoutthe guidance of th€) matrix, a search
where we can transfer from the route that semwvés the route algorithm might consider thdt; — L, — L4 is better than
that servesl. We check forQom = 1 andQmq = 1 because L; — Ly — L; because the latter requires an immediate trans-
we are sure that there cannot be any direct service from the dar. However, withQ); ¢ = 1 and a large) 4 9, the search algo-
gin to the destination whe@@, 4 = 2, so we can satisfy the rithm will evaluate these alternatives more correctly. Also, the
desired trip only by combining one leg of the trip from eaclfacts thatls o = 1 andQ¢,9 = 3 will be helpful for appropriate
of DServicéo, m) and DServicém, d). Following this design comparison betwedn, — L, — Ls — Lg andL; — L3 — L.
principle, we can add more steps, such as the fourth step, tdn addition to using the) matrix to support the compari-
cope with cases in which two or more transfers are necessagn among partial paths, we use tRevalues to support the
Therefore, this algorithm is complete and optimal in the sensask of partial path generation. Take the task of expanding
that it will always find the travel plan that requires the least trang; — L, — L5 for example. One could have generated five new
fers. ThisTPlanningalgorithm is better tha@Planningbecause partial paths, each frorhs to one of its neighbors. Using the

TPlanningrequires less checking at run time. facts thatk'(R2,5) > K(R2,2) and K(R3,5) > K(R3,7),
) ] . the algorithm will not generate two invalid paths frarg to L,
C. Integration with fastest-path algorithms andLs.

The@ matrix is not just useful for searching paths that require Notice that the information provided by tli¢g matrices is su-
the least number of transfers. It works with traditional seargperior to that provided by thé/ matrices which we discussed
algorithms naturally. We demonstrate the applicability of¢he at the end of Section IV-B. Thé/ matrices provide a lower
matrices to fastest-path planning problems by integrating thérund of the number of needed transfers, so they can be useful
into the A* algorithm. In the standard A* algorithm, we employfor defining an admissible heuristic. Thematrices, in contrast,
a heuristic function to estimate the merits of search nodes [1BJovide the exact minimum number of needed transfers, so they
In particular, this heuristic function should not overestimate thare superior for defining a tighter admissible heuristic.
actual cost from the state being evaluated to the goal state. SucGomputing the fastest path is not an easy task. It is well
heuristic functions are calleddmissible and they lead to the known that, when the link travel times are time dependent, tra-
optimality of the A* algorithm. ditional search algorithms cannot be applied directly [6]. Kauf-
Applying the A* algorithm to path planning problems, weman and Smith find that the Dijkstra’s algorithm remains appli-
need to select a heuristic function for estimating the travelirgable if the transportation network demonstrates the feature that
cost from a location to the destination. The preferences depdeeving an origin later will not make one arrive at the destination



earlier [8]. Wellman et al. extend the applicability of the A* al-computing travel plans that require the least transfers. @he
gorithm to transportation networks in which leaving an origimatrices are better than tlié matrices for best-path planning.
later will not increase the probability of arriving the destinatioiThe () matrices provides the tightest lower bound on the trans-
at an earlier time [14]. Liu and Wellman further extend this worker costs. Therefore, th@ matrices offer a very good solution

to situations where we only afford to compare the goodnesstofpath planning with route constraints using the A* algorithm.
paths roughly by bounds of the distribution of travel times [12]. Finally, although we have presented the planning algorithms
Bander and White develop an interruptible A* algorithm thator public transportation systems, the basic ideas can be ap-
employs more heuristic information for path planning, and thiglied to any routing problems where the service routes are con-
algorithm is applicable under time constraints [3]. Thena- strained.

trices presented here can be used to guild these algorithms for

fastest-path planning when the routes are constrained. ACKNOWLEDGEMENTS
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rithm can easily find travel plans that demand several transféts
in complex service networks. As a result, we believe that itl' ]
relatively easier for us to integrate our algorithm with the A
algorithm for path planning in time-dependent stochastic tra
portation networks. The TRC matrices are more general than
the transition matrices, however, in that routes are considered
“connected” if stops served by two routes are within a prese-
lected walking distance. In general, walking can be treated &
a service route with special transfer costs and potentially longer
link travel times, and our algorithms can take walking as an "’}b‘]
ternative accordingly.

VIlI. CONCLUSIONS [10]

The transition and) matrices clearly dominate the hub-based
and the other matrix-based approaches for path planning un-
der route constraintdiPlanningembraces the concept of hubgz1j
for implicitly modeling the route constraintsCPlanningand
TPlanning on the other hand, employ matrices for explicitly
capturing the route constraints. They embrace, respectively, the
connectivity matrices that model the connectivity among service
routes and the transition matrices that model the connectivity
among locations. In addition to their applications for path plan-
ning problems, we can apply the connectivity and transition mé-3]
trices to service planning problems. We identify matricks,
andQ respectively, that help us to gauge the quality of servidé!
in the network.

Both CPlanningand TPlanningare better tharHPlanning
partially because they do not need extra human intervention for
implementing a path-query servic€Planningis considered to
be even better tha@Planning The former requires less amount
of feasibility checking at run time, although both are good for
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