
THE FOURTH INTERNATIONAL IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, OAKLAND, CALIFORNIA, USA, AUGUST 2001 1

Path-Planning Algorithms for Public Transportation Systems
Chao-Lin Liu, Tun-Wen Pai, Chun-Tien Chang, and Chang-Ming Hsieh

Abstract—Computing travel plans for desired trips in public transporta-
tion systems is not exactly the same as finding a shortest driving path in a
given area. Path planning in the context of public transportation systems
must consider theroute constraintthat public vehicles serve on particular
paths and that passengers cannot order the drivers to change the bus routes.
Explicit representation of the route constraint helps us to design efficient al-
gorithms that focus on viable routes for computing travel plans of interest.
This paper presents two strategies for capturing the route constraint. The
first strategy employsconnectivity matrices, and applies special properties of
matrices for quickly identifying feasible travel plans for the desired trips.
The second strategy useshubswhere many service routes concentrate for
computing travel plans. Our algorithms perform very well in field tests.

Keywords—Intelligent Transportation Systems, Advanced Public Trans-
portation Systems, Path Planning Algorithms, Constrained Programming

I. INTRODUCTION

Advanced public transportation systems are an important
component of intelligent transportation systems for reducing
traffic demands. Reducing traffic demands helps to reduce traf-
fic jams and gasoline consumption, thereby alleviating the air
pollution problems. We report algorithms for providing bus in-
formation to tourists and commuters to encourage people to use
public transportation systems.

Transportation authorities take a variety of measures to en-
courage people to share rides in urban areas. The Singapore
government legislatively bans a portion of registered vehicles
from entering cities on specific days. Many cities in Japan and
the United States set up priority routes exclusively for public and
high-occupancy vehicles. Providing transfer information is an-
other effective measure for promoting the public transportation
systems.

It is not always easy for people to use the public transporta-
tion systems to travel around a metropolis. For instance, in the
New York City, the problem is not about availability of services,
but about finding a travel plan for the desired trip. Finding travel
plans for non-recurrent trips from a wide selection and combi-
nation of bus, subway, and train routes is not an easy job even
for local people, let alone tourists. Demands for non-recurrent
trips may occur when there are special events and when services
for the commuters’ customary travel plans are interrupted or de-
toured under unexpected situations.

One may tackle the path-planning problems with standard
search algorithms, such as the label-setting and label-correcting
algorithms [1, 9]. Planning can be carried out at the stop level
where the algorithms find the best next stop, starting from the
origin of the trip.1 Public transportation systems, however, ex-

Liu is with the Department of Computer Science of National Chengchi Uni-
versity, Taiwan. E-mail: chaolin@nccu.edu.tw; Pai and Chang are with the De-
partment of Computer Science of National Taiwan Ocean University, Taiwan.
E-mail: twp@cs.ntou.edu.tw; and Hsieh is with the Bureau of Transportation,
Taichung City Government, Taiwan.
1When attempting to find a travel plan from the origin to the destination, there

is no immediate need to distinguish bus routes, subway routes, and train routes.
Hence, we will not distinguish routes and stops served by different types of
vehicles until we need to prioritize travel plans.

hibit a feature useful for computing travel plans: Public buses,
subway, and traditional trains follow selected routes during ser-
vice. Transferring between routes costs time and money, so
people typically prefer travel plans that require lesser trans-
fers. Therefore, it may be better to cope with the path-planning
problems at the service-route level rather than at the stop level.
Moreover, planning at the route level can be more efficient as
we show shortly.

We define some terms used in our algorithms in Section II.
Section III introduces matrices for representing the route con-
straint, and presents an algorithm that applies the route con-
straint to computing travel plans. We also show properties of
matrices useful for planning service routes in public transporta-
tion systems. Section IV discusses another path-planning al-
gorithm that takes advantage of transfer hubs. We then go
over some design issues for real-world applications of our algo-
rithms, including prioritizing multiple travel plans, and conclude
with a brief discussion.

II. ROUTE INFORMATION

We illustrate the definitions of the basic terms used in our al-
gorithms in a simplified context that is shown in the following
figure. Each black circle represents a group of nearby stops that
serve the marked locations, and directed lines represent service
routes. For clarity, we do not distinguish stop names and loca-
tion names until later in this paper.

$ ('

&

%

5�

5�

5�

Fig. 1. Route information assignment

We assign a number to each different service route. Service
routes, e.g., R1 and R3, that do not serve the same set of stops
will be assigned different numbers. Service routes, e.g., R1 and
R2, that serve the same set of stops but not in the same order
will also get different numbers.

We assign an ordinal number to each stop on a route. Smaller
numbers will be assigned to stops that are served earlier on a bus
route, and we use K(r; s) to denote the number assigned to the
stop s on the route r. When a route r does not serve a stop s, we
set K(r; s) = 0. Assume that the route number of R1, R2, and
R3 are 1, 2, and 3, respectively. If K(1;A) = l, K(2;A) = m,
and K(3;A) = n, then we will also have K(1;B) = l + 1,
K(2;B) = m � 1, and K(3;B) = n + 1. Our algorithms use
these numbers to determine whether one may travel from one
stop to another on a particular route.

Our algorithms employ two functions that relate bus stops and
bus routes. The algorithms need to know the set of service
routes, SR(s), that serve a given bus stop s. For instance,

THE FOURTH INTERNATIONAL IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, OAKLAND, CALIFORNIA, USA, AUGUST 2001 2

SR(B) = f1; 2; 3g and SR(C) = f3g in Figure 1. The algo-
rithms also need to know the bus stops that are served by two
routes, say r1 and r2, and we denote these common stops by
CS(r1; r2). For instance, CS(1; 2) = fA;B;D;Eg. We can
compute SR(s) and CS(r1; r2) from K(r; s):

SR(s) = frjK(r; s) > 0g and

CS(r1; r2) = fsjK(r1; s) > 0 and K(r2; s) > 0g:

III. PATH PLANNING WITH THE ROUTE CONSTRAINT

A. Adjacency Matrices

We represent the connectivity among locations in transporta-
tion networks with adjacency matrices [1]. We designate each
location in the network a unique number. The value of a cell
Mi;j of an adjacency matrix M is set to the number of direct
ways that we may travel from a location i to j. The following
figure illustrates how we represent a simple network with an ad-
jacency matrix T . We use T1;1 = 0, T1;2 = 1, and T1;3 = 0
to respectively encode the facts that we cannot go from A to A
directly, that we can go from A to B directly, and that we cannot
go from A to C directly.

CA B
0
0
1

1
0
0

0
2
0

A CB
A
B
C

T= T2=
0
2
0

0
0
1

2
0
0

T3=
2
0
0

0
2
0

0
0
2

Fig. 2. A bus route segment and its adjacency matrices

Figure 2 shows the square and cube of the connectivity matrix
T , and we can verify that each cell in these matrices indicates the
number of ways that we may travel from one location to another
by respectively two and three transitions. In fact, we can show
by induction that the kth power of the matrix T encodes the con-
nectivity of the network when we take k transitions, assuming
that we employ the following standard method for matrix multi-
plication.

T k+1
i;j =

X
l

T k
i;l � Tl;j (1)

Property 1: Let T represent the adjacency matrix for a pub-
lic transportation network. T k

i;j will encode the number of ways
to go from location i to j by k transitions.

Proof. By construction, we have set values in the adjacency
matrix, T , to the number of ways to go from one location to
another. Assuming that the values of the k th power of T repre-
sent the number of ways to go from one location to another by
k transitions, we show that the (k + 1)th power of T must rep-
resent the number of ways to go from one location to another by
k + 1 transitions. In (1), T k

i;l represents the number of ways to
go from location i to an intermediate location l by k transitions,
and Tl;j the number of ways to go from l to j by one transition.
Therefore, T k

i;l � Tl;j is the number of ways to go from i to j via
a particular l by k + 1 transitions. As a result,

P
l T

k
i;l � Tl;j is

equal to the total number of ways to travel from location i to j
by k + 1 transitions. �

Applying this property, the problem of determining if there
are ways to travel from the origin O to the destination D is to

find a k such that T k
i;j > 0. The path that corresponds to the

smallest k among all such ks requires the least number of tran-
sitions between locations. Although adjacency matrices are use-
ful, they are not good enough for tackling path-planning prob-
lems in public transportation systems for the potentially humon-
gous computational costs.

B. Connectivity Matrices

We extend the fundamental idea of adjacency matrices to rep-
resenting connectivity among service routesin public transporta-
tion systems. Let i and j be the numbers of two service routes.
We set a cell, say Ti;j , of a connectivity matrixT to the number
of stops in CS(i; j). Namely, Ti;j is the number of ways that
we can transfer from route i to j. We set Ti;i to 0, although
route i and itself have common stops. Analogous to adjacency
matrices, connectivity matrices are related to the number of al-
ternatives for transferring between routes.

However, this property demands a careful inspection because
representing connectivity among service routes is not exactly the
same as representing connectivity among locations. Consider
the network shown in the following figure. We assume that we

$

& '

%

5�

5�

5�

5�

(

)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

7

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

7
�

Fig. 3. Connectivity matrices

may transfer from one route to another at intersections. The
information encoded in T1;4 can be misleading in that it suggests
that we may directly transfer from route R1 to R4 no matter
where we catch a bus on route R1. In fact, we cannottransfer
directly fromR1 toR4 once we pass C onR1. Also, that T 2

1;2 =
2 suggests that we may travel from any locations served by R1
to those served by R2 by two transfers. This is not exactly right.
Although we may go to E from C by transferring fromR1 toR3
at A and from R3 to R2 at B, we cannot go to F from C via R1,
R3, and then R2. Furthermore, notice that we cannot transfer
from R2 to R1 at all, but we have T 2

2;1 = 2.
The key is that being able to transfer from a route X to an-

other route Y does not guarantee that we may travel from all
locations served by X to all locations served by Y . Computing
the powers of connectivity matrices with Equation (1) ignores
the service directions of the routes and locations of stops on the
routes, and consequently exaggerates the number of ways that
one may travel from one location to another.

We can make the information encoded in T 2 precise by cal-
culating T 2 with an improved mechanism. In reality, there is
exactly one way to transfer from route i to j via route r for each
unique pair of stops s 2 CS(i; r) and t 2 CS(r; j) such that the
following condition holds.

K(r; s) < K(r; t) (2)

THE FOURTH INTERNATIONAL IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, OAKLAND, CALIFORNIA, USA, AUGUST 2001 3

Applying (2), we obtain the following T 2 that precisely pre-
scribes what we could do by two transfers in Figure 3.

T 2 =

2
664
0 2 0 0
0 0 0 0
0 0 0 0
0 0 2 0

3
775 (3)

Notice that we need to check the feasibility of travel plans
even if we compute connectivity matrices precisely. There are
three possible ways to transfer from route i to j via r in the fol-
lowing figure, i.e., transferring at location pairs (B;G), (B;H),
and (D;H). Not all of them may constitute feasible travel plans
for all needs to travel from locations served by i to locations
served by j. If we are to travel from A to H, all three alternatives

M

L
U$

% & ' ()

* +

Fig. 4. A difficult example for computing T2i;j

will work. Only one of these alternatives is right for travelling
from C to H because we cannot travel backwards from C to B on
i, as is implied by K(r;B) < K(r;C). Consequently, when the
connectivity matrix T 2 suggests that we may transfer from one
service route to another, we need to double check the K values
of the origin, the destination, and the transfer locations to make
sure the travel plan is feasible.

Our algorithms also employ T 3 for the path-planning prob-
lem. Applying (1) to compute T 3 from T 2 and T is again prob-
lematic, and the networks shown in the following figure illus-
trate the problems. We have one way to transfer from i to r2 by
two transfers and one way to transfer from r2 to j, but no way
to transfer from i to j via r1 and r2 by three transfers.

L
M

U�

U�
L

U�

U�M

Fig. 5. Difficult examples for computing T3i;j and CR2(i; j)

Since we would like to set T 3
i;j to the number of ways to trans-

fer from route i to j by three transfers, we should increase T 3
i;j

by 1 for each unique way to transfer from route i to j via a
pair of routes, say r1 and r2. Hence, we should increase T 3

i;j

by 1 for each unique combination of routes r1, r2, and stops
x 2 CS(i; r1), y 2 CS(r1; r2), and z 2 CS(r2; j) such that the
following condition holds.

K(r1; x) < K(r1; y) and K(r2; y) < K(r2; z) (4)

Using this criterion, we make T 3
i;j = 0 for both cases shown in

Figure 5.
Analogous to T 2, a precisely computed T 3 may still overes-

timate the actual ways to travel from a stop to another via three
transfers. In fact, that T k

i;j = � implies that there are at most
� ways to transfer from stops served by route i to stops served

by j by exactly k transfers. Taking advantage of these obser-
vations, we can prove the following property that is useful for
planning service routes in designing service routes for a public
transportation system. The proof is analogous to that for Prop-
erty 1.

Property 2: Let T represent the connectivity matrix for a
public transportation system. Assume that there is no service
route running from a location x to another location y. If there
exists an integer k such that

Pk

l=1 T
l
i;j = 0 for all i 2 SR(x)

and j 2 SR(y), then travelling from x to y requires no less than
k transfers.

If we do not want people to transfer more than twice to travel
between locations, we must at least make such a k smaller than 3
for all location pairs served by the public transportation system.

The connectivity matrices capture the route constraint on how
one may travel from the origin to the destination. Using this in-
formation, our search algorithms reduce the amount of search
work that would be needed otherwise. Overestimating ways of
transferring between routes may offset the improvement in effi-
ciency, but this will not make our algorithms slower than tradi-
tional uninformed search algorithms. We apply the connectivity
matrices and connecting-routefunctions to path-planning prob-
lems next.

C. Path-Planning Algorithm

For a pair of routes, i and j, our algorithms employ
connecting-route functions CR1(i; j) and CR2(i; j) that relate i
and j to route numbers of the routes that provide ways to trans-
fer from i to j. CR1(i; j) represents the route numbers of the
routes that directly run from some stops on route i to some stops
on route j. When T 2

i;j > 0, the algorithm checks CR1(i; j) for
detail information about how to transfer from route i to j. We
compute CR1(i; j) as follows:

frjTi;r � Tr;j > 0 and min
s2CS(i;r)

K(r; s) < max
t2CS(r;j)

K(r; t)g:

(5)
Applying (5) to the example shown in Figure 3, CR1(1; 2)
will be set to f3; 4g, and both CR1(1; 1) and CR1(2; 1) will
be set to empty sets. Notice that the second condition in (5)
ensures that CR1(i; j) does carry correct information. If we
drop this condition, we would obtain CR1(1; 1) = f3; 4g and
CR1(2; 1) = f3; 4g. It is easy to verify that CR1(1; 1) = f3; 4g
suggests impractical travel plans and that CR1(2; 1) = f3; 4g
suggests impossible travel plans.

CR2(i; j) relates routes i and j to a pair of routes (r1; r2) that
will connect some stops on i to some stops on j. Specifically,
we can transfer from i to r1, from r1 to r2, and from r2 to j. We
can compute CR2(i; j) precisely with (4), and only those pairs
(r1; r2) that meet the requirement specified in (4) are included
in CR2(i; j).

C.1 The Algorithm

We present the algorithm for finding travelling plans that re-
quire no more than three transfers next. In the following algo-
rithm, we have assumed that i 2 SR(O) and j 2 SR(D).

THE FOURTH INTERNATIONAL IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, OAKLAND, CALIFORNIA, USA, AUGUST 2001 4

Algorithm PathPlanning(Route Information, Origin O,
Destination D)

1. If O = D, there is no need to commute.
2. Direct connection:

For any route r 2 SR(O) \ SR(D) 6= ;, if K(r; O) <
K(r;D), we can go from O to D by r.

3. One transfer:
If Ti;j � 1, K(i; O) < K(i; s) and K(j; s) < K(j;D)
for a stop s 2 CS(i; j), we can take i at O, transfer
from i to j at s, and get to D by j.

4. Two transfers:
If T 2

i;j � 1 and there exist stops s 2 CS(i; r) and t 2
CS(r; j) for a route r 2 CR1(i; j) such that

(a) K(i; O) < K(i; s),
(b) K(r; s) < K(r; t), and
(c) K(j; t) < K(j;D),

then we can take i at O, transfer from i to r at s, trans-
fer from r to j at t, and get to D by j.

5. Three transfers:
If T 3

i;j � 1 and there exist stops x 2 CS(i; r1), y 2
CS(r1; r2), and z 2 CS(r2; j) for a pair of routes
(r1; r2) 2 CR2(i; j) such that

(a) K(i; O) < K(i; x),
(b) K(r1; x) < K(r1; y),
(c) K(r2; y) < K(r2; z), and
(d) K(r2; z) < K(r2; D),

then we can take i at O, transfer from i to r1 at x,
transfer from r1 to r2 at y, transfer from r2 to j at z,
and get to D by j.

The first step checks if the origin and the destination are the
same location, and is included for completeness of the algo-
rithm. The second step examines if both the origin and the
destination are served by a service route r. If yes, we have to
examine if this route runs from the origin to the destination.

The third step looks for travel plans that require one transfer
from a route i to a route j. If Ti;j is positive, then we may
transfer from route i to j. We must then check the location of
the transfer stop s, and make sure that it is possible to travel
from O to s by route i and from s to D by route j by comparing
the involved K values.

The fourth and the fifth steps look for travel plans that re-
quire two and three transfers, respectively. To find plans that
require k transfers, we make sure that T k

i;j is positive, look into
CRk�1(i; j) for possible connecting routes, and examine if there
are locations where we can transfer. In Figure 3, T 2

1;2 indicates
that we can transfer from route R1 to R2 by two transfers. The
algorithm determines that we can travel from C to E via A and
B. The algorithm will also find that we cannot travel from C to
F via A and B because K(2;B) � K(2;F).

The algorithm relies on the K values of stops for checking
the feasibility of travel plans. The assignment of K values im-
plicitly assumes that all service routes are directed and acyclic.
There is no need to compare K values of two stops on a route r
when the path of r forms a loop, since we can go between any
stops on such a route.

Using the same design principle, we can extend the algorithm
to find travel plans that require more than three transfers. Hence,
the algorithm is completein the sense that it is guaranteed find a

travel plan suitable for the desired trip when there is one [9]. In
addition, because the algorithm starts its search for travel plans
from those that require lesser transfers, the algorithm is also op-
timal in the sense that it can find the travel plans that require the
least number of transfers.

Property 3: PathPlanningis both complete and optimal for
searching travel plans that require the least number of transfers.

C.2 Implementation Issues

Notice that we only check whether T 2
i;j and T 3

i;j are positive
at steps 4 and 5, respectively. Whenever these numbers are pos-
itive, the algorithm checks if there are feasible travel plans by
comparing K values of locations that are involved in the plans.
Since T k

i;j overestimates the actual number of ways to transfer
from route i to j by exactly k transfers, we are not required to
compute exact values in T k when we are preparing T k for the
algorithm. We will only make the algorithm run slower than
it should be, even if we make T k

i;j positive when it is actually
zero. The algorithm will not find any travel plan after comparing
the K values. With the same token, the information contained
in CR2(i; j) does not have to be precise. Imprecise CR2(i; j)
may make the algorithm spend more time on conducting futile
comparisons between K values, but will not make it report in-
feasible travel plans. These observations allow us to prepare
CR2(i; j), T 2, and T 3 for the algorithm with simple though im-
precise methods.

We may approximate CR2(i; j) with the help of CR1(�). A
pair of routes (r1; r2) connects routes i and j only if the follow-
ing condition holds.

r1 2 CR1(i; r2) and r2 2 CR1(r1; j) (6)

Therefore, we can approximate CR2(i; j) by setting it to the set
of (r1; r2) such that r1 and r2 satisfy (6), although we can make
up artificial examples to show that (6) is just a necessary condi-
tion for (r1; r2) to be included in CR2(i; j). Using (6), we will
respectively set CR2(i; j) to f(r1; r2)g and ; for the left and
right cases in Figure 5, but CR2(i; j) should be an empty set for
both cases.

The easiest way to approximate T 2 and T 3 is to compute
these two matrices with standard definition for matrix multipli-
cation (1). For the public transportation system we are work-
ing on, there are about 560 routes. Computing the powers of a
560 � 560 matrix is not difficult, and saving both T 2 and T 3

requires no more than 630 kilobytes of storage space.
There does exist a simple and more precise method for ap-

proximating T 2
i;j . The following condition ensures that there is

at least one way to transfer from route i to j via r.

min
s2CS(i;r)

K(r; s) < max
t2CS(r;j)

K(r; t) (7)

If we add the quantity Ti;r � Tr;j to the summation for com-
puting T 2

i;j when (7) holds, T 2, for the example in Figure 3,
will be the same as (3). We can make up artificial examples,
such as the one shown in Figure 4, to illustrate that T 2 com-
puted with the restriction of (7) may exaggerate the number of
ways for transferring between routes. For this particular case,

THE FOURTH INTERNATIONAL IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, OAKLAND, CALIFORNIA, USA, AUGUST 2001 5

mins2CS(i;r)K(r; s) = K(r;B) and maxt2CS(r;j) = K(r;H),
so (7) holds. As a result, we would add the quantity T i;r �Tr;j =
3�2 = 6 to T 2

i;j , even though there are only three ways to trans-
fer from i to j via r. Nevertheless (7) can be effective in some
special cases. We can prove that (7) allows us to compute T 2

i;j

precisely if no routes in the public transportation system overlap
with each other at two or more separately continuous segments.

Whether one needs to employ the aforementioned approxima-
tion methods in implementing the path-planning algorithm de-
pends on the requirements of the system. If the route database
is changing frequently and if travel plans recommended by
the algorithm must reflect such changes immediately after the
raw data is modified, a precise update of CR1(r1; r2) and the
connectivity matrices may not be desirable for complex public
transportation systems. A complete update of route-information
functions may take too much time. Employing approximation
techniques to quickly update the functions should better meet
the need for on-line systems. For such special cases, it may be
better for the system to adopt approximation strategies during
the day, and conduct a precise data update during the night.

IV. PATH PLANNING WITH HUBS

In a metropolis, there are local business centers where a lot of
service routes concentrate. These hubsprovide a great chance
for people to transfer between different routes. For instance,
we may prefer travel plans that transfer at hubs at steps 3 to 5
in PathPlanning. In a preliminary report [7], we outlined an
algorithm that compute travel plans with hubs, and we provide
a clearer algorithm here.

We promote a stop to a hub in the route-information database
based on relative importance of stops. Bus stops served by more
than 15 routes are selected as hubs. Stops of subway and tra-
ditional train systems are automatically considered as hubs. To
simplify the task of path planning, we assign at least two hubs
on every service route. If a route has less than two hubs, we
will designate selected stops served by the route as hubs. This
extra selection is based on the total number of routes that serve
the stops, and we select the stop served by the most number of
routes as a hub. At this moment, our system has about 170 hubs
that are selected from about 2500 ordinary stops.

Technically speaking, the route map has two levels in the
database. The base level contains all stops, and the upper level
only hubs. The algorithm needs to know ways for connecting
hubs. This is not a difficult task because usually there are direct
or one-transfer service routes between major hubs. If difficult
situations do occur, we can rely on human knowledge or apply
the PathPlanningalgorithm for the task. The base level will be
used for finding travel plans that require zero or one transfer.

For other cases, the algorithm looks for travel plans with hubs.
To achieve this, the algorithm finds ways to travel from the ori-
gin to its nearest departing hubsand ways to travel from the
nearest arriving hubsto the destination. We can then use the
information for connecting hubs to create complete travel plans.
A stop s and any of its nearest hubs, h, must be served by a
common route r 2 SR(s). A nearest departing hub and a near-
est arriving hub of s on a route r is respectively the hub h that
minimizes a positive K(r; h)�K(r; s) and K(r; s)�K(r; h).
The algorithm will use the set of all nearest departing hubs, de-

noted NDHS(s), and the set of all nearest arriving hubs, denoted
NAHS(s), of a stop s. In preparation of the route database, we
ensure that NDHS(s) and NAHS(s) are not empty for any stop
s. To this end, we may need to promote terminal stops of some
service routes to hubs. The algorithm follows.

Algorithm PathPlanning2(Route Information, Origin O,
Destination D)

1.-3. Same as those in PathPlanning
4. Transfer via hubs:Recommend a path from O to s 2

NDHS(O), from s to t 2 NDHS(D), and from t to D:

The last step subsumes the functionality of all steps for find-
ing travel plans that require more than one transfer in PathPlan-
ning. Since NAHS(s) and NDHS(s) are not empty for any stop s,
there is at least one hub for going to D and one hub for leaving
O. Given that our database will contain information for travel-
ling between any hub pairs, we can find at least one travel plan
for any desired trip. Therefore this algorithm is complete. How-
ever, this algorithm may not find the travel plan that requires the
least transfers. This is because that PathPlanning2may recom-
mend a travel plan that requires transfer at a hub when there is a
better indirect travel plan that requires transfer at a non-hub stop
for the desired trip. Hence, we have the following property.

Property 4: PathPlanning2is complete for path planning for
public transportation systems.

V. APPLICATION CONSIDERATIONS

A. Prioritizing Travel Plans

A path-planning algorithm needs to prioritize travel plans
when there are multiple ways for the desired trip. Common
factors for comparing travel plans include number of transfers,
monetary costs, expected travel time, and seat availability. Dif-
ferent categories of travellers may weigh one factor more than
others [2]. For instance, people who are unfamiliar with the
cities may strongly prefer travel plans that require the least trans-
fers for avoiding the burden of locating bus stops.

We can integrate the connectivity matrices with standard
shortest-path algorithms to find the best travel plans. Traditional
algorithms that are built on the principle of dynamic program-
ming compare travel plans extending from the origin toward the
destination. If the algorithm searches travel plans at the stop
level, it may spend time on stops that appear to be promising
initially yet will not lead to the destination. We can remedy this
drawback by consulting the connectivity matrices, and let the
search algorithms explore only stops that may lead to the desti-
nation.

Our algorithms may also cooperate with standard shortest-
path algorithms. It is easy to make our algorithms suspendible
whenever they find travel plans at any step, thereby favoring
travel plans with lesser transfers. Heuristics can then be applied
to prioritize the travel plans already found. For instance, one
may prefer subway service to bus service for the same trip. If the
historical or real-time travel times between stops are available,
we can compute the expected travel times for travel plans found
at a step, and prioritize alternative travel plans accordingly.

To this end, we may employ our PathPlanningalgorithm as
an embedded function in a standard shortest-path algorithm.

THE FOURTH INTERNATIONAL IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, OAKLAND, CALIFORNIA, USA, AUGUST 2001 6

This algorithm consults PathPlanningfor next stops to explore
during the search process. Since PathPlanningcan distinguish
what next stops can lead the travellers from the origin to the
destination, it only returns the viable intermediate stops to the
standard shortest-path algorithm. When travellers’ preferences
are time independent, we can use any traditional algorithms,
such as the Dijkstra’s algorithm, in the integrated algorithm.
There are several algorithms proposed for coping with time-
dependent preferences. Kaufman and Smith have an algorithm
for time-dependent and constant preferences [5]. Wellman and
his colleague have algorithms for time-dependent and proba-
bilistic preferences [10, 11], and Liu and Wellman further ex-
tend the techniques for time-pressed problems [8]. These algo-
rithms build on the concepts of consistencyand stochastic con-
sistencyfor dealing with time-dependent preferences.

B. User Interface

Realistic bus-information provision systems must have a good
user interface to deal with naming problems of bus stops. Al-
though we may provide a graphic user interface, we cannot as-
sume all users will locate their origins and destinations on a
digital map. Any user-friendly system must prepare to accept
queries that use text input. Such a demand requires our system
to manage the mapping between text inputs for location names
and stop names gracefully.

Popular street names such as Main Street may be used as
stop names in multiple cities in the metropolis. Therefore, we
need to cope with the problem of different stops carrying the
same stop names. We solve such homographic problems by
annotating extra geographic information with the stop names.
When encountering an ambiguous query, our system asks for
clarification.

The user interface also needs to cope with synonym prob-
lems. It is possible for bus stops that surround a big site, such as
the Central Park in the New York City, to have different names.
When users ask about how to go to the Central Park, a good
system should be able to return a travel plan that terminates at
a stop that is geographically close to the Park, although the stop
might not be named as Central Park.

In addition, some users may ask for methods for travelling
between two areas, as opposed to between specific stops. For
instance, one may want to know how to travel from the Jeffer-
son Square to the Franklin Square in San Francisco, or from
Oakland to San Francisco by public transportation systems. Our
system needs to work with a geographic information system to
infer the relationship between names of large areas and names of
specific stop names. Our system also needs to adopt heurisitcs
to show “major” connections between distant locations, rather
than showing many complex detail connections.

VI. CONCLUSIONS

Planning explicitly with the route constraint and hubs pro-
vides us a chance to find travel plans more efficiently than plan-
ning at the stop level. Connectivity matrices capture the route
constraint by encoding the possibilities of transferring among
routes. With this information, the PathPlanningalgorithm fo-
cuses on viable routes to search for feasible travel plans. Cat-
egorizing stops into regular-stop and hub classes allows us to

tackle more complex queries efficiently. This hierarchical struc-
ture is similar to the hierarchical encoded map viewstechnique
used for finding shortest paths in large areas [4]. We have imple-
mented PathPlanning2for providing information service in the
Internet (http://iris.cs.ntou.edu.tw). Timing statistics collected
from multiple field tests indicate that our algorithm can com-
pute satisfactory travel plans within a couple of seconds.

We are integrating this path-planning service with a service
management system for public transportation systems. Service
management systems, e.g., [3], allow system administrators to
manage information about the public transportation system. Us-
ing automatic bus location techniques [6], the management sys-
tem may also relay real-time bus locations to people who are
waiting at the bus stops. This information may help travellers
to select buses when there are multiple choices, and may help
travellers to alleviate anxiety when waiting for buses.

ACKNOWLEDGMENTS

This work was supported in part by Grants NSC-89-2213-E-
004-007 and NSC-89-2515-S-019-001 from the National Sci-
ence Council of Taiwan.

REFERENCES

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice-Hall, 1993.

[2] S. Bae. An advanced public transportation systems application: Feasi-
bility study of bus passenger information systems operational test in the
town of Blacksburg. In Proceedings of the Sixth Vehicle Navigation and
Information Systems Conference, pages 408–413, 1995.

[3] P. J. Elkins. Service management systems for public transport–the German
approach. In Proceedings of the IEE Colloquium on Vehicle Location and
Fleet Management Systems, pages 401–410, 1993.

[4] N. Jing, Y.-W. Huang, and E. A. Rundensteiner. Hierarchical encoded
path views for path query processing: An optimal model and its perfor-
mance evaluation. IEEE Transaction on Knowledge and Data Engineer-
ing, 10(3):409–432, 1998.

[5] D. E. Kaufman and R. L. Smith. Fastest paths in time-dependent net-
works for intelligent vehicle-highway systems applications. IVHS Journal,
1(1):1–11, 1993.

[6] N. Koga. Public transportation priority system using optical bus detectors.
In Proceedings of the Second International IEEE Conference on Intelligent
Transportation Systems, pages 135–138, 1999.

[7] C.-L. Liu, T.-W. Pai, and C.-T. Chang. IRIS: Integrated route informa-
tion service for multimodal public transportation systems. In Proceeings
of Taiwan’s International Conference & Exhibition on Intelligent Trans-
portation Systems 2000, pages 186–196, 2000.

[8] C.-L. Liu and M. P. Wellman. Using stochastic-dominance relationships
for bounding travel times in stochastic networks. In Proceedings of the
Second International IEEE Conference on Intelligent Transportation Sys-
tems, pages 55–60, 1999.

[9] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, 1995.

[10] M. P. Wellman, M. Ford, and K. Larson. Path planning under time-
dependent uncertainty. In Proceedings of the Eleventh Conference on Un-
certainty in Artificial Intelligence, pages 532–539, 1995.

[11] P. R. Wurman and M. P. Wellman. Optimal factory scheduling using
stochastic dominance A*. In Proceedings of the Twelfth Conference on
Uncertainty in Artificial Intelligence, pages 554–559, 1996.

