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Abstract. Traffic sign recognition is a difficult task if we aim at detecting and 
recognizing signs in images captured from unfavorable environments. Complex 
background, weather, shadow, and other lighting-related problems may make it 
difficult to detect and recognize signs in the rural as well as the urban areas.  
We employ discrete cosine transform and singular value decomposition for ex-
tracting features that defy external disturbances, and compare different designs 
of detection and classification systems for the task. Experimental results show 
that our pilot systems offer satisfactory performance when tested with very 
challenging data. 

1   Introduction 

Computer vision has been applied to a wide variety of applications for intelligent 
transportations systems. For instance, researchers have developed vision-based tech-
niques for traffic monitoring, traffic-related parameter estimation, driver monitoring, 
and intelligent vehicles, etc. [1]. Traffic sign recognition (TSR) is an important basic 
function of intelligent vehicles [7], and TSR problems have attracted attention of 
many research groups since more than ten years ago [16]. In this paper, we report 
experiences in detection and recognition of traffic signs when images of the traffic 
signs are severely disturbed by external factors. 

Detection and recognition are two major steps for determining types of traffic 
signs [6]. Detection refers to the task of locating the traffic signs in given images. It is 
common to call the region in a given image that potentially contains the image of a 
traffic sign the region of interests (ROI). Taking advantages of the special characteris-
tics of traffic signs, TSR systems typically rely on the color and geometric informa-
tion in the images to detect the ROIs. Hence, color segmentation is common to most 
TSR systems, so are edge detection [9,14] and corner detection techniques [4]. 

After identifying the ROIs, we extract features of the ROIs, and classify the ROIs 
using the extracted feature values. Researchers have explored several techniques for 
classifying the ideographs, including artificial neural networks (ANNs) [4], template 
matching [14], chain code [15], and matching pursuit methods [9].  

Detection and recognition of traffic signs become very challenging in a noisy envi-
ronment [14]. Traffic signs may be physically rotated or damaged for different rea-
sons. View angles from the car-mounted cameras to the traffic signs may lead to 
artificially rotated and distorted images. External objects, such as tree leaves, may 
occlude the traffic signs, and background conditions may make it difficult to detect 
traffic signs. Bad weather conditions may have a detrimental effect on the quality of 
the images.  



To confront these challenges, researchers have designed techniques for raising the 
quality of the recognition results. Sandoval et al. develop methods for generating 
convolution masks that are then used for position-dependent edge detection of circu-
lar signs [17]. Kehtarnavaz and Ahmad apply Fourier and log-polar-exponential grid 
transformations for extracting invariant feature values of the traffic signs [11]. Pic-
cioli et al. focus more on detection of traffic signs in cluttered background. Assuming 
constant orientation of images of the detected signs, they apply template-matching 
methods to pick candidate signs, and claim 98% of correct classification [14]. 

We consider that occluded and poor-
quality images of traffic signs are not 
uncommon in reality. Images in Fig. 1 
and the Appendix illustrate some of 
these challenging scenarios. As a result, 
we believe that templates alone will not 
always work perfectly for traffic sign 
recognition. Even if images of the traf-
fic signs are partially occluded by ob-
jects or interfered by shadow, human may gu
available information, so we charge ourselves
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data, we employ discrete cosine transform 
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factor. Nearby buildings or objects, such as trees, may also affect quality of the color 
information because of their shadows. It is easy to obtain very dark images, e.g., the 
middle image in Fig. 1, when we are driving in the direction of the sun.  

As a consequence, “red” pixels can be embodied in a range of values. Hence, we 
attempt to define the range for the red color. We convert the original image to a new 
image using a pre-selected formula. Let Ri, Gi, and Bi be the red, green, and blue 
component of a given pixel in the original image.  We encode the pixels of the new 
image by Ro, Go, and Bo. Based on results of a few experiments, we found that the 
following conversion most effective: R and  

After the color segmentation step, only pixels whose original red components domi-
nate the other two components can have a nonzero red component in the new image 
most of the time. 
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Region of Interests 
We then group the red pixels into separate objects, apply the Laplacian of Gaussian 
(LoG) edge detector [8] to this new image, and use the 8-connected neighborhood 
principle for determining what pixels constitute a connected object. We consider any 
red pixels that are among the 8 immediate neighbors of another red pixel connected.  

After grouping the red pixels, we screen the object based on four features to de-
termine what objects may contain traffic signs. These features are areas, height to 
width ratios, positions, and detected corners of the objects. 

According to the government’s decrees for traffic sign designs, all traffic signs 
must have standard sizes. Using our camera, which is set at a selected resolution, to 
take pictures of warning signs from 100 meter apart, the captured image will occupy 
5x4 pixels. Due to this observation, we ignore objects that contain less than 40 red 
pixels. We choose to use this threshold because it provided a good balance between 
recall and precision, defined in (3) in Section 3.2, when we applied the Detection 
procedure to the training data. Two other reasons support our ignoring these small 
objects. Even if the discarded objects were traffic signs, it would be very difficult to 
recognize them correctly. Moreover, if they are really traffic signs that are important 
to our journey, they would get closer and become bigger, and will be detected shortly. 

The decrees also allow us to use shapes of the bounding boxes of the objects to fil-
ter the objects. Traffic signs have specific shapes, so heights and widths of their 
bounding boxes must also have special ratios. The ratios may be distorted due to such 
reasons as damaged signs and viewing angles. Nevertheless, we can still use an inter-
val of ratios for determining whether objects contain traffic signs. 

Positions of the objects in the captured images play a similar role as the decrees. 
Except driving on rolling hills, we normally see traffic signs above a certain horizon. 
Due to this physical constraint and the fact that there are no rolling hills in Taiwan, 
we assume that images of traffic signs must appear in a certain area in the captured 
image, and use this constraint for filtering objects in images.  

Since we focus on triangu-
lar signs in our experiments, 
we can rely on features spe-
cific to triangles for determin-
ing whether the objects are 
likely to contain triangular signs. We di
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nine equal regions, and check whether we can detect corners in selected regions. The 
leftmost image in Figure 2 illustrates one of these patterns by the blue checks. More 
patterns are specified in the following Detection procedure. If none of the patterns is 
satisfied, chances are very low that the object could contain a triangular sign. Using 
this principle, we were able to detect the rightmost four signs in Fig. 2.  

Procedure Detection (Input: an image of 640x480 pixels; Output: an ROI object list) 
Steps: 
1 Color segmentation 
2 Detect edges with the LoG edge detector. 
3 Remove objects with less than 40 red pixels. 
4 Mark the bounding boxes of the objects. 
5 Remove objects whose highest red pixel locates below row 310 of the original 

images, setting the origin (0,0) of the coordinate system to the upper-left corner. 
6 Remove objects with height/width ratios not in the range [0.7, 1.3]. 
7 Check existence of the corners of each object. 

7.1 Find the red pixel with the smallest row number. When there are many such 
pixels, choose the pixel with the smallest column number. 

7.2 Find the red pixels with the smallest and the largest column numbers. If there 
are multiple choices, choose those with the largest row numbers. 

7.3 Mark locations of these three pixels in the imaginary nine equal regions, set-
ting their corresponding containing regions by 1. 

7.4 Remove the object if these pixels do not 
form any of the patterns listed aside. 

8 For each surviving bounding box, extract the 
corresponding rectangular area from the 
original image and save it into the ROI list. 

Fig. 3 illustrates how we detect a triangular sign w
tice that the sing in (f) is not exactly upright. The tr
sign made our algorithm unable to extract the com
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pixels from (25,30). 
3 Remove remaining red pixels. 
4 Convert the object to a gray-level image. 

As the first step of the preprocessing, we normalize all objects to the 80x70 stan-
dard size. After a simple analysis of the 45 standard triangular signs, we found that 
the ideographs appear in a specific region in the normalized images. As shown in Fig. 
4(a), we can extract the ideographs from a particular rectangular area in the image. 
We extract the ideograph from a pre-selected area of 32x30 pixels from the normal-
ized image. The coordinates of the upper left corner of the extracted rectangle is (25, 
30). Notice that, although we have attempted to choose the rectangular area such that 
it may accommodate distorted and rotated signs, the extracted image may not include 
all the original ideographs all the time. Fig. 4(b) shows that the bottom of the ideo-
graph was truncated. Similarly, the extracted area may contain noisy information. 

After extracting the rectangular area that might contain the ideograph, we remove 
red pixels in the extract. We use a more stringent standard for defining “red.” Let R, 
G, and B be the red, green, and blue component of a pixel. A pixel is red if R>20, (R-
B)>20, and (R-G)>20.  

After removing the red pixels, we convert the result into a gray-level image. We 
adjust pixel values based on the average luminance to increase contrast of the image. 
We compute the YIQ values [18] of each pixel from its RGB values, set their gray 
levels to their luminance values, and compute the average gray levels of all pixels. 
Let the average be α. We invert the colors of the pixels by deducting the amount of 
(α−100) from the gray levels of all pixels.  

Then, pixels whose remaining gray levels are smaller than 70 are set to 0, and oth-
ers are set to 255. However, if using 70 as the threshold gives us less than 10 pixels 
with value 255 or 10 pixels with value 0, we apply another slightly more complex 
method. We calculate the average gray level of the pixel values, and use this average, 
λ, as the cutting point for assigning pixel values in the gray-level image. Pixels whose 
gray levels are less than λ are set to 0, and others are set to 255. Fig. 4(c) shows such 
a gray-level image.  

2.3   Traffic Sign Recognition 

After the preprocessing procedure, each object becomes a rectangle of 32x30 pixels. 
We can use these raw data as features for recognition. In addition, we employ the 
discrete cosine transform (DCT) and the singular value decomposition (SVD) proce-
dures for extracting the invariant features of the ideographs.  

DCT is one of the popular methods for decomposing a signal to a sequence of 
components and for coding images [5]. We concatenate rows of a given object, gen-
erated at step 5 in Preprocessing, into a chain, and apply the one-dimension DCT 
over the chain, and use the first 105 coefficients as the feature values. 

We apply singular value decomposition to the matrices of the objects that are ob-
tained at step 4 in the Preprocessing procedure for extracting features of the objects. 
Let UΣVT be the singular value decomposition [2] of the matrix that encodes a given 
object. We employ the diagonal values in Σ as the feature values of the given object. 
Since the original matrix is 32x30, we obtain 30 feature values from Σ. 

We investigate the effectiveness of artificial neural networks, k-nearest-neighbor 



(kNN) models, and naïve Bayes models for the recognition task. All these three alter-
natives are commonly used for pattern recognition tasks [3]. We use the collected 
features as input to different combinations of these techniques, test the integrated 
systems with test data, and report their performance in the next section. 

3 Empirical results 

3.1 Data Source 
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In the second experiment, we rely on the SVD vectors of the objects for classifica-
tion. We computed the Euclidean distances of SVD vector of the object to those of 
the training patterns, and applied the kNN principle for classification. The closest 100 
neighbors voted for the class of the test object. 

Integrated Methods 
We combine the original pixel values, DCT coefficients, and SVD vectors for 

recognition in three ways. Here, we reused the ANN in the first experiment, but used 
SVD vectors in a slightly different way. We normalized each SVD vector by dividing 
its components by the largest component before we computed distances. This was 
partially due to the fact the outputs of our ANN were normally below 2, while values 
of components of original SVD vectors fell in a much wider range. We normalized 
the values in SVD vectors to balance the influences of the ANN and SVD vectors.  

The first integration of ANN and SVD assigned equal weights to the scores given 
by ANN and SVD. We separately normalized ANN scores and the SVD distances to 
the range [0,1]. Let ScoreA(sign) be the likelihood of the object being the sign deter-
mined by output units of the ANN, and ScoreS(sign) be the distances between the 
SVD vector of the test object and the SVD vector of the perfect image of sign. The 
possibility of the test object being a particular sign is determined by the following 
score function. The subtraction was due to the fact that we computed distances with 
SVD vectors, and large values suggest different signs. 

)()()( signScoresignScoresignScore SA −=  
We may also assign different weights to the scores given by ANN and SVD. We 

determined the weights based on the classification performances of setups used in the 
first and the second experiments over the training data.  

We used the ANN for the first experiment and the SVD vectors for the second ex-
periment to classify the training data, and collected their F measures for individual 
sign classes. These F measures reflected how well the ANN-based and SVD-based 
classifiers performed on the training data, so we used this information to weight their 
predictions for the test data. Let FA and FS be the F measures so collected for the 
ANN and SVD, respectively. In this experiment, we computed the scores of a sign 
class, sj, using the following formula to choose the best candidate solutions.  

))(2()()()()( jSjSjAjAj sScoresFsScoresFsScore −⋅+⋅=  

The last experiment employed the components of the SVD vectors as features in a 
Naïve Bayes model. We assumed that the distributions of the feature values are mu-
tually independent and normally distributed given the signs. Let vi be the ith compo-
nent in the SVD vector. As shown below, we used the training data to estimate the 

means, u and variances, σ of the distributions of v,ij ,2
ij i given sign sj.  
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Because each SVD vector contained 30 components, and we had 45 triangular 
signs, we would have to estimate 2700 parameters for1350 distributions. Since we 
had only slightly more than 10000 training data, which did not appear to be sufficient 
for estimating 2700 parameters, we chose to use only the largest 10 components in 
the SVD vectors for this experiment, so we had to estimate only 900 parameters for 



450 normal distributions. 
To apply the naïve Bayes model, we needed to know the prior distribution over the 

45 signs. Normally, this information would be trained with the frequencies of the 
signs in the training data. This standard method could not work for us. We could not 
guarantee that the frequencies of signs that were collected in our training set reflected 
the relative likelihood of coming across the signs. As an alternative, we employed the 
output of the ANN component as the surrogate for the prior distribution. As just men-
tioned, the ANN component gave a score for each of the different targeted signs. We 
mapped the ANN scores to the interval [0,1], and used the results as ( )jsPr . 

Let vk be the kth largest component in the SVD vector of the object being recog-
nized. At the recognition phase, we computed the following score, and assigned the 
object the sign sj that maximized the following score.  

∏= =
10
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In all of these experiments, we used the absolute values of the ANN scores and 
SVD distances as extra filters to determine what objects were very unlikely to contain 
a triangular sign. The current object would not be considered as a traffic sign if any of 
the following conditions satisfied.  

1. if the SVD distance between the current object to all perfect signs is greater than 5  
2. if the highest ANN score of the current object is less than 0.3 
3. if all the following conditions hold: the highest ANN score is less than 1.5 times 

the second highest ANN score; the second highest ANN score is less than 2 times 
the third highest ANN score; the third highest ANN score is less than 3 times the 
fourth highest ANN score 

Results 
Using the output of the Detection procedure as the gauging point for computing 

the precision and recall of our detection component, we achieved 93% in recall, and 
78% in precision. We deliberatively allowed higher recall and lower precision at the 
detection phase because it offered better prospect of higher recognition rate of the 
overall system. 

Table 1. Experimental results of classifying objects into 45 triangular signs 
Single Candidate Single Candidate Classifiers 

Precision Recall F Precision Recall F 
EXP1: ANN 63% 71% 67% 68% 78% 73% 
EXP2: kNN 28% 40% 34% 36% 50% 43% 
EXP3: ANN+SVD 66% 76% 71% 72% 83% 78% 
EXP4: ANN+SVD+F 62% 73% 68% 72% 83% 78% 
EXP5: ANN+SVD+NB 45% 54% 50% 56% 65% 61% 

Table 1 shows the recognition rates of our experiments over the test data that are 
publicized in the Appendix. The Single Candidate column shows the performance 
measures when our recognizer returned only the most possible traffic sign as the 
answer. The Three Candidates column shows the performance measures when we 
allowed our recognizer to return the three most possible signs.   

Although SVD distances alone did not perform very well, according to results of 
the second experiment, they worked quite well with the ANN scores. The direct inte-



gration of ANN scores and SVD distances turned out to be the best classifier, fol-
lowed by their integration using the F measures as the weights. Integrating ANN 
scores and SVD distances via the naïve Bayes model did not perform as well as we 
expected. After analyzing the errors, we found that using the product formula in (1) 
allowed SVD-based features to dominate the classification decisions, which is not a 
very good design as already suggested by results of the second experiment. In con-
trast, the third and the fourth experiments gave more balanced weights to ANN scores 
and SVD distances, and achieved better performances.  

In Exp4, which provides the best performance, the average time spent on detection 
was 4.05 seconds for each input image. The standard deviation was 0.501 seconds. 
The average time spent on recognition for each ROI was 0.168 seconds, and the stan-
dard deviation was 0.0146 seconds. The timing statistics were collected when we ran 
our system on a 1 GHz Pentium III CPU with 256 Mbyte SDRAM, using interpreted 
Matlab programs. 

4  Discussions 

Although we have discussed designs of our experiments using the RGB color system, 
we did have tried the HSI system [18]. The HSI system may be more resilient to the 
disturbance caused by lighting problems, but did not improve performances of our 
systems significantly. 

The problems we are tackling are more difficult than we thought. Consider the fol-
lowing signs. Telling signs (a) through (d) apart in a noisy environment can be a 
difficult job even for human eyes. Signs (e) through (g) form another confusing 
group. We found that, in many cases, drivers could guess types of the signs by con-
textual information while driving. 

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) 

It has been tempting to us to apply low-level information, such as morphological 
information [10], for recognition. One may compute the skeleton of the ideographs 
for sign recognition. Although we did not report results of our effort on this front, our 
experiences indicated that skeletons alone might not be very fruitful. For instance, 
skeletons of ideographs in (e) through (g), shown in (h) through (j), may look very 
similar when we take their images in noisy environments.  

Nevertheless, the extremely similar signs in these sample images strongly suggest 
the necessity of low-level information for high quality of recognition. A robust tem-
plate-based matching can be very useful if integrated with an active vision system 
[13]. If we use one camera to search for ROIs that may contain traffic signs in the 
viewing area, and use another camera to zoom in the ROIs for clearer images of the 
candidate areas, we may apply template-based matching for high performance 
systems. However, we are not sure if it is feasible to install two cameras on passenger 
cars while maintaining the affordability. 

The applicability of our current system is quite limited by the facts that it employs 
several human selected parameters and rules. Many of these settings are not well 
supported by any theories, but were set to their current values based on limited ex-
periments over the training data. Improving the recognition rate and the generalizabil-
ity of our methods requires a lot of more future work. 
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