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ABSTRACT

We investigate the effectiveness of machine-generated criteria for
classification problems related to criminal summary judgments.
Our system utilizes documents of closed lawsuits as training data
for generating keyword-based and case-based classification crite-
ria, and applies these machine-generated criteria for the classifica-
tion tasks. To construct databases of the classification criteria, we
employ different levels of lexical knowledge in extracting infor-
mation from legal documents in Chinese, and build a case in-
stance for each closed lawsuit. Experimental results indicate that
case-based classification outperforms keyword-based classifica-
tion, and that machine-generated cases may offer performance
accuracy that is about 7% below that of human-provided cases.
Hoping to boost inference efficiency of our classifiers, we also
design methods that merge the machine-generated criteria. Em-
pirical results show that our methods can maintain the classifica-
tion quality within 20% of the quality achieved by human-
provided cases, even when we aggressively reduce the number of
previously machine-generated cases by about seventy percents.
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1. INTRODUCTION

Researchers of Artificial Intelligence and Law have explored sev-
eral knowledge representation formalisms for legal information,
and the research work has yielded several useful applications, e.g.,
CATO [3], HYPO [4], LEX [18], and ON-LINE [36]. Among the
knowledge representation formalisms, case-based reasoning (CBR)
has attracted a lot of attention, and the literature has seen several
sophisticated techniques for CBR [25]. We have also seen appli-
cations of artificial neural networks (e.g., [29, 33]). conceptual
networks (e.g., [27]). and decision trees (e.g., [9]) to the field.
Inspired partially by recent progresses in legal informatics, and
partially by increasing availability of Chinese legal documents on
the Internet [1], there have been burgeoning interests in Chinese
legal information systems, e.g.. [12, 13].
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Despite the achievements accumulated from applying CBR to
legal reasoning, Briininghaus and Ashley argue that we must have
ways to construct effective cases more efficiently to enhance
applicability of CBR systems to real-world problems. To this end,
they apply machine-learning methods to abstract entities in legal
documents for automatic indexing of cases in SMILE [10]. Moens
et al. employ an array of text analysis techniques for automatic
extraction of cases in SALOMON [30]. Weber extracts informa-
tion about case attributes using text-template mining algorithms in
PRUDENTIA [39]. Pannu applies genetic algorithms to learning
important features of cases in CBR in GAINC [31], and employs
the “near miss” concept [41, pp. 234] based on the Euclidean
distance in the learning processes.

In this paper, we report results of applying human-provided and
machine-generated cases in a CBR-like system for classifying
criminal summary judgments in Taiwan. Given a legal document,
we sift its contents for potentially useful information, and use the
results to build a corresponding case. After building cases for all
relevant documents, we apply them for classification problems
related to criminal summary judgments. Although the amount of
these machine-generated cases remains manageable at the current
stage, it is just a matter of time that we will have a large number
of such raw cases. We must find ways to construct fewer but more
representative cases from these raw cases so that we can conduct
inference effectively and manage case databases efficiently.
Hence, we also design a clustering algorithm that will convert a
given case database into a more succinct counterpart that, we hope,
would offer the same quality of support for lawsuit classification.

To evaluate performance of these machine-generated cases. we
manually constructed rules and cases for our classification prob-
lems. Our system classifies lawsuits of unknown types into 12
categories, and selects applicable articles for lawsuits from 14 law
articles. Experimental results indicate that human-provided cases
outperform machine-generated ones by a margin of about 7% in
precision and recall, when we apply the k-Nearest-Neighbor [2]
principle in the decision making process. This performance differ-
ence will widen to about 20% when we gradually merge the case
databases to 30% of their original sizes. Considering the eco-
nomic costs of directly using human experts to construct and
manage case databases for CBR systems, we find that computer
software can assist this knowledge intensive task well.

Automatic construction of cases requires computer software to
analyze the text information of legal documents, and is a lan-
guage-dependent task. Chinese, like many other Asian languages,
differs from English in many aspects [26]. For instance, words are
not separated by spaces in both Chinese and Japanese texts. This
and other differences, which we will explain shortly, post chal-



lenges to abstracting Chinese legal documents. We apply lexical
analysis of the Chinese legal documents, and apply the results to
lawsuit classification.

Section 2 provides more information about the challenges in proc-
essing Chinese text documents. Also included in the section are
information about the criminal summary judgments in Taiwan and
the source of our data that are used in constructing and evaluating
the cases. Section 3 describes definitions of rules and cases in our
system, and how we apply them to classify lawsuits. Section 4
elaborates on our algorithms for generation and clustering of
cases.” Section 5 presents our experimental setups and results with
analyses. Finally, we review our approach by comparing it with
more related work, and discuss several possible extensions of our
work.

2. BACKGROUND

2.1 Chinese Legal Document Processing

The following Chinese excerpt from a judgment document de-
scribes a drunk driver who caused a traffic accident. To protect
the privacy of the involved individuals, we have replaced their
given names with “O”, and improvised plate numbers of their
cars.

ZOORRBEA+HF+A -+t L5+ +40F &5
KTVERBRRAGESE  BRERBENBIK  CREERDE
BHAOXBTAYL  MEREEHY-1234%8 )
BELRET XACBIE S L F @478 - AATEE LSRG
VXA HEIEATIR L OB - R AH G LB R - BAE
SEATH IR OOMER2Z3-5678%8RA %K
B RAGEFTAE  HE20O0RBEERR HAlgH s
0 - AEMG/L > &g B5 Ll -

The processing of Chinese documents differs from that of English
documents in several aspects [26]. Word separation is the most
distinct difference among all others. While English words are
separated by spaces, Chinese characters are separated only by
punctuations. Hence, it is relatively harder for computer programs
to determine word boundaries in Chinese [43]. Chinese is also
more permissive in noun and verb generation. Native speakers of
Chinese often use verbs that are not necessarily listed in the most
complete dictionary, yet these speaker-invented verbs are still
communicative in everyday conversations [35]. These so-called
unknown words demand special treatments in high-quality Chi-
nese understanding systems [14].

Despite the myriad of research work on Chinese information
processing, there is relatively little work tailored for Chinese legal
information. Lai and Huang use a small Chinese legal corpus in
demonstrating the applicability of the Dependency Grammar for
annotating Chinese documents [24]. Brown builds the CHINA-
TAX system for inference problems that are related to the Com-
mercial law of China [8].

" Because the word case can refer to both legal cases in everyday
conversation and cases in case-based reasoning, we will use dif-
ferent words to refer to these two concepts when necessary. We
use lawsuits for legal cases and cases for the data used in case-
based reasoning. When the context provides sufficient clues for
disambiguation, we continue to use case for both senses.

Abstracting Chinese legal documents for legal inference or law
education requires mature information retrieval and extraction
techniques for Chinese. For instance, to generalize from entities to
roles like SMILE does [10], we need to identify Chinese names
and verbs with reasonable accuracy in the first place, which, un-
fortunately, demands some more research work still.

For this study, we resort to strategies commonly used in Chinese
information retrieval systems. We segment consecutive characters
into words with the help of a dictionary. Specifically, we employ
HowNet [20] for determining the word boundaries in Chinese
legal texts. To compensate the fact that HowNet is not designed
particularly for the legal domain, we also customize HowNet by
adding legal terms to it in our experiments.

It is possible that there are multiple ways to segment a character
string into words. When a character substring may be used to
match more than one listed word, we prefer the longest word. For
instance, assuming that “AANEGEZ & E”, “HE” and “%EFE”
are listed in the dictionary, there are two ways to split “k #15 £
Z # &"”. The first alternative is to leave the original string intact,
and the second is to split it into several parts, i.c., 37, “H7, “45
E” “z” and “# F”. Since we prefer the longest match, we
accept the first segmentation.

2.2 Criminal Summary Judgments in Taiwan
The public prosecutors of the government are responsible for
instituting a prosecution against offenders of legally forbidden
activities. Some of the criminal lawsuits are relatively less serious,
and are judged in the court for criminal summary judgments. After
the policemen collect supporting evidence, the public prosecutor
sues the offender by issuing an indictment document and sending
the defendant to the court. The judge then examines the evidence,
conducts further investigation if necessary, and makes a judgment
as to whether and how the defendant should be sentenced. To
publicize the judgments, the judge composes a document that
contains the sentence as well as findings of the investigation into
the relevant evidence and arguments.

We select some classes of the criminal summary judgments in our
experiments, and list these selected classes in Table 1 on the next
page. The Chinese column shows the official names of the crimes,
and the English column shows the translation of these official
names in English. The Symbol column shows codes of the crimes
that we will use as crime identifiers when we report the accuracy
achieved by our classification and clustering algorithms.

2.3 Data Source

We acquired the documents of the closed cases from the Panchiao
district court where one of the authors serves as a judge. We ob-
tained two consecutive seasons of realistic documents. The major-
ity of these real cases, but not all, belong to the offences listed in
Table 1. We got documents for 503 lawsuits from each of these
two seasons. We used the lawsuits occurred in the first season as
the training data for computers to generate cases, and used the
lawsuits occurred in the second season as the test data for evaluat-
ing quality of the rules and cases constructed by human and ma-
chine-learning algorithms. The collected lawsuits covered all 12
different types of crimes listed in Table 1, and reflected the fre-
quencies of lawsuits in real life. Unfortunately, some crime types
are far more often than others, and the distribution over the crime



types, listed in Table 2, was not as even as one might like to have
for evaluation of algorithms.

Chinese English Symbol
NEF A 23 Offences against Public Safety Cy
0 E AL 5 Offences against Morals Cs
5 Offences of Gambling Cs
15 E R Offences of Causing Bodily Harm Cy
BB E Offences of Larceny Cs
=& 3 Offences of Misappropriation Cs
S 5B Offences of Receiving Stolen Property Cy
#REE AR Offences against Chattel Secured c
ZHhik Transactions Act 8
ERFELAE Offences against Statute for Narcotics C
B 41 4 15 Hazard Control Y
HEREFHE Offences against Electronic Game Ar- c
35 ¥ 8 1945 1) cade Business Management Act 10
[ 2= gy
ﬁiiﬂ ; Fﬁ;} Offences against Child and Juvenile c
from * Sexual Transaction Prevention Act "
#REEWE Offences against Statute Governing the
M AMEME A | Relations between the People of the Cp
R B A5tk 9] Taiwan Area and the Mainland Area

Table 1. Types of offences in Chinese, English, and symbols
Symbol | C; |C2|C3|C4| Cs [Cs|C7|Cs|Co|Cio|Ci1|Ci2|Ci3
Season 1 [158]|26|30 (14| 99 |15 9 [I5]|19]16|19| 9 |74
Season 2 | 142|19(39|15| 139 (24 |11 (21|23 | 7 |25 |11 |27

Table 2. Statistics of case quantities, where C;; denotes all
other cases not belonging to the 12 selected categories

Each document in our collection contains several sections. The
indictment document and the judgment document have similar
structures. Both contain a header section that describes the infor-
mation about the court and the prosecution/judgment date, a sec-
tion that describes the information about the defendants, a section
that describes the alleged/confirmed criminal activities, and a
section that describes the alleged/judged offended law articles and
sentences. As we explain in the next section, the classification
component of our system takes indictment documents as input,
and extracts the alleged-activity sections for classifying the law-
suits and selecting the offended law articles. In Section 4, we ex-
plain how the learning component of our system takes the judg-
ment documents as input for automatic generation of cases.

3. HUMAN-MANAGED CLASSIFIERS

Since case classification is an ordinary job in the courts, we may
ask human experts to specify rules and cases for case classifica-
tion. In this section, we explain how this can be done for legal
decisions using Chinese documents. In Section 5, we will com-
pare the performances of these human-provided cases and ma-
chine-generated cases.

3.1 Keyword-based Rules

3.1.1 Rule Syntax and Semantics
We apply rules for determining prosecution reasons and selecting
applicable sentencing articles. Figure 1 shows the syntax of our

. prosecution reason

. activation threshold
. no

. taboo-phrase-1

. taboo-phrase-2

O W N -

. taboo-phrase-n

. event

. indicative-phrases-1:
. indicative-phrases-2:

weight-1
weight-2

O W ~J

10. indicative-phrases-m: weight-m

Figure 1. Syntax for rules and cases

rules for judging prosecution reasons. The line numbers are given
for explaining the semantics, but they are not part of the rules.

The syntax comprises of four parts. The first part, which occupies
only the first line, contains the prosecution reason that will be
assigned to the current lawsuit if the rule is fired. The second part,
which occupies only the second line, contains the threshold that is
used to determine whether the rule should be fired. The third part,
which spans between lines 4 and 6, specifies the phrases that will
prohibit the rule from being fired if any of them appears in the
indictment documents. Line 3 is included here to indicate the
beginning of the list of taboo phrases. The third part is optional,
and not every rule requires a taboo list. The fourth part, which
spans between lines 8 to 10, specifies the phrases that may acti-
vate the rule. Each indicative phrase has an associated weight that
encodes its own strength for activating the rule, and phrases listed
in the same line have the same weights. Similar to line 3. line 7
signifies the beginning of the list of activating phrases.

A sample rule for judging the prosecution reasons of cases follows.
This is a rule for judging whether the case is an offenses of caus-
ing bodily harm (4% %) case. The rule will be fired if the total
weight of indicative phrases found in the indictment document
exceeds 20.

1. 4H%E

20

event

FHoHh 10

ENGEZHRE -ANGEASZHEZHE 10
B 10

7. HB-BES-BEGEG KT L0

The syntax of our rules for selecting sentencing articles is similar.
The only difference is that we use the first line to store informa-
tion about the applicable sentencing articles for the current lawsuit.
We still need to check contents of the indictment document to
select which article is applicable because different sentencing
articles may apply to different situations under the same prosecu-
tion reason. Following is a rule for judging whether the 277" arti-
cle of the criminal law (] /%) should be applied.

1. AE$ 277 4%

Sy Ol W N

2. 10
3. event
4. RAGEZHE - ANGEAFH2EE 10

3.1.2 Rule Applications
Given a rule, the task of case classification boils down to string
matching, given that we are not doing in-depth semantic analysis



of Chinese documents yet. We examine whether the required and
the forbidden strings appear in the section for alleged criminal
activities (SACA) in the indictment documents to determine the
category of the given case.

Recall that Chinese is flexible in noun and verb generation. It is
possible that public prosecutors use slightly different phrases to
describe the same concept. For instance, one may use “/& & # A
4 4 and “ & E 4 APE4” to describe the concept “endanger
other’s life.” Although these character strings are different, they
actually represent the same meaning. We cope with this problem
by comparing strings with the longest common substring (LCS)
algorithm [19]. Given the previous two Chinese strings, the LCS
algorithm is able to find their longest common substring “ & % #
A7, and returns 5 as its output. Since LCS employs the concept
of dynamic programming, we can efficiently conduct string
matching for selecting rule to apply. If the matched substring
represents a sufficient proportion of a listed string in the rule, we
will consider the listed string is found in the SACA. We set a
threshold for deciding whether the substring can be consider as a
match, and this threshold is set to 75% in our experiments.

Once we complete the string-matching step, we may fire the rule
that receives the highest score, when we apply the Nearest-
Neighbor principle. We will explain how we employ the 4-
Nearest-Neighbor principle later. Notice that if any forbidden
string of a rule appears in the SACA, the rule will not be fired no
matter what. For all other candidate rules, we accumulate the
scores of the matched listed strings. During the accumulation, we
allow each listed string only one chance to contribute to the scores
so that duplicated strings will not bias the final decisions. Notice
that, although the syntax for our rules allows different weights for
terms, we assign the same weights to all terms in our current im-
plementation.

3.2 Case-based Method

The syntax of our cases is the same as that of our rules. Their
semantics are also similar, except that the ordering of strings in
the fourth part of case specification must be observed, and that the
weights for terms may be different. The ordering represents the
presumed sequence of events, so is very important for decision-
making using cases.

As a result of this required ordering of events, we cannot assign
scores for all matched strings. The relative locations where the
strings appear in the SACA determine whether the word will
count. In the previous rule for “4& %™ , a string that matches “H#:
4%” must appears after another string that matches “§#” for the
rule to get 10 points.

4. INSTANCE-BASED LEARNING

Building rule and case databases by human experts may provide
better classification quality, but the time costs may become unac-
ceptable when we confront real-world problems. In this section,
we let computer programs generate and merge rule and case in-
stances by extracting relevant information from legal documents.
We use these machine-generated instances to classify the current
lawsuit, and we refer to these machine-generated instances not as
cases because they look too primitive to be called cases.

4.1 Instance Generation

As discussed in Section 2.3, each judgment document contains a
section for the confirmed criminal activities and a section for the
judged offended law articles. Therefore, we can extract these sec-
tions from each given document to compose an instance. Since the
judged offended law article carries explicit information about the
prosecution reason and the offended law article, we can save the
information in the instances. We describe details about how we
utilize the extracted sections next.

There are three alternatives for us to generate instances, and the
main differences are whether we use a dictionary to segment the
character strings into words and whether the results are used as
cases or rules.

Before going into the instance generation step, we remove part of
the given text during the preprocessing step. Treating each charac-
ter string that is separated by punctuations as a unit, we remove
units that contain two special sets of characters. The first set is
{#. A, B. 8%, 4}, and the second set is {77, &, ¥, &, 2. &,
#., &, 3%}, The first set carries information about time, and the
second carries information about locations. Cases of summary
criminal judgments are relatively simple lawsuits, so the con-
firmed criminal activities typically occur during a particular time
interval. Hence, the time stamps of the activities are not very im-
portant for summary judgments. We remove the location informa-
tion based on the same reason.

After the preprocessing, we create an instance by removing com-
mas and periods from the given text. Given the Chinese text that
appeared in Section 2.1, we create the following instance. We
cannot explain the meaning of the following Chinese text clearly
here, but the passage still contains the description for the main
criminal activities, i.e., driving under the influence of alcohol.

AZKTVERBRAGERERBEN B RORERS
BEHGHRATRBHER G REB R AEHETR
HHROOMERZZ3-5078%aR I 2EamuEs
FREHZOORMUBEFARLAEEEO - AEZMG
S LisEs B4 L

The second method for generating instances is a bit more complex.
After the preprocessing, we use a dictionary to segment the char-
acter strings, and keep only words with more than two characters
that are listed in the dictionary. Given the Chinese text that ap-
peared in Section 2.1, we create the following word list.

MR RIE RN M& Rie %4 KBS &H XBLE £33
A BE AR L B ORI R EE AR AR

The word “4¢ 2% 8™ is not listed in the original HowNet dic-
tionary, but is included as a word in our domain-dependent lexi-
con, so is identified as one word in our system. We interpret this
list of keywords as an ordered list, and use it as a case instance.
Although this instance is vaguer than the previous, it still contains
the keywords that describe the criminal activities in the original
indictment document.

The last method is similar to the previous method. We adopt all
steps that lead to the generation of the word list. The only differ-
ence is that we interpret the word list as an unordered list when
we apply these instances for classification. We do not need to
store repeated words when we compute the word list, if we would



apply instances of this third type only for classification. However,
since we will merge instances as we discuss in Section 4.3, we
must keep the repeated words in instances for collecting statistics
of keyword frequencies. Notice that instances of this type are just
like the rules that we present in Section 3.1, when we look for
keywords for classification without concerning order and relative
importance of the keywords.

The instance generation step need not create weights for the terms
in our current implementation. We apply these machine-generated
instances with the typical instance-based learning methods [2] that
we explain in the next subsection.

4.2 Instance Applications

Given a set of instances generated by methods discussed in Sec-
tion 4.1, we can apply the k-Nearest-Neighbor principle for classi-
fication. To this end, we must define a measure for “similarity” so
that we can establish the notion of nearest neighbors of the current
lawsuit. We define different similarity measures for the three
types of machine-generated instances.

Instances of the first type are simply concatenated character
strings. When we apply these instances for classification, we ex-
tract the SACA from the indictment document, and convert it into
a long concatenated string using exactly the same method for gen-
erating instances of the first type. This long string, X, is compared
with each stored instance, Y, by the LCS algorithm to obtain the
length of their longest common sequence. The similarity between
the current lawsuit and the prior case being compared is defined
by s1, where Length is a function that returns the number of char-
acters in its input string.

s (X Y)—l LCS(X,Y)+LCS(X,Y)
e Length(X)  Length(Y)

2

LCS(X,Y)/Length(X) represents the proportion of the longest
common sequence in X. LCS(X,Y)/Length(Y) carries an analogous
interpretation based on the length of Y. Since the lengths of X and
Y may be different, it would be arbitrary if we choose only one of
these two ratios as the similarity measure. Hence, we take their
average as the similarity measure. Using averages in the following
similarity measures, s, and s3, is based on the same reason.

Instances of the second type are lists of ordered keywords. Hence,
we convert the SACA of the current lawsuit into an ordered list

using the same method for generating instances of the second type.

This ordered list, X, is then compared with each prior case, Y.
Taking the order of keywords into consideration, the comparison
will find the number of common keywords that appear in the same
order in both X and Y. Let OCW be a function that will return the
number of ordered, common words in its input word lists, and
Counts be a function that will return the number of words in its
input word list. The similarity between the current lawsuit and a
prior case of the second type is defined as follows.

1 ( OCW(X.Y)  OCW (X, y)]

s, X, Y)=—
2( ) 2| Counts(X)  Counts(Y)

Because instances of the third type are similar to those of the sec-
ond type, similarity measures for them are also very similar. Let
UCW be a function that will return the number of unordered
common words in its input word lists. When the SACA of the
current lawsuit, X, contains repeated words that also appear in the

prior case, Y, the repeated words will be counted as many times as
they appear in the SACA. In contrast, repeated words in Y are
counted only once. The similarity measure for the third type of
instances follows.

s, (X,Y)=—
3( ) 2\ Counts(X)  Counts(Y)

1 [ UCW(X,Y) UCW(X, y)] ,
+ (M
4.3 Instance Clustering
One problem of our approach to generating a case for each prior
case is the monotonically growing size of the case database. If we
keep adding new cases into the case database, we have to wait a
long time for classifying a new case by spending time on case
comparison. One way to alleviate this problem is to index the
cases with smarter ways for efficient case retrieval. For instance,
Moens et al. index legal cases with the help of text processing
techniques [30].

An alternative is to identify similar case instances, and somehow
merge them into one case. Clearly not all our machine-generated
cases are required, and, if we can identify and keep those that are
more representative than others, we may achieve the same accu-
racy of classification at reduced computational costs. The idea is
similar to data clustering [22], where we cluster raw data into
meaningful patterns of reduced space complexity to gain insight
into the application of interests, and the patterns remain as effec-
tive as the original raw data for the target applications.

To this end, we must define a measure for “similarity” for merging
instances. Since our original instances are already tagged with the
classes, i.¢., the prosecution reasons and offended articles, we can
just merge instances with the same tagged classes. Let X and Y be
two such machine-generated instances of the first or the second
type. We define the size, Size(X), of an instance X as follows.

Length( XY if X is of the first type

Size(X) =
ze(X) {Coum‘s(/\’ ) if X isof the second type

Similarly, depending on the types of X and ¥, we define the over-
lapping portion, Com(XY), of X and Y. If they belong to the first
type, Com(X,Y) is set to the longest common substring of X and 7V,
and, if they belong to the second type, Com(X,Y) is set to the or-
dered common keywords in X and Y. As a result, depending on the
types of X and ¥, Size(Com(X,Y)) must be equal to either LCS(X}Y)
or OCW(X Y).

Procedure MergelZlInstances(X,Y)

if ((Size(Com(X,Y)) =2 p*Size(X)) and
(Size(Com(X,Y)) =2 p*Size(Y))) {
Remove X and Y from the instance database;
Add Com(X,Y) into the instance database; }
else 1f ((Size(Com(X,Y)) < p*Size (X)) and
(Size(Com(X,Y)) 2 p*Size(Y)))
Remove Y from the instance database;
else if ((Size(Com(X,Y)) 2 p*Size (X)) and
(Size(Com(X,Y)) < p*Size(Y)))
Remove X from the instance database;
Using these definitions, we merge two instances using the follow-

ing MergeZInstances procedure, where p is a percentage
threshold selected by the instance database manager. When X and



Y are really similar to each other, their common part will consti-
tute a significant portion of both. In this case, we replace both
cases with their common portion. If the common portion exceeds
a significant portion of just one of original cases, say ¥, we can
remove Y and keep X that still carries the common information.

To merge all instances in the same class, we temporarily assign an
identification number to each case. Let IDB be the instance data-
base that contains the instances being considered to merge, T[]
be the jth instance in the IDB, and S be current number of in-
stance in the TDB. We use the following simple procedure to
merge all instances in the IDB. Notice that S may decrease as we
remove instances from the TIDB when we call
MergeZ2Instances.

Procedure MergeAllInstances (IDB)

S = current size of the IDB
do {
for 3 = 1 to S-1
for k = j+1 to 8
MergeZInstances(I1[3], I[k]);

} while (new cases were added to the IDB);

There are two alternatives for merging instances of the third type.
We can collect statistics about the keyword frequencies in the
learned instances, and keep those keywords that are neither too
frequent nor too infrequent. Let » be number of instances being
considered to merge. As we just discussed, we assume that these »
instances must have been tagged with the same class value. Also
assume that each distinct keyword contained in these » instances
is assigned an ID number, and that A[m] be the total number of
times the m™ distinct keyword appears in these # instances. We
merge these » instances into just one instance that contains such
keywords that meet the following criterion.

0.5<k[m]/n<1.5

For crime type classification, since our current study covers only
those 12 crime types listed in Table 1, we will have one standard
instance for each of the crime type. Notice that this is almost like
that, for each crime type, we mechanically generate one rule using
the syntax and semantics defined in Section 3.1, except that we do
not generate the rule threshold and the term weights.

The preceding strategy may seem to be very extreme. The other
alternative is to take back some of the removed instances with the
help of the 12 typical instances. We recover the instances whose
keyword list cover 50% or less of the keyword list of the typical
instance of the same categorization. Notice that, in this case, du-
plicated words in the recovered instances will receive multiple
counts when we compute Counts(Y) in (1).

5. EMPIRICAL COMPARISONS

In the preceding sections, we discuss several possible decision
factors for constructing a CBR-like system for lawsuit classifica-
tion in a Chinese environment. We summarize these factors before
we present experimental results that reflect effects of these factors,
and show the structure of our experiments in Figure 2. The first
factor is whether we use rules or cases, and the second is whether

we build the rules and cases by human experts or algorithms.? Tf
we algorithmically generate cases, we must also choose a way to
deal with the word segmentation problems in Chinese, and we
have discussed three possible alternatives in Section 4.1. Two of
these alternatives lead to the generation of cases, and the last to
the generation of keyword-based rules. After we choose the form
of Chinese information in the cases, we have to consider how to
merge the cases. Specifically we must determine the percentage
threshold, p, in MergeZ2Instances for merging cases. On the
other hand, we have picked two particular ways to merge the key-
word-based rules in Section 4.3. Once we have a case database or
a rule base, we may apply the k-Nearest-Neighbor (ANN) or sim-
ply the Nearest-Neighbor (NN) principle for classification, but we
do not explicitly show this factor in Figure 2.
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Figure 2. Structure of our experiments

In Figure 2, the rectangles show the distinguishing features of the
experiments. The ovals show the identification codes of the ex-
periments when we discuss the experimental results. In experi-
ments E4, E5, E6, E7, E8, and E9, we set p to 0.7, 0.6, 0.5, 0.4,
0.3, and 0.2, respectively. Similarly, we set p to 0.7, 0.6, 0.5, 0.4,
0.3, and 0.2 in experiments E11, E12, E13, E14, E15, and E16,
respectively.

We evaluated effects of these decision factors by testing different
system designs by the same set of test documents that we gathered
in the second season, while we used data gathered in the first sea-
son to create the case database. In the experiments, we let the
classifiers choose to put the test lawsuit into the “unknown” class,
which represented the fact that the classifiers knew that the test
lawsuit did not belong to any offenses listed in Table 1.

5.1 Performance Measures

The evaluation was based on the standard definitions for precision,
P, and recall, R. However, for our classification problems, preci-
sions were considered to be more important than recalls. If the
classifiers put a lawsuit in the “unknown™ class, human experts
could classify these unclassified cases. Should the classifiers mis-
classify a lawsuit, more human labor would be required to detect

* From now on, we refer to the machine-generated rule and case
instances as rules and cases for simplicity of writing.



and correct the errors. Therefore, we also measured systems’ per-
formances with the /" measure. The F measure, shown below [28],
is a nonlinear combination of precision and recall, and weights
them differently by manipulating the parameter B. When Bis 1, P
and R are weighted equally; when f approaches infinity and zero,
F approaches R and P, respectively. In the following reports, we
set 10 0.5.

(B > +1)PR

2

B*P+R ?)
The following table shows the precisions and recalls of our system
when we used cases and rules that were provided by human. The
left portion of the EXPID column indicates whether the statistics
are for cases or rules by the codes used in Figure 2. and the right
portion indicates whether the statistics are precisions (P), recalls
(R). or F measures (F). We do not show the percentage signs for
the data in Table 3 because of the limited table width.

EXPID C1 Cz C3 C4 Cj C6 C7 Cg CQ Clo Cll C12 C13
E1-P |100|100| 95|57 | 99 | 82 |100|100|100|100|100]100 |41
E2-P 198 |82 |96 |62 |90 |63 [100|95]100| 35 |100]100]|28
E1-R |93 (89]97|80|99 7536|8696 |71 100[100|70
E2-R [ 95 |95(59|53|100f{21 |27 |90 |87 ]100| 80 [100]52
E1-F |99 |98 ]95|61 9980 |74]97 (99|93 ]100{100 |45
E2-F |97 | 84 85|60 )92 [45|65]194]97|40]95]100]31

Table 3. Detailed performance statistics for rules and cases

When comparing two approaches for constructing classifiers, we
found that a classifier seldom performed better than the other for
all crime types, although one may outperform the other most of
the time. Data in Table 3 support this observation. Comparisons
between E1-P and E2-P, E1-R and E2-R, and E1-F and E2-F
suggest that cases are better than rules for classifying most, but
not all, crime types. In addition, some crime types are intrinsically
easier than others to be classified correctly, while others are rela-
tively harder. Using human-provided cases, we could hardly sur-
pass 80% in all measures for C4. Due to this reason and the page
limitation for this paper, we will not examine the precision, recall,
and F measures for individual crime types henceforth. Instead, we

analyze their averages. Let p; be the precision for the i crime type.

We report the direct average precision 4P and the weighted aver-
age precision WP. When computing WP, we weight individual
precision p; by the number of cases, ¢;, that belong to the i crime
type in the test data.

AP = Pi 3)

szzcipi/_kci 4)

The averages, AR and WR, for recalls are defined analogously. To
compute the AF and WF, we first compute the " measures of all
crime types by (2), and apply formula analogous to (3) and (4) in
the calculations. Consequently, although individual f; falls be-
tween corresponding p; and r;, AF does not have to fall between
AP and AR, neither does WF have to fall between WP and WR.

Using the direct averages is tentative to say that all crime types are
equally important. The relative frequencies of occurrences of each
crime type do not matter. In contrast, using the weighted averages
presumes that all individual lawsuits are equally important.

5.2 NN vs. kNN

Our ANN method was a variant of the weighted nearest neighbor
methods [15], and Thompson applied another variant of ANN for
categorization of Case law [34]. We did not set a static £ when we
used ANN for classification. Instead, we set a static threshold for
dynamically determining this £. Only prior cases whose similarity
measures were 0.3 or larger could cast votes on the class of the
current lawsuit. The current lawsuit was assigned to the class that
received the most votes. If there were more than two classes that
received the same number of votes, we computed the total of the
similarity scores of all voting cases in the competing classes. The
class that had the largest total score was assigned to the current
lawsuit.

Classifiers that used our ANN principle dominantly performed
better than their counterparts that used the NN principle, exclud-
ing very rare exceptions. Hence, we report performance statistics
of our classifiers that used our ANN principle in the remainder of
this section.

5.3 Classifying Prosecution Reasons

The following table shows the statistics for the experiments that
are shown in Figure 2. The SIZE column shows the number of
cases or rules used in the corresponding classifiers. The parenthe-
sized numbers in the EXPID column show the values of the pa-
rameter p used in Merge2Instances in the experiments.

We computed the weighted average precision, recall, and F meas-
ures with the case amounts shown in Table 2, and these weighted
measures make the performance of all classifiers look better than
the direct average ones would. This is because, most of the time,
the classifiers achieved higher performance in crime types that
include relatively more lawsuits for instance learning and testing,

EXPID |SIZE| AP : AR i AF | WP | WR | WF

Table 4. Experimental results for lawsuit classification

Overall, classifiers that used cases performed better than classifi-
ers that used keyword-based rules. This is supported by the statis-
tics of E1 and E2, where human experts provided the cases and



rules. Also, despite the detailed differences between experiments
from E3 through E16 and experiments from E17 through E19, the
former group that used machine-generated cases achieved better
performance than the latter group that used machine-generate
rules. The statistics for E9, E16, and E19 suggest that only when
we aggressively merged machine-generated cases might the ma-
chine-generated keyword-based rules offered better performances.

Classifiers that used human-provided information outperformed
classifiers that used machine-generated instances. Statistics for E1
are better than those for E3 through E16, and statistics for E2 are
better than those for E17 through E19. As we noted previously
that statistics in Table 4 are for ANN versions of the classifiers.
Had we shown the statistics for the NN versions, the performance
differences between the classifiers that used human-provided and
machine-generated instances will widen by more than 5%.

Next, we look into the effects of conducting word segmentation in
the Chinese documents by comparing the data for the pairs, E3
and E10, E4 and E11, E5 and E12, E6 and E13, E7 and E14, E8
and E15, and E9 and E16. Segmenting Chinese characters into
words led to more compact case databases after we merged cases.
When we merged the cases relatively conservatively (p=0.6).
cases that used segmented words offer slightly inferior perform-
ance. In contrast, when we merged cases more aggressively
(p=0.5), cases that used segmented words offered more robust
performances.

Merging the cases does not always reduce the classification accu-
racy, due to similar prior cases in our training data. The perform-
ances of E3, E10, and E17 were similar to those of E4, E11, and
E18, respectively, although we cut the sizes of the databases by
about a quarter. As we merged cases more and more aggressively,
the performance declined almost monotonically from E3 through
E9 (and from E10 through E16). Performances of the classifiers
that used non-segmented Chinese characters deteriorated faster
than those classifiers that used segmented Chinese words.

Finally, it is interesting to examine the performances of our classi-
fiers when we merged the case database such that the database
contained approximately the same number of cases as human-
provided case database did. This difference sheds light on the
range of difference between human experts and a fully automated
case generation mechanism. The statistics show that the average
differences are 34% (E1-E16) and 42% (E1-E9) for case genera-
tion and only 13% for rule generation (E2-E19).

5.4 Assigning Offended Articles

We applied similar methods and conducted similar experiments
for assigning offended articles to lawsuits. We reused the data that
we collected for lawsuit classification, but focused on their cited
articles. Most of our training and test data used one of the four-
teen articles. These fourteen articles are related to the twelve
prosecution reasons that we used in the previous subsection. The
number of applicable articles is larger than the number of prosecu-
tion reasons because different articles may be applied to different
criminal activities even when they are accused under the same
prosecution reason.

Assigning articles relies on more detailed knowledge of criminal
activities, and therefore demands more thorough analysis of the
indictment documents. For instance, the Chinese excerpt shown in
Section 2.1 describes the blood alcohol level of the drunk driver,
and this information is very important in selecting the offended

law articles because, in Taiwan, the penalty against drunk driving
depends on the blood alcohol levels of the offenders. At this stage
of our work, we have not applied text analysis techniques to ex-
tract this particular information yet. Problems of this kind con-
tribute a lot to the inferiority in performance of our article assign-
ment subsystem.

We encode these 14 groups of articles with Ay, A, ..., and Ay,
and all other articles with A;s. Table 5 shows the amount of law-
suits that we collected from the first (S1) and the second (S2)
season.

A1 |A2|As| A4 |As| As |A7|As|Ag| Ao | Al A Az | Al [Ass

S1 15817120 7 |9 (91 [8[12]{9 | 15[ 19 ]16[19] 9 |94

S21136[19(29]| 6 [10]127[12{20]11]21 [ 23 | 7 |25 11 |46

Table 5. Number of lawsuits that use the designated articles

We used the data collected from the first and the second season as
the training and test data, respectively. Table 6 shows the experi-
mental results, where E20, E21, ..., and E38 respectively take the
positions of El, E2, ..., and E19 in Figure 2.

EXPID |SIZE| AP @ AR = AF | WP | WR @ WF

Table 6. Experimental results for article assignment

The experimental results reflect the fact that assigning articles is
more difficult than classifying lawsuits from two aspects. We can
verify that the average quality of lawsuit classification is better
than that of article assignment. We can also see that the differ-
ences between the classification quality of the machine-generated
(p=0.6) and human-provided cases have widened.

Statistics in Table 6 support most of the observations that we
found from statistics in Table 4. Cases offered better performance
than keyword-based rules. Segmenting Chinese characters led to
more compact case databases that offered comparable classifica-
tion quality. We could merge cases modestly (p>0.6), and main-
tained assignment quality at the same time.

6. DISCUSSIONS

We report experimental results and analyses for applying machine
learning techniques to create a CBR-like system for lawsuit classi-



fication problems. Unlike GANIC [31] that attempts to find the
best combination of factors from a bag of candidates by genetic
algorithms, our work attempts to identify distinguishing words
directly from the raw documents before merging the learned rules
and cases. The sizes of the training and test data and the coverage
of prosecution reasons and applicable articles in the current ex-
periments are quite limited and can be expanded in the future.

The precision and recall measures achieved by the current system
are relatively better than those achieved by Thompson’s [34]. We
believe that this is partially due to that test lawsuits in our experi-
ments are relatively simple. At this moment, we consider lawsuits
that have only one defendant who committed only one crime. Due
to this constraint, we allow ourselves to choose only one prosecu-
tion reason and one applicable article in the experiments. In real-
ity, the prosecution reasons are not perfectly mutually exclusively
applicable to a criminal activity. There is not always a clean cut
between the applicability of C; and Cy, in Table 1, for instance.
When ambiguities do occur, our classifiers may classify the law-
suits into a category that does not agree with the judge’s decision.
Expanding the current system to process cases that involve multi-
ple defendants who cooperatively committed one or more crimes
in some manners is under way.

Our counting duplicated words only once in Counts(Y) in (1) in
E19 was an arbitrary design decision. Multiple occurrences of a
keyword signal a very important clue to the judgment of the cur-
rent lawsuit, so assigning higher weights to such keywords is
clearly in demand. The problem is how much weight should be
granted to these keywords so that their occurrences receive appro-
priate recognition while we do not let these keywords dominate
the final judgment. This selection of weights is entangled with the
consideration of the length of the CASA, and is a topic in our
current study.

Researchers have noticed that computers are potentially helpful
for drafting legislative, e.g., [37. 40], and judicial, e.g., [7], docu-
ments. We may apply our classifiers as a key component in a
computer-assisted system for drafting or proofreading judgment
documents. Experiences show that, in Taiwan, about 2% of judg-
ment documents are not well written in that the cited criminal
activities do not perfectly support the criminal law articles that are
applied to the defendants. This problem can be alleviated if we
draft or proofread the judgment documents by computers.

Researchers have also notice that a good drafting system requires
much more than the capability of classifying the lawsuits. Utiliz-
ing structural knowledge about canonical legal documents may
improve the quality of the drafts and facilitate automatic indexing
of cases. Branting et al. show that ontology and discourse infor-
mation make the drafting system more useful [7]. Bench-Capon
and colleague have proposed that ontology and related techniques
are useful for legal information systems in general [3, 6].

For Chinese legal document processing, we agree with these in-
sightful findings. Instead of directly analyzing the original legal
documents, one may attempt to annotate the documents with se-
mantic information so that we can extract relevant information
more precisely. Indeed, there are already some efforts toward this
direction. For examples, Ebenhoch [16] employs the resource
description framework, and Zarri [44] the semantic web for
knowledge representation. Development in these directions can be
very helpful for Chinese legal document processing.

Our generation and clustering of the cases depends just on the
lexical information, and leaves much room for improvements. One
possibility is to index cases with the help of summarization tech-
niques like those used in SALOMON [30], and we are ready to
apply our experience to this field [42]. Adding more reasoning
capability for inferring the contextual information in the lawsuits
will also help [17]. In addition, we believe that lexical information
contained in thesauri can be helpful for processing Chinese legal
documents [11, 38], although Briininghaus and Ashley find tech-
niques from information extraction more helpful [9, 10].

In addition to enhancing management of our case database, we
would also like to apply Bayesian networks [23] to legal reason-
ing. Statistical and probabilistic inference techniques should help
us for extending our current system to include computer-assisted
sentencing [21, 32] in the drafting task.
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