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Abstract

Bounds of probability distributions are useful for many
reasoning tasks, including resolving the qualitative ambi-
guities in qualitative probabilistic networks and search-
ing the best path in stochastic transportation networks.
This paper investigates a subclass of the state-space ab-
straction methods that are designed to approximately
evaluate Bayesian networks. Taking advantage of par-
ticular stochastic-dominance relationships among ran-
dom variables, these special methods aggregate states
of random variables to obtain bounds of probability dis-
tributions at much reduced computational costs, thereby
achieving high responsiveness of the overall system.

The existing methods demonstrate two drawbacks,
however. The strict reliance on the particular stochastic-
dominance relationships confines their applicability.
Also, designed for general Bayesian networks, these
methods might not achieve their best performance in spe-
cial domains, such as fastest-path planning problems.
The author elaborates on these problems, and offers ex-
tensions to improve the existing approximation tech-
niques.

Keywords: Bayesian Networks, Stochastic Domi-
nance, Approximate Reasoning

1. Introduction

In the past decade, Bayesian networks have become a
major formalism for capturing and reasoning about un-
certainty in complex applications [6]. A Bayesian net-
work encodes, respectively, qualitative and quantitative
probabilistic relationships among random variables in
terms of a directed acyclic graph and conditional prob-
ability tables [8, 17]. Given observations about some
random variables, we evaluate the Bayesian network to
obtain the conditional probability distributions of ran-
dom variables of interest. The evaluation process is also
known as inference in Bayesian networks, and this ac-
tive research field has seen a wide variety of approaches
for computing exact and approximate probability distri-
butions. Approximation algorithms allow us to obtain
useful information about the desired probability distri-
butions at reduced computational costs when specific
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application-dependent constraints do not permit exact in-
ference. D’Ambrosio offers a very informative survey in
[3], and some recent developments include [10, 15, 16].

We can classify approximate inference procedures
from different perspectives. In terms of how we carry
out the approximations, D’Ambrosio comes up with two
schools of algorithms: approximate inference methods
compute distributions with special algorithms using the
original network, e.g., [2, 18], and model reduction meth-
ods employ exact algorithms after simplifying the origi-
nal network, e.g., [14, 20]. Classifying in terms of types
of the outcomes of approximation procedures, we see
that some algorithms compute the upper and/or lower
bounds, e.g., [4, 7], while others compute point-valued
approximations of the desired probability distributions
[2, 20].

In the following figure, let E be the curve of the ex-
act cumulative distribution function of a random variable
X . Approximate algorithms may compute the upper and
lower bounds, U and L, respectively, or the point-valued
approximation, A, of E. The curve L is called a lower
bound because it suggests the distribution of the random
variableX tilts to its lower range, although geometrically
L locates on the upside of the curve E.
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Figure 1. Approximations of the exact distribu-
tion E

The state-space abstraction (SSA) methods com-
pute approximate probability distributions by first sim-
plifying the given Bayesian network. Depending on how
we simplify the networks, we can compute either the
point-value approximations[14] or bounds of the desired
probability distributions [12]. For computing the bounds,
the SSA methods require that the underlying conditional
distributions encoded in the Bayesian networks exhibit
the stochastic dominance property [23]. Although this
property may hold for some applications, there are appli-
cations in which this assumption is slightly violated. In
this paper, I discuss how we can revise the original SSA
methods and expand their applicability into this arena.
Also, hoping to find tighter bounds, the SSA methods
employ heuristics for selecting the abstract model of the



original network such that we obtain the best approxi-
mations possible. It is, however, very difficult to design
heuristics good for all possible probability distributions.
This paper reports a new heuristic tailored for fastest path
planning problems [13].

The following section presents details of stochastic
dominance and its applications with the state-space ab-
straction methods. Section 3. investigates the situations
in which the requirement for stochastic dominance can
be relaxed, and provides the revised SSA methods. Sec-
tion 4. discusses and proposes a new strategy for obtain-
ing the best approximations for applying the SSA meth-
ods to fastest path planning problems. Section 5. pro-
vides an outline of applications of the new methods, and
Section 6. concludes this paper with a brief summary.

2. Background

In this paper, we use capital and small letters to denote
random variables and their values, respectively. The pos-
sible values of a random variable are also called states of
the random variable, and we use subscripts to them when
necessary. Also, we adopt the shorthand Pr(xjy; z) for
Pr(X = xjY = y; Z = z). Most of the time, we need to
refer to a set of random variables, and we use bold letters
for sets. We also follow the tradition by calling a node
parent when it has outgoing arc to another node. The
node with an incoming arc is called a child of its parent.

2.1 Stochastic dominance

Let F1(X) and F2(X) be two possible cumulative distri-
bution functions (CDFs) of the random variable X .

Definition 1 ([21]) We say that F1(X) first-order
stochastically dominates F2(X) if and only if
F1(x) � F2(x) holds for all x , and we denote
this relationship by F1(x) FSD F2(x).

Such a stochastic dominance relationship is used ex-
tensively in defining qualitative probabilistic networks
(QPNs) in [21]. In a sense, QPNs are special Bayesian
networks that take advantage of the dominance relation-
ships to design efficient inference procedures for qualita-
tive relationships. Wellman defines that a node X posi-
tively influences its child Y if and only if the following
inequality holds for all xi, xj , and values of the rest of
Y ’s parents px(Y ).

xi � xj ) F (yjxj ;px(Y )) FSD F (yjxi;px(Y )) (1)

An interpretation of this inequality is that, all else being
equal, increasing the value of X increases the probabil-
ity of Y being a larger value as is shown in the following
figure. In transportation problems, this is tentative to say
that leaving the origin at a later time increases the prob-
ability of arriving at the destination later. Analogously,
we say that X negatively influences Y if the dominance
relationship reverses in (1).

Another implication of the dominance relationship
F1(x) FSD F2(x) is that the following relationship holds
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Figure 2. X positively influences Y .

for all monotonically increasing function g(X) [23].

Z
g(x)dF1(x) �

Z
g(x)dF2(x) (2)

This inequality has been applied to fastest-path planning
algorithms [22], resolution of ambiguous qualitative re-
lationships in QPNs [11], and computing bounds of prob-
ability distributions [12, 13].

2.2 State-space abstraction methods

A Bayesian network encodes the joint probability distri-
bution of a set of nodes.� Each random variable can take
on a set of possible values, and each of which is called
a state of the random variable. It is well known that
the computational costs for the evaluation of Bayesian
networks increase exponentially with the cardinality of
states of the random variables [1]. Hence, reduction
of the cardinality emerges as an intuitive approach for
computing the desired probability distributions at lower
costs. The skeleton of the iterative state-space abstrac-
tion (ISSA) algorithm follows.

Algorithm 1 (ISSA [14]) Iterative State-Space Ab-
straction

1. Abstraction: Construct an approximated network of
the original network by aggregating states and re-
constructing CPTs.

2. Inference: Evaluate the approximated network to
obtain approximations of interest.

3. Termination?: Check whether the algorithm should
stop, using application-dependent criteria. If yes,
return the current solution. Otherwise, go to the
next step. The algorithm will stop when there is no
superstate in the current network.

4. Refinement: Select which superstate should be split,
return to step 1.

To evaluate a given Bayesian network approxi-
mately, the state-space abstraction methods construct
a very coarse version of the original network by ag-
gregating consecutive states of some random variables
[14]. Let us call these aggregated states superstates
henceforth. Since every random variable in a Bayesian
network has an associated conditional probability table
(CPT) that contains its probability distributions given
its parents’ states, the state-space abstraction procedure

�Since we represent a random variable with a oval node in Bayesian
networks, we will use nodes and random variables exchangeably hence-
forth.



must also construct CPTs for all affected random vari-
ables. Specifically, if a superstate is introduced into ei-
ther the state space of a random variable or the state
spaces of the parents of a random variable, then we need
to reconstruct the CPT of this affected random variable.

As a result, we need to compute the probability val-
ues for the new CPTs from the probability values con-
tained in the original CPTs. Let P (A) andC(A) respec-
tively denote the parents and children of a node A, a i

the ith possible state of A, and [ai;j ] the superstate that
is the aggregation of states ai through aj inclusively. If
we replace ai through aj by [ai;j ], then we need to de-
termine the values in the reconstructed CPTs of A and
C(A). Namely, we need to determine P̂r([ai;j ]jp(A))
for every possible value p(A) of P (A), where P̂ r(�)
represents an approximated probability. The CPT of ev-
ery child T of A must be reconstructed as well. Let
PX(T ) = P (T ) n fAg denote the parents of T exclud-
ingA. We need to determine the conditional probabilities
P̂r(tkjpx(T ); [ai;j ]) for all k and px(T ). By appropri-
ately choosing formula for this probability reassignment
task, we control whether we compute the point-value ap-
proximations [14] or bounds of the desired probability
distributions [12].

Using the following formula in ISSA will give us
bounds of distributions of T when A positively influ-
ences T .

P̂r([ai;j ]jp(A)) =
jX
l=i

Pr(aljp(A)) (3)

F̂ (tkjpx(T ); [ai;j ]) = max
l2[i;j]

F (tkjpx(T ); al) (4)

(3) is an intuitive assignment, where the probability of a
superstate is the sum of the probability of its components.
The formula for P̂r(tkjpx(T ); [ai;j ]), for all k, is more
complex, and we assign them such that (4) holds, where
F (tkjpx(T ); al) � Pr(t � tkjpx(T ); al) represents the
conditional, cumulative distribution of T .

After constructing an approximated network, we
may employ any exact evaluation algorithm to compute
the probability distributions of interest. When random
variables positively or negatively influence one another,
we can prove that we will obtain bounds of probability
distributions if we apply (3) and (4) in the abstraction
step [12].

For some applications, we may want to refine the
approximated network for better solutions after obtaining
the current approximations. We may achieve this goal
by splitting superstates in the approximated network, and
construct another approximated network for evaluation.

Assume that the state space of an abstracted nodey

contains more than one superstate. We will need to
choose which superstate to split. An intuitive strategy
is to split the superstate that has the largest approximate,
marginal probability for every abstracted node. This so-
called most-probable-superstate (MPSS) heuristic led to
satisfactory results in some experiments [14]. However,
selecting the “best” superstate to split for the new ap-

yAny node whose states are aggregated is an abstracted node.

proximated network is not an easy problem, and inter-
ested readers are referred to [14] for further details.

3. Relaxing stochastic dominance

In previous work, Liu and Wellman report that we can
apply the ISSA algorithm to compute bounds of proba-
bility distributions when random variables positively or
negatively influence others [12]. Such an algorithm al-
lows us to explore complex networks that would render
exact computation of probability distributions impracti-
cal.

The main purpose of requiring the positive/negative
influence relationship between random variables is that
we can aggregate states freely and obtain bounds of the
exact distributions. The following derivation shows the
core basis for computing bounds of travel times via state-
space abstraction.

Let � = L1 ! L2 ! � � � ! Ln be a traveling
path, and Pr(ti) be the probability of arriving at location
Li at time Ti = ti. Thus, given a departure time from
L1, say �t1, we can infer the distribution of the arrival
time at L2 easily, and it is F (t2j�t1). As we expand the
partial path in a search algorithm, we compute the CDF
F (tj+1) of arrival time at Lj+1 based on the arrival time
at Lj :z

F (tj+1) =
X
tj

F (tj+1jtj) Pr(tj); (5)

where Pr(tj) is actually a shorthand for Pr(tj j�t1). The
conditioning on �t1 will not be shown explicitly for no-
tational simplicity henceforth. One way to control the
time for computing the distributions of arrival times is to
confine the growth of the number of states of L j [13].
We can achieve this by aggregating the state of Lj be-
fore we compute the distribution of Lj+1. Therefore, in
general, we would still like to abstract the state space of
Tj in computing the distribution of Tj+1 after obtaining
F̂ (tj). We apply (3) and (4) as follows.

^̂
Pr(t̂j) =

X
tj2t̂j

P̂r(tj) (6)

F̂ (tj+1jt̂j) = max
tj2t̂j

F (tj+1jtj) (7)

We can let P̂r(t2) � Pr(t2) without any loss, although
we have obtained the exact distribution for T2 already.
Hence we can apply (6) and (7) to Tj for all j � 2. In (6),
the double “hats” imply that the approximate probabili-
ties are determined based on other approximated proba-
bilities. For simplicity, single “hat” rather than double
“hats” will be used to denote any approximate probabili-
ties when there is no risk of confusion. Also we use the
“hat” symbol over tj to denote that the state space of Tj

is aggregated when we compute an approximate distribu-
tion of Tj+1.

zFor simplicity, we assume that one would not stop at intermediate
locations, so there is really no need to distinguish arrival and departure
time for intermediate locations. As a result, we will use arrival time for
both.



Using (6) and (7), we show F (tj+1) FSD F̂ (tj+1)
as follows.

F̂ (tj+1) (8)

=
X
t̂j

F̂ (tj+1jt̂j)
^̂
Pr(t̂j)

=
X
t̂j

[[max
tj2t̂j

F (tj+1jtj)]
X
tj2t̂j

P̂r(tj)]

�
X
tj

F (tj+1jtj)P̂r(tj) =
X
tj

F (tj+1jtj)dF̂ (tj)

�
X
tj

F (tj+1jtj)dF (tj) = F (tj+1)

Since every tj is covered by exactly one t̂j when
we aggregate states, P̂r(tj) will occur exactly once af-
ter we completely expand the summations in the second

equality. Also each component P̂r(tj) of ^̂
Pr(t̂j) is multi-

plied by maxtj2t̂j F (tj+1jtj) which must be larger than

F (tj+1jtj) for all tj covered by t̂j , so we obtain the first
inequality in (8) after recollecting all terms. Now, as we
have assumed that Tj positively influences Tj+1, we have
F (tj+1jtj) FSD F (tj+1jt

0
j) if tj � t0j . In other words,

F (tj+1jtj) is a non-increasing function of tj . Also recall
that at L2, F̂ (t2) is actually an exact distribution, so it
is trivially true that F (t2) FSD F̂ (t2). Using proof by
induction, we can assume that F (tj) FSD F̂ (tj), and go
on to show that F (tj+1) FSD F̂ (tj+1). Now given that
F (tj) FSD F̂ (tj) and that F (tj+1jtj) is a non-increasing
function of tj , we can apply (2) to obtain the second in-
equality after a simple algebraic manipulation, and estab-
lish F (tj+1) FSD F̂ (tj+1).

For networks that have more complex structure than
the linear �, the proof is similar but more involved. In
short, when a node in the Bayesian network positively
or negatively influences its child, we can apply the state-
space abstraction methods to compute bounds of proba-
bility distributions. Moreover, the SSA methods will give
us bounds as long as we aggregate consecutive states.

What do positive and negative influences really im-
ply in reality? Let X and Y in Figure 2 be the departure
time and arrival time of a trip, respectively. An inter-
pretation of positive influence in transportation networks
is that departing from the origin later will not increase
the probability of arriving at the destination at an earlier
time. This assumption seems reasonable, and arguably
holds in real world applications. Nevertheless, it is an
assumption at best.

When the relationships of positive or negative in-
fluence do not hold, the second inequality in (8) will not
hold because we lose the condition that F (tj+1jtj) is a
non-increasing function of tj . This, in turn, destroys the
applicability of SSA methods.

However, if the assumption of positive or nega-
tive influence is slightly violated, we can still apply the
SSA methods, with some modifications, to find bounds
of probability distributions. Consider the distributions
shown in Figure 3, where tjk represents the kth state of
Tj . The crossing curves show that Tj does not positively
influence Tj+1. However, the trend of the curves seems
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Figure 3. Tj weakly positively influences Tj+1.

to support that Tj weakly positively influences Tj+1. In
particular, both F (tj+1jtj3) and F (tj+1jtj4) first order
dominate F (tj+1jtj1) and F (tj+1jtj2). A formal defini-
tion follows.

Definition 2 Assume that a random variable X has m
states: x1; x2; � � � ; xm and that these states form n � 1
groups: G1 = fx1; � � � ; xb1g, G2 = fxb1+1; � � � ; xb2g,
� � � , and Gn = fxbn�1+1; � � � ; xmg. A node X

weakly positively influences its child Y if and only if,
F (yjxi;px(Y )) FSD F (yjxk;px(Y )), for all xi 2 Gj ,
xk 2 Gl, and px(Y ), where j > l and px(Y ) denotes
value of other parents PX(Y ) of Y .

When X weakly positively influences its child Y ,
we can apply the SSA methods to obtain bounds of
the distributions of Y . Let g(xi) be the state group
that contains xi. To compute the bounds, we approx-
imate the conditional cumulative distribution functions
F (yjxi;px(Y )) for all xi by the following formula be-
fore computing the approximations with Algorithm 1.

F̂ (yjxi;px(Y )) = max
xj2g(xi)

F (yjxj ;px(Y )) (9)

Consider the example shown in Figure 3. After
we apply (9) to the distributions of F (tj+1jtj), both
F (tj+1jtj1) and F (tj+1jtj2) are set to the values of the
upper, thick curve, while F (tj+1jtj3) and F (tj+1jtj4) to
the lower, thick curve in Figure 4.
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Figure 4. Using weakly positive influence for
bounding distributions

We can prove that the approximate CDF computed
with these approximations first order dominates the exact
CDF.

F̂ (tj+1) =
X
tj

( max
tj2g(tj)

F (tj+1jtj)) Pr(tj)

�
X
tj

F (tj+1jtj) Pr(tj) = F (tj+1)

After we apply (9) to the conditional CDFs, the resulting
approximate CDFs make the involved random variables
assume the positive influence relationship. As a result,
we can apply the SSA methods to compute bounds of the
already approximated distributions using even less num-
ber of states. Due to transitivity, the new bounds are also
bounds of the exact distributions.



When the FSD relationship in Definition 2 re-
verses, we say that X weakly negatively influences Y .
Under such circumstances, we replace the max operator
in (9) by the min operator to obtain bounds of probability
distributions analogously.

4. Superstate selection strategies

At step 4 of Algorithm 1, we have to split selected su-
perstates for improving the quality of approximations.
As we split the superstates, we recover some distinction
among the original states, and expect the results of eval-
uating Bayesian networks to improve. Liu and Wellman
report theoretic and experimental analysis for this super-
state selection problem for Bayesian networks [14].

As we discuss in the previous section, the superstate
selection problem for computing the fastest path is not
the same as that for evaluating Bayesian networks. As we
gradually expand partial paths � = L1 ! L2 ! � � � !
Ln to the next intermediate location Ln+1, we have an
approximate probability distribution for Tn already. In
order to confine the growth of the state spaces of arrival
times for intermediate locations, we aggregate the states
of Tn before computing the CDF of Tn+1. The problem
is how we group states into a set of superstates, not se-
lecting superstates for splitting. In the previous work on
fastest path planning problems, this superstate selection
problem was unaddressed [13].

Liu and Wellman assume that the departure time
positively influences the arrival time for any trip in ap-
plying the SSA methods for computing bounds of travel
times. Figure 2 shows such an example, letting X and Y
be the departure and arrival times, respectively. For com-
puting the travel times of a path �, they assume that the
departure time from Lj positively influences the arrival
time at Lj+1. Namely, F (tj+1jt

0
j) � F (tj+1jtj) for all

tj+1 and tj > t0j .

Let tjk be the kth state of Tj . We make the
assumption more specific by assuming that the val-
ues of F (tj+1jtjk) will not deviate from those of
F (tj+1jtj(k+1)) significantly. Namely, for a small " and
for all k and tj+1; we assume

F (tj+1jtjk)� F (tj+1jtj(k+1)) � ": (10)

This assumption should hold for transportation networks,
as we typically do not expect normal traffic conditions to
change drastically within a short time period. The as-
sumed inequality deviates from reality when tj+1 is ex-
tremely small or large. F (tj+1jtjk) will be 0 and 1, re-
spectively, for all tjk, and the differences should be 0.
Nevertheless, the inequality still holds.

Now, although we are computing bounds for the de-
sired distributions, we would like to make the bounds
as close to the actual distributions as possible. As-
sume that Tj has m states: tj1; tj2; � � � ; tjm and
that we aggregate these states into n groups: S1 =
ftj1; � � � ; tjb1g, S2 = ftj(b1+1); � � � ; tjb2g, � � � , and
Sn = ftj(bn�1+1); � � � ; tjmg. Let g0(tjk) denote the
group that contains tjk . To minimize the errors, refer-
ring to (8) and its derivation, we would like to minimize

the following difference.

Æ =
X
t̂j

F̂ (tj+1jt̂j)
^̂
Pr(t̂j)�

X
tj

F (tj+1jtj)P̂r(tj)

=
X
t̂j

[[max
tj2t̂j

F (tj+1jtj)]
X
tj2t̂j

P̂r(tj)]� (11)

X
tj

F (tj+1jtj)P̂r(tj)

=
X
tj

[[F (tj+1j min
tk2g0(tj)

tk)� F (tj+1jtj)]P̂r(tj)]

� [(0 + "P̂r(tj2) + � � �+ (b1 � 1)"P̂r(tjb1 ))] +

[(0 + "P̂r(tj(b1+2)) + � � �

+(b2 � b1 � 1)"P̂r(tjb2 ))] + � � �

+[(0 + "P̂r(tj(bn�1+2)) + � � �

+(bn � bn�1 � 1)"P̂r(tjm))]

The first two equalities follow directly from (8).
The third equality also follows from (8), adding that
maxtj2t0j F (tj+1jtj) is equal to the CDF of Tj+1 given
the smallest tk in g0(tj) because Tj positively influences
Tj+1. Applying (10) will give us the inequality in (11),
where the zeros result from the fact that in each S i, one
and only one CDF will subtract itself.

The right hand side of the inequality in (11) gives
us an upper bound of the difference Æ. Therefore, one
way to minimize Æ is to minimize the upper bound. Let
b0 = 0 and bn = m. When (10) holds, a heuristic for de-
termining how we aggregate the states of Tj into n group
is to minimize the following quantity.

n�1X
k=0

bk+1X
i=bk+1

(i� bk � 1)P̂r(tji)

Notice that the contribution of each tjk is P̂r(tjk)
multiplied by a weighting factor that is determined by
the location of tjk in its group g0(tjk). In contrast, the
MPSS heuristic, that was proposed for general Bayesian
networks and discussed in Section 2.2, leads us to useP

tj2t
0

j
P̂r(tj) as the guidance for superstate selection.

5. Applications

The techniques presented in this paper should be help-
ful for any applications that need to compute probability
distributions of random variables. Random variables can
represent travel times in path planning problems, job pro-
cessing times in task planning problems, etc. One may
also apply the methods to resolving tradeoffs in QPNs
[11, 19]. Due to space limitation, we provide only the
outline of an application to path planning problems be-
low.

Hall shows that we cannot directly apply the prin-
ciple of dynamic programming to path planning in net-
works with time-dependent arc weights [5]. Kaufman
and Smith extend the applicability of the Dijkstra’s al-
gorithm to transportation networks with time-dependent
travel costs by introducing the concept of consistent link
travel times [9]. Wellman et al. generalize the concept to



stochastic consistency in stochastic networks [22]. Liu
and Wellman apply the SSA methods to tackle path plan-
ning problems when we have large stochastic networks
[13]. In both [22] and [13], strict stochastic dominance
relationships must hold among related distributions of
travel times, which, as discussed in [9], is a good approx-
imation to the reality at best. The concepts of weakly
positive/negative influences in Definition 2 extends the
applicability of algorithms proposed in the previous ex-
tensions.

Assume that we are given a transportation network
in which the departure times weakly positively influences
the arrival times as shown in Figure 3. As discussed in
Section 3., we can create an approximation of the trans-
portation network by formula (9) so that we can apply the
path planning algorithm proposed in [13]. Also, the tech-
nique discussed in Section 4. provides context-specific
guidelines for improving qualities of bounds for the path
planning problems, and we can implement the guidelines
in [13] as well.

6. Conclusions

Assuming the positive and negative influence relation-
ships among random variables, we can apply the state-
space abstraction methods to computing bounds of prob-
ability distributions [12, 14]. Applications of such
bounds include inferring qualitative relationships in qual-
itative probabilistic networks [11] and searching fastest
paths in stochastic transportation systems [13].

However, the assumption of positive and negative
influences limits the applicability of the existing meth-
ods. This paper defines the concepts of weakly positive
influence and weakly negative influence among random
variables. When random variables have such relation-
ships, the state-space abstraction methods remain appli-
cable after a few revisions. Also we show that the super-
state selection strategies proposed for general Bayesian
networks may not work well for special domains, and
find a better heuristic designed for the fastest path plan-
ning problems.
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