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7.1 Introduction

• Compression: the process of coding that will effectively

reduce the total number of bits needed to represent certain

information.

Encoder
(compression)

Decoder
(decompression)

Storage or
networks

Input Output

data data

Fig. 7.1: A General Data Compression Scheme.
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Introduction (cont’d)

• If the compression and decompression processes induce no

information loss, then the compression scheme is lossless;

otherwise, it is lossy.

• Compression ratio:

compression ratio =
B0

B1
(7.1)

B0 – number of bits before compression

B1 – number of bits after compression
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7.2 Basics of Information Theory

• The entropy η of an information source with alphabet S =

{s1, s2, . . . , sn} is:

η = H(S) =
n∑

i=1

pi log2
1

pi
(7.2)

= −
n∑

i=1

pi log2 pi (7.3)

pi – probability that symbol si will occur in S.

log2
1
pi

– indicates the amount of information ( self-information

as defined by Shannon) contained in si, which corresponds

to the number of bits needed to encode si.
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Distribution of Gray-Level Intensities
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Fig. 7.2 Histograms for Two Gray-level Images.

• Fig. 7.2(a) shows the histogram of an image with uni-

form distribution of gray-level intensities, i.e., ∀i pi = 1/256.

Hence, the entropy of this image is:

log2 256 = 8 (7.4)
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Entropy and Code Length

• As can be seen in Eq. (7.3): the entropy η is a weighted-sum

of terms log2
1
pi
; hence it represents the average amount of

information contained per symbol in the source S.

• The entropy η specifies the lower bound for the average num-

ber of bits to code each symbol in S, i.e.,

η ≤ l̄ (7.5)

l̄ - the average length (measured in bits) of the codewords

produced by the encoder.
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7.3 Run-Length Coding

• Memoryless Source: an information source that is indepen-

dently distributed. Namely, the value of the current symbol

does not depend on the values of the previously appeared

symbols.

• Instead of assuming memoryless source, Run-Length Coding

(RLC) exploits memory present in the information source.

• Rationale for RLC: if the information source has the prop-

erty that symbols tend to form continuous groups, then such

symbol and the length of the group can be coded.
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7.4 Variable-Length Coding (VLC)

Shannon-Fano Algorithm — a top-down approach

1. Sort the symbols according to the frequency count of their

occurrences.

2. Recursively divide the symbols into two parts, each with ap-

proximately the same number of counts, until all parts con-

tain only one symbol.

An Example: coding of “HELLO”

Symbol H E L O
Count 1 1 2 1

Frequency count of the symbols in ”HELLO”.
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L:(2)

(5)

H,E,O:(3)

(a)

0 1

(b)

L:(2)

(5)

H:(1) E,O:(2)

(3)
0 1

0 1

L:(2)

O:(1)

(5)

E:(1)

H:(1)

(c)

(2)

(3)
0 1

0 1

0 1

Fig. 7.3: Coding Tree for HELLO by Shannon-Fano.

9 Li & Drew c©Prentice Hall 2003



Fundamentals of Multimedia, Chapter 7

Table 7.1: Result of Performing Shannon-Fano on HELLO

Symbol Count log2
1
pi

Code # of bits used

L 2 1.32 0 2

H 1 2.32 10 2

E 1 2.32 110 3

O 1 2.32 111 3

TOTAL number of bits: 10
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(5)

(a)

L,H:(3) E,O:(2)

0 1

(5)

(3)

H:(1) E:(1) O:(1)

(2)

L:(2)

10

(b)

0 1

0 1

Fig. 7.4 Another coding tree for HELLO by Shannon-Fano.
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Table 7.2: Another Result of Performing Shannon-Fano

on HELLO (see Fig. 7.4)

Symbol Count log2
1
pi

Code # of bits used

L 2 1.32 00 4

H 1 2.32 01 2

E 1 2.32 10 2

O 1 2.32 11 2

TOTAL number of bits: 10
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Huffman Coding

ALGORITHM 7.1 Huffman Coding Algorithm — a bottom-

up approach

1. Initialization: Put all symbols on a list sorted according to

their frequency counts.

2. Repeat until the list has only one symbol left:

(1) From the list pick two symbols with the lowest frequency counts.
Form a Huffman subtree that has these two symbols as child nodes
and create a parent node.

(2) Assign the sum of the children’s frequency counts to the parent and
insert it into the list such that the order is maintained.

(3) Delete the children from the list.

3. Assign a codeword for each leaf based on the path from the

root.
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E:(1)

P1:(2)

O:(1)

(a)

0 1

(b)

H:(1)

P2:(3)

E:(1) O:(1)

P1:(2)
0 1

0 1

L:(2)

O:(1)

P3:(5)

E:(1)

H:(1)

(c)

P1:(2)

P2:(3)
0 1

0 1

0 1

Fig. 7.5: Coding Tree for “HELLO” using the Huffman Algorithm.
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Huffman Coding (cont’d)

In Fig. 7.5, new symbols P1, P2, P3 are created to refer to the

parent nodes in the Huffman coding tree. The contents in the

list are illustrated below:

After initialization: L H E O

After iteration (a): L P1 H

After iteration (b): L P2

After iteration (c): P3

15 Li & Drew c©Prentice Hall 2003



Fundamentals of Multimedia, Chapter 7

Properties of Huffman Coding

1. Unique Prefix Property: No Huffman code is a prefix of any
other Huffman code - precludes any ambiguity in decoding.

2. Optimality: minimum redundancy code - proved optimal
for a given data model (i.e., a given, accurate, probability
distribution):

• The two least frequent symbols will have the same length
for their Huffman codes, differing only at the last bit.

• Symbols that occur more frequently will have shorter Huff-
man codes than symbols that occur less frequently.

• The average code length for an information source S is
strictly less than η + 1. Combined with Eq. (7.5), we
have:

l̄ < η + 1 (7.6)
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Extended Huffman Coding

• Motivation: All codewords in Huffman coding have integer

bit lengths. It is wasteful when pi is very large and hence

log2
1
pi

is close to 0.

Why not group several symbols together and assign a single

codeword to the group as a whole?

• Extended Alphabet: For alphabet S = {s1, s2, . . . , sn}, if k

symbols are grouped together, then the extended alphabet

is:

S(k) = {
k symbols︷ ︸︸ ︷
s1s1 . . . s1, s1s1 . . . s2, . . . , s1s1 . . . sn,

s1s1 . . . s2s1, . . . , snsn . . . sn}.

— the size of the new alphabet S(k) is nk.
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Extended Huffman Coding (cont’d)

• It can be proven that the average # of bits for each symbol

is:

η ≤ l̄ < η +
1

k
(7.7)

An improvement over the original Huffman coding, but not

much.

• Problem: If k is relatively large (e.g., k ≥ 3), then for most

practical applications where n � 1, nk implies a huge symbol

table — impractical.
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Adaptive Huffman Coding

• Adaptive Huffman Coding: statistics are gathered and up-

dated dynamically as the data stream arrives.

ENCODER DECODER

------- -------

Initial_code(); Initial_code();

while not EOF while not EOF

{ {

get(c); decode(c);

encode(c); output(c);

update_tree(c); update_tree(c);

} }
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Adaptive Huffman Coding (Cont’d)

• Initial code assigns symbols with some initially agreed upon

codes, without any prior knowledge of the frequency counts.

• update tree constructs an Adaptive Huffman tree.

It basically does two things:

(a) increments the frequency counts for the symbols (includ-

ing any new ones).

(b) updates the configuration of the tree.

• The encoder and decoder must use exactly the same ini-

tial code and update tree routines.
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Notes on Adaptive Huffman Tree Updating

• Nodes are numbered in order from left to right, bottom to

top. The numbers in parentheses indicates the count.

• The tree must always maintain its sibling property, i.e., all

nodes (internal and leaf) are arranged in the order of increas-

ing counts.

If the sibling property is about to be violated, a swap proce-

dure is invoked to update the tree by rearranging the nodes.

• When a swap is necessary, the farthest node with count N is

swapped with the node whose count has just been increased

to N + 1.
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4. (2)

2. B:(1)1. D:(1)

3. C:(1)

6. (3)

8. (6)

(a) A Huffman tree

9. (9)

8. P:(5)

7. (4)

6. (2)
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9. (11)

(c−3) The Huffman tree after receiving 3rd ’A’(c−1) A swap is needed after receiving 3rd ’A’

4. A:(2+1)

9. (10)

2. B:(1) 3. C:(1)

8. P:(5)

7. (5)

5. (2) 6. (3)

1. D:(1)
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(c−2) Another swap is needed

7. (5+1)
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9. (10)

2. B:(1)

5. A:(3)

4. (2)

1. D:(1)

3. C:(1)
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(b) Receiving 2nd ’A’ triggered a swap

9. (10)

2. B:(1) 3. C:(1)

8. P:(5)

7. (5)

5. (2) 6. (3)

4. A:(2)1. D:(1)

Fig. 7.6: Node Swapping for Updating an Adaptive Huffman Tree
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Another Example: Adaptive Huffman Coding

• This is to clearly illustrate more implementation details. We

show exactly what bits are sent, as opposed to simply stating

how the tree is updated.

• An additional rule: if any character/symbol is to be sent the

first time, it must be preceded by a special symbol, NEW.

The initial code for NEW is 0. The count for NEW is always

kept as 0 (the count is never increased); hence it is always

denoted as NEW:(0) in Fig. 7.7.
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Table 7.3: Initial code assignment for AADCCDD using

adaptive Huffman coding.

Initial Code

NEW: 0
A: 00001
B: 00010
C: 00011
D: 00100
. .
. .
. .
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Fig. 7.7 Adaptive Huffman tree for AADCCDD.
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Fig. 7.7 (cont’d) Adaptive Huffman tree for AADCCDD.
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Table 7.4 Sequence of symbols and codes sent to the

decoder

Symbol NEW A A NEW D NEW C C D D
Code 0 00001 1 0 00100 00 00011 001 101 101

• It is important to emphasize that the code for a particular

symbol changes during the adaptive Huffman coding process.

For example, after AADCCDD, when the character D over-

takes A as the most frequent symbol, its code changes from

101 to 0.

• The “Squeeze Page” on this book’s web site provides a Java

applet for adaptive Huffman coding.
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7.5 Dictionary-based Coding

• LZW uses fixed-length codewords to represent variable-length

strings of symbols/characters that commonly occur together,

e.g., words in English text.

• the LZW encoder and decoder build up the same dictionary

dynamically while receiving the data.

• LZW places longer and longer repeated entries into a dictio-

nary, and then emits the code for an element, rather than

the string itself, if the element has already been placed in

the dictionary.
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ALGORITHM 7.2 LZW Compression

BEGIN

s = next input character;

while not EOF

{ c = next input character;

if s + c exists in the dictionary

s = s + c;

else

{ output the code for s;

add string s + c to the dictionary with a new code;

s = c;

}

}

output the code for s;

END
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Example 7.2 LZW compression for string “ABABBAB-

CABABBA”

• Let’s start with a very simple dictionary (also referred to as

a “string table”), initially containing only 3 characters, with

codes as follows:

code string

---------------

1 A

2 B

3 C

• Now if the input string is “ABABBABCABABBA”, the LZW

compression algorithm works as follows:
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s c output code string
---------------------------------

1 A
2 B
3 C

---------------------------------
A B 1 4 AB
B A 2 5 BA
A B
AB B 4 6 ABB
B A
BA B 5 7 BAB
B C 2 8 BC
C A 3 9 CA
A B
AB A 4 10 ABA
A B
AB B

ABB A 6 11 ABBA
A EOF 1

• The output codes are: 1 2 4 5 2 3 4 6 1. Instead of sending 14 characters,
only 9 codes need to be sent (compression ratio = 14/9 = 1.56).
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ALGORITHM 7.3 LZW Decompression (simple version)

BEGIN
s = NIL;
while not EOF

{
k = next input code;
entry = dictionary entry for k;
output entry;
if (s != NIL)

add string s + entry[0] to dictionary with a new code;
s = entry;

}
END

Example 7.3: LZW decompression for string “ABABBABCABABBA”.

Input codes to the decoder are 1 2 4 5 2 3 4 6 1.

The initial string table is identical to what is used by the encoder.
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The LZW decompression algorithm then works as follows:

s k entry/output code string
--------------------------------------

1 A
2 B
3 C

--------------------------------------
NIL 1 A
A 2 B 4 AB
B 4 AB 5 BA
AB 5 BA 6 ABB
BA 2 B 7 BAB
B 3 C 8 BC
C 4 AB 9 CA
AB 6 ABB 10 ABA
ABB 1 A 11 ABBA
A EOF

Apparently, the output string is “ABABBABCABABBA”, a truly

lossless result!
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ALGORITHM 7.4 LZW Decompression (modified)

BEGIN

s = NIL;

while not EOF

{ k = next input code;

entry = dictionary entry for k;

/* exception handler */

if (entry == NULL)

entry = s + s[0];

output entry;

if (s != NIL)

add string s + entry[0] to dictionary with a new code;

s = entry;

}

END
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LZW Coding (cont’d)

• In real applications, the code length l is kept in the range of

[l0, lmax]. The dictionary initially has a size of 2l0. When

it is filled up, the code length will be increased by 1; this is

allowed to repeat until l = lmax.

• When lmax is reached and the dictionary is filled up, it needs

to be flushed (as in Unix compress, or to have the LRU (least

recently used) entries removed.
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7.6 Arithmetic Coding

• Arithmetic coding is a more modern coding method that

usually out-performs Huffman coding.

• Huffman coding assigns each symbol a codeword which has

an integral bit length. Arithmetic coding can treat the whole

message as one unit.

• A message is represented by a half-open interval [a, b) where

a and b are real numbers between 0 and 1. Initially, the

interval is [0,1). When the message becomes longer, the

length of the interval shortens and the number of bits needed

to represent the interval increases.
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ALGORITHM 7.5 Arithmetic Coding Encoder

BEGIN

low = 0.0; high = 1.0; range = 1.0;

while (symbol != terminator)

{

get (symbol);

low = low + range * Range_low(symbol);

high = low + range * Range_high(symbol);

range = high - low;

}

output a code so that low <= code < high;

END
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Example: Encoding in Arithmetic Coding

Symbol Probability Range

A 0.2 [0, 0.2)

B 0.1 [0.2, 0.3)

C 0.2 [0.3, 0.5)

D 0.05 [0.5, 0.55)

E 0.3 [0.55, 0.85)

F 0.05 [0.85, 0.9)

$ 0.1 [0.9, 1.0)

(a) Probability distribution of symbols.

Fig. 7.8: Arithmetic Coding: Encode Symbols “CAEE$”
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Fig. 7.8(b) Graphical display of shrinking ranges.
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Symbol low high range

0 1.0 1.0

C 0.3 0.5 0.2

A 0.30 0.34 0.04

E 0.322 0.334 0.012

E 0.3286 0.3322 0.0036

$ 0.33184 0.33220 0.00036

(c) New low, high, and range generated.

Fig. 7.8 (cont’d): Arithmetic Coding: Encode Symbols “CAEE$”
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PROCEDURE 7.2 Generating Codeword for Encoder

BEGIN

code = 0;

k = 1;

while (value(code) < low)

{ assign 1 to the kth binary fraction bit

if (value(code) > high)

replace the kth bit by 0

k = k + 1;

}

END

• The final step in Arithmetic encoding calls for the generation
of a number that falls within the range [low, high). The above
algorithm will ensure that the shortest binary codeword is
found.
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ALGORITHM 7.6 Arithmetic Coding Decoder

BEGIN

get binary code and convert to

decimal value = value(code);

Do

{ find a symbol s so that

Range_low(s) <= value < Range_high(s);

output s;

low = Rang_low(s);

high = Range_high(s);

range = high - low;

value = [value - low] / range;

}

Until symbol s is a terminator

END
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Table 7.5 Arithmetic coding: decode symbols “CAEE$”

value Output Symbol low high range

0.33203125 C 0.3 0.5 0.2

0.16015625 A 0.0 0.2 0.2

0.80078125 E 0.55 0.85 0.3

0.8359375 E 0.55 0.85 0.3

0.953125 $ 0.9 1.0 0.1
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7.7 Lossless Image Compression

• Approaches of Differential Coding of Images:

– Given an original image I(x, y), using a simple difference operator we
can define a difference image d(x, y) as follows:

d(x, y) = I(x, y)− I(x− 1, y) (7.9)

or use the discrete version of the 2-D Laplacian operator to define a
difference image d(x, y) as

d(x, y) = 4 I(x, y)− I(x, y − 1)− I(x, y + 1)− I(x + 1, y)− I(x− 1, y)
(7.10)

• Due to spatial redundancy existed in normal images I, the

difference image d will have a narrower histogram and hence

a smaller entropy, as shown in Fig. 7.9.

44 Li & Drew c©Prentice Hall 2003



Fundamentals of Multimedia, Chapter 7
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Fig. 7.9: Distributions for Original versus Derivative Images. (a,b): Original
gray-level image and its partial derivative image; (c,d): Histograms for original
and derivative images.

(This figure uses a commonly employed image called “Barb”.)
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Lossless JPEG

• Lossless JPEG: A special case of the JPEG image com-

pression.

• The Predictive method

1. Forming a differential prediction: A predictor combines

the values of up to three neighboring pixels as the pre-

dicted value for the current pixel, indicated by ‘X’ in Fig.

7.10. The predictor can use any one of the seven schemes

listed in Table 7.6.

2. Encoding: The encoder compares the prediction with

the actual pixel value at the position ‘X’ and encodes the

difference using one of the lossless compression techniques

we have discussed, e.g., the Huffman coding scheme.
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C B

XA

Fig. 7.10: Neighboring Pixels for Predictors in Lossless JPEG.

• Note: Any of A, B, or C has already been decoded before it

is used in the predictor, on the decoder side of an encode-

decode cycle.
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Table 7.6: Predictors for Lossless JPEG

Predictor Prediction

P1 A

P2 B

P3 C

P4 A + B - C

P5 A + (B - C) / 2

P6 B + (A - C) / 2

P7 (A + B) / 2
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Table 7.7: Comparison with other lossless com-
pression programs

Compression Program Compression Ratio

Lena football F-18 flowers

Lossless JPEG 1.45 1.54 2.29 1.26

Optimal lossless JPEG 1.49 1.67 2.71 1.33

compress (LZW) 0.86 1.24 2.21 0.87

gzip (LZ77) 1.08 1.36 3.10 1.05

gzip -9 (optimal LZ77) 1.08 1.36 3.13 1.05

pack (Huffman coding) 1.02 1.12 1.19 1.00
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7.8 Further Exploration

• Text books:

– The Data Compression Book by M. Nelson

– Introduction to Data Compression by K. Sayood

• Web sites: −→ Link to Further Exploration for Chapter 7.. including:

– An excellent resource for data compression compiled by Mark Nelson.

– The Theory of Data Compression webpage.

– The FAQ for the comp.compression and comp.compression.research
groups.

– A set of applets for lossless compression.

– A good introduction to Arithmetic coding

– Grayscale test images f-18.bmp, flowers.bmp, football.bmp, lena.bmp
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